
Development of a Robotic
Shared Autonomy Object Recognition

Pipeline for Image Streams

Diplomarbeit of

Andreas Lars Wachaja

At the Department of Mechanical Engineering
Institute of Measurement and Control

Reviewer: Prof. Dr.-Ing. Christoph Stiller
Advisor: Sarah Osentoski, Ph. D.

Duration: December 3, 2012 – June 03, 2013

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 06/03/2013

. .
(Andreas Lars Wachaja)

Contents

1. Introduction 5
1.1. Problem Definition . 6
1.2. Concept Overview . 9

1.2.1. Weed Detection Pipeline . 9
1.2.2. User Integration . 10

1.3. Thesis Structure . 11
1.4. Project Acknowledgements . 11

2. Background 13
2.1. Shared Autonomy . 13

2.1.1. Interfaces for Human-robot Interaction 14
2.1.2. Level and Behavior of Autonomy . 15
2.1.3. Nature of Information Exchange . 16
2.1.4. Shared Autonomy Applications . 17

2.2. Precision Agriculture . 19
2.2.1. Methods . 19
2.2.2. Trends . 20

2.3. Autonomous Weed Control . 20
2.3.1. State of the Art . 20
2.3.2. Commercial Products . 22
2.3.3. Weed Detection and Identification 23

3. Shared Autonomy Approach 25
3.1. User Integration . 27

3.1.1. Human Insertion Points . 27
3.1.2. Realization . 28

3.2. User-classifier Interaction . 28
3.2.1. Interaction Scenarios . 29
3.2.2. Realization . 30

3.3. User Interface . 32
3.3.1. Interface Concepts . 32
3.3.2. Realization . 32

4. Concept of Tile Images 37
4.1. Advantages . 37
4.2. Image and Tile Contours . 38
4.3. Dataflow . 39
4.4. Tile Creation . 41

4.4.1. Transformation . 42
4.4.2. Mosaicing Algorithm . 42
4.4.3. Tile Deskewing . 43
4.4.4. Error Handling . 45

iii

iv Contents

4.4.5. Discussion of the Tile Creation Process 45

5. Object Classification and Stem Localization 47
5.1. Image Preprocessing . 47

5.1.1. Optimization for Channel Subtraction 47
5.2. Segmentation . 48

5.2.1. Segmentation Algorithm . 49
5.2.2. Evaluation of Image Subtraction and Segmentation 49
5.2.3. Contour Overlapping Detection . 50

5.3. Extraction of Feature Values . 51
5.3.1. Feature Extraction . 51
5.3.2. Evaluation of Feature Values . 51

5.4. Object Classification . 52
5.4.1. Choice of Classes . 53
5.4.2. Classifier Requirements . 53
5.4.3. Evaluation of Classifier Types . 54
5.4.4. Realization . 55

5.5. Stem Localization . 57

6. Implementation 59
6.1. Middleware . 59

6.1.1. Code Structure . 59
6.1.2. Advantages . 59

6.2. Image Processing . 60
6.3. Graphical User Interface . 61
6.4. Thread Handling . 61

7. Evaluation and Analysis 63
7.1. Tile Approach . 63

7.1.1. Accuracy of Marker Placement . 63
7.1.2. Processing Efficiency . 65

7.2. Evaluation of Shared Autonomy Approaches 67
7.2.1. User Study Setup . 67
7.2.2. Weed Detection Performance . 70
7.2.3. User Experience . 72

7.3. Impact of the Shared Autonomy Approach 73

8. Summary and Future Work 77
8.1. Summary . 77
8.2. Conclusions . 79
8.3. Design Recommendations and Future Work 79

Appendix 83
A. Feature Values . 83
B. Questionnaire for the User Study . 85

Bibliography 89

List of Figures 95

List of Tables 97

Nomenclature 99

iv

Abstract

This thesis examines a Shared Autonomy approach for an image based weed detection
framework in agricultural robotics. A key obstacle of the realization of commercially
viable robots is that state-of-the-art autonomous systems are not sufficiently robust in
unstructured environments. Our hypothesis is that a human user in the loop is able to
support an automated process in difficult tasks and overcome these obstacles. This thesis
examines how user input can be queried, integrated and effectively incorporated.

We first evaluate possible points of insertion for the human user and different integration
concepts. Based on out-of-the-box solutions, we design a flexible, user-centered weed
detection framework, which involves the human in the classification of plant contours. The
user supports the autonomous system in its task to detect and eliminated weed through
mobile manipulation. An image stream created out of a series of overlapping images
received from the robot is employed for user interaction and the association of single
images with the goal to optimize the cooperation between robot and user.

We evaluate different interaction scenarios between the human user and the classifier with
varying levels of autonomy through an user study considering both the system performance
and the user experience. We observe that it is difficult for a shared autonomy system with a
high level of autonomy to compete against less sophisticated human-in-the-loop approaches
due to the complexity of the weed detection process. Our results show that the user and
the classifier influence each other in a symbiotic manner and that our tile image stream
approach reduces the load on the user as well as the amount of data which has to be
transmitted within the system significantly. Based upon our experiences we derive a set
of design suggestions for future systems.

Keywords and Phrases

Shared Autonomy, Mixed Initiative Control, Human-Robot Cooperation, Human-Robot
Interaction, Human-Robot Interface, Adjustable Autonomy, Precision Agriculture, Pre-
cision Farming, Weed Detection, Weed Identification, Active Weed Control, Shape-based
Features, Machine Vision, Machine Learning, Classification, Query Strategy, Support Vec-
tor Machine, User Study, ROS, Robot Operating System, BoniRob

1

ACKNOWLEDGEMENTS

First, I would like to thank my reviewer Professor Stiller, who established the contact to
the Bosch Research and Technology Center Palo Alto and supervised my thesis. Next, a
very big thank you goes to Sarah Osentoski who advised me with this thesis and spend a
large amount of time on our meetings, all my questions and the review of this work. It
was always a great inspiration working with you!

I am incredibly grateful for the opportunity to spend some time in such an amazing work
environment. I would like to thank Benjamin Pitzer, Philip Roan and Matthias Roland
for sharing their knowledge with me and being available whenever I needed some advice.
Dejan Pangercic and Kai Franke, I will not only miss your expertise, but also our late-night
Antenne-Bayern work sessions and jogging with you in the hills of Arastradero Preserve.

Furthermore I would like to send some greetings to my intern colleagues in the robotics
team: Nikolaus Demmel, Fadri Furrer, Karol Hausman, Ross Kidson, Johannes Kühn,
Russell Toris and Thomas Witzig. It was a great inspiration and a lot of fun working with
all of you—keep up the great work!

Finally, I would like to thank my parents, who support me in all of my carrier decisions.
I know this is not always easy for you.

1. Introduction

A goal of autonomous robotic systems is to execute tedious or dangerous tasks, increase
productivity, decrease production costs and preserve the environment. However, state-
of-the-art systems are only able to solve a limited number of tasks in clearly defined
environments robustly. These robots cannot handle complex tasks or unexpected events
reliably and have problems adjusting to changes in an unstructured environment.

Robots are skilled at data acquisition, data storage, navigation and manipulation. They are
able to execute tedious work which would bore a human quickly with a steady performance.
On the other hand, many tasks that are highly challenging for robots such as perception,
situation awareness and intelligent decision making, can be easily handled by humans.
Therefore, it seems to be a very promising approach to combine both the skills of a robot
and that of a human in order to overcome restrictions which arise from a system design
that purely focuses on autonomy. The combination of human and machine is able to
incorporate the strengths of both sides and therefore increase the robustness of a system,
decrease the development costs and offer the possibility that one can learn from the other.
This idea is often referred to as Shared Autonomy, Human-Robot Cooperation, Adjustable
Autonomy, Human in the Loop or Mixed Initiative Control. We use the term shared
autonomy in this thesis. As human input is cost-intensive, one optimization goal is to
maximize the level of autonomy. Another goal is to obtain a system which is still reliable
and robust. Furthermore, it is important to create an interface between human and robot
which allows an efficient cooperation. This motivates the design of a system which focuses
on an intelligent and user-customized communication between human and robot.

This thesis aims to improve the functionality and reliability of an agricultural robot by
using feedback provided by a human. We describe the design of a shared autonomy
system for the discrimination between crop and weed plants. The main goal of our work
is to evaluate human-machine interaction scenarios in order to understand the effects
of a human user in the loop, to identify suitable points of application for a human in
an autonomous object detection process and to evaluate different interfaces enabling the
human-robot interaction. Therefore, we design an integrated framework that is built with
the shared autonomy approach in mind from the very first step.

The focus of this thesis is the optimization of the collaboration between the autonomous
system and the user. As we are interested in an extensive evaluation of different interaction
scenarios rather than the optimization of the overall system performance we employ out-
of-the-box solutions for the autonomous processing pipeline whenever possible.

5

6 1. Introduction

1.1. Problem Definition

The German organic farming industry is a growing sector. In 2012, 3.9 % of the food sales
in Germany were organic products, this is an increase of 6 % compared to the previous
year ([1] p. 16). The high request for organic products marked with the German “Bio”
certificate results in the demand to establish more efficient production technologies, which
increase the productivity and decrease product prices, making organic products affordable
for everyone. Similar developments can be observed in other countries. One of the main
challenges of farming organic field crops is the prohibition of synthetic herbicides regulating
weed plants growing on the fields. However, it is especially important to ensure that young
crop plants do not have to compete with weeds and to give these plants a growth advantage
in the first month of their growth period. Therefore alternative weed control techniques
have to be applied. Figure 1.1 shows the state-of-the-art solution for weed regulation on
organic carrot fields in Germany. Workers lying flat on a trailer are dragged over the weed
dams by a tractor and remove unwanted plants either with their bare hands or with simple
tools. Working conditions on organic farms are often criticized1 and do not always meet
the expectations associated with a fully sustainable production. The weed regulation in
organic carrot fields is a highly interesting domain of application because of the tedious and
cost-intensive state-of-the-art weed control technique and because of the high share of area
under cultivation for carrots compared to other organicly grown vegetables in Germany
([1], p. 8).

Figure 1.1.: State-of-the-art weed regulation technique for organic carrot fields in Germany

Our project takes place in the context of the motivation to create a robot that is able to
automatically pick weeds with a high level of autonomy. Previous projects on agricultural
robotics include the development of BoniRob [2], a robot employed for plant rating. While
the main focus in the first BoniRob project was robot control, localization, navigation
and perception, the goal of the follow up project Bonirob2 is to introduce an additional
manipulation functionality that allows active weed control. This technique aims at the
specific manipulation of weed plants only and therefore minimizes unwanted side effects
such as crop damage in contrast to passive weed control. BoniRob2 is designed with an
app-like concept that allows the attachment of different hardware ‘apps’ [3]. One app is
built for weed manipulation and contains a delta kinematic manipulator which enables the
robot either to punch or to grab and uproot weeds (see Figure 1.2).

1http://grist.org/article/mark

6

http://grist.org/article/mark

1.1. Problem Definition 7

Figure 1.2.: Bonirob2 with delta kinematic for weed manipulation

Active weed control is a challenging problem touching the topics perception, cognition,
manipulator control and hardware design. This thesis regards two parts of this process,
perception and cognition, separated from the overall system in order to evaluate the ap-
plication of shared autonomy concepts. The goal is to detect the stem positions of weed
in an overlapping stream of camera images without depth information captured while the
robot is moving linearly along the weed dams. We define the weed stem position as the
point in the image, where the stem of a weed plant intersects with the approximated soil
plane. Per detected weed plant, one position marker and an image of its surroundings are
sent back to the robot for weed manipulation by Visual Servoing [4].

Challenges in the weed detection process

One of the main challenges is reliable and highly functional plant discrimination. Related
research such as that of Åstrand and Baerveldt [5] and Weis and Gerhards [6] show that
correct detection rates for completely autonomous weed detection range from 77 % to
98 % in the field. However, the latter value could only be achieved using a high a priori
knowledge of expected weed plant species and not considering temporal and environmental
variabilities.

It is important to identify the main challenges in the weed detection process in order to
create a system which is designed to overcome these difficulties. There are three major
problems:

Segmentation difficulties A system for weed detection must be able to distinguish be-
tween plants on the field in order to determine the plant type and the plant’s stem
position. This is difficult because of occlusion, the overlapping of multiple plants in
regions with a high plant density. A statistical investigation by visual observation
based on 298 images of one of our datasets shows, that 65 % of weed plants are over-
lapping with other plants (Figure 1.3). As no depth information is available, these
overlapping contours will cause undersegmentation. Åstrand and Baerveldt [5] sum
this problem up in their conlcusion: “Increasing weed pressure also brings on more
overlapping plants that lower the performance of the system, especially when weed
is merged with crops.”

Furthermore, fine plant structures such as stems are hard for cameras to resolve and
can be the cause of oversegmentation. These segmentation problems demand higher
requirements regarding sensing techniques and image segmentation algorithms for
an autonomous system. Additionally, motion blur and imperfect lighting conditions
decrease the image quality.

7

8 1. Introduction

33%

67%

Easily segmentable Segmentation difficulties

(a) Overview

2%1%

21%

27%

48%

Blurred Cropped by left or right image border
Overlappingwith crop Overlappingwith otherweed
Overlappingwith crop andweed

(b) Reasons for segmentation difficulties

Figure 1.3.: Evaluation of difficulties in the weed segmentation process based on visual
observation

Variable plant appearance There is no a priori knowledge about expected types of weed
plants on the field. Moreover, the outer appearance of plants is highly variable over
their growth stage and influenced by environmental conditions such as winds. Fig-
ure 1.4 provides an overview of crop and weed plants encountered in our dataset and
the variability of their appearance. A good system has to be flexible enough to rec-
ognize formerly unknown weed types and adapt to changes of the plant appearance.
Slaughter et al. state in their review on shape-based plant classification [7]: “While a
large number of shape based methods for machine vision recognition of plants have
demonstrated good potential under ideal conditions, a lack of robust methods for
resolving occlusion, leaf damage or other visual ‘defects’ (e.g., insect or hail damage,
leaves twisted in the wind, or splashed with soil) commonly found in farms remains
a major challenge to commercialization of the technique.”

(a) Crop plants (b) Different types of weed plants

Figure 1.4.: Examples for plants encountered in our dataset. The soil background is purple
because the images are acquired with a multispectral camera. The red channel
of the camera is mapped to the red and blue channel of the image whereas a
second Near Infrared channel is mapped to the green channel.

Difficulties localizing the stem of a plant Our use case of active weed manipulation by
gripping or punching results in high demands regarding the localization of the stem of
a weed plant. This is the point of application for the manipulation tool. Figure 1.4b

8

1.2. Concept Overview 9

shows that the stem position of a weed plant varies depending on the plant type
and pose. To illustrate this we describe the difference between prostrate and upright
weed. The prostrate weed grows flat on the soil surface, so the stem is close to the
border of its shape, whereas upright weed has its stem position in the center. The
proper detection of the stem position requires a distinct knowledge about the plant
pose and structure.

In their review on autonomous robotic weed control systems [7] Slaughter et al. conclude:
“Robust weed detection and identification, remains as the primary obstacle toward com-
mercial development and industry acceptance of robotic weed control technology.”

1.2. Concept Overview

Due to this challenges, there is no industrial system for active weed regulation available
until today which is based on the detection of crop as well as weed plants. Current
research focuses on the improvement of sensing techniques [8] and better weed detection
algorithms [9]. This increases the hardware and development costs of a product as well
as the complexity of the overall system. Often, the effort to increase the robustness of
a system is disproportionate to the amount of autonomy gained additionally (compare
e.g. Bohren et al. [10]).

Other fields of applications where robots operate in complex environments, for example
explore a cluttered area (Fong et al. [11]), show a different approach to create reliable
solutions. Robots are provided with the ability to interact with a human user in the case
of uncertainties. This idea is known as shared autonomy. It bridges the gap between
full teleoperation and a completely autonomous system. Shared autonomy enables the
realization of industrial solutions for robots operating in unstructured environments2 and
can be seen as an intermediate step in the direction of fully autonomous systems.

We create a shared autonomy system in order to overcome difficulties in the weed detection
process. It is expected that this approach increases the system functionality, reliability
and robustness. The goal of this thesis is to design and evaluate an user-centered shared
autonomy approach for weed discrimination in carrot fields. We aim to create an integrated
framework which naturally allows the users to interact. Our focus is to determine different
scenarios where the user can help the system, to evaluate several scenarios for human-robot
interaction in an user study and to examine, how the level of autonomy affects user and
pipeline performance.

The system is evaluated on a preliminary test dataset of 2D-field images captured by a
multispectral camera. This dataset was acquired on an organic carrot farm in Germany
with a camera mounted on a small vehicle representing the weed manipulation robot. Due
to the advanced growth stage and the resulting high occlusion of carrot and weed plants
the dataset can be considered as difficult and cannot be compared to datasets in previous
work such as that of Åstrand and Baerveldt [5].

One of the main challenges of our approach is the interaction with the human user. The
basic concept is illustrated in Figure 1.5. The weed detection pipeline receives images from
the robot, processes them with the option to request additional user feedback and finally
returns the position of weed stems and an image of their surrounding for Visual Servoing.

1.2.1. Weed Detection Pipeline

We describe an overview of the autonomous portion of our proposed system. Our design
approach is presented in Figure 1.6. In a first step, published images are received and

2http://goo.gl/0YBmV

9

http://goo.gl/0YBmV

10 1. Introduction

Robot

WeedDetection Pipeline

Remote Farmer

Camera images
of the field scene

Image for Visual
Servoing andweed
marker

Feedback
request

User
feedback

Figure 1.5.: Overview of the system design with the shared autonomy approach

preprocessed. Next, the images are segmented into contours of plants. We use plant
contours, as they can not only be employed in the classification step, but also provide an
excellent basis for the pipeline-user interaction as a field image overlayed with the detected
plant contours is a good visualization of the segmentation results. After the segmentation
step, feature values for each plant are extracted out of the detected shapes and labels
assigned by the classifier. For all weed plant objects, a stem marker describing the stem
location is determined and per marker, one cropped image containing its surrounding
environment is created for Visual Servoing. Both the marker and this image are sent back
to the robot.

Camera Image

Image Preprocessing

Segmentation

Extraction of
Feature Values

Classification

Stem Localization

Visual Servo
Control Im-

age Extraction

VS Images, Weed markers

Figure 1.6.: Autonomous weed detection process

1.2.2. User Integration

Based on this pipeline architecture, we are able to integrate the user, also called Remote
Farmer, in our detection process. Possible points of application and interaction concepts
are presented and evaluated in Chapter 3.

We develop an user interface based on a scrolling image visualizing a cut-out of the current
ridge of the field in order to increase the situation awareness of the human user. Therefore,

10

1.3. Thesis Structure 11

we employ the overlapping characteristic of the images received from the robot in order
to create an image mosaic. This mosaic consists of non-overlapping images, the so-called
tiles, which can be assembled at their image border to create an image stream. The
graphical user interface displays the image stream and interaction requests to the user. The
stream does not only improve the user performance and experience as it provides a high
scene context, but is also important to create associations between the overlapping images
received from the robot and to reduce the amount of data which has to be transmitted
between GUI and processing pipeline.

1.3. Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 reviews state-of-the-art approaches for human-robot interaction, provides an
overview of precision agriculture developments and presents research projects for
autonomous weed control.

Chapter 3 introduces the proposed shared autonomy system for weed detection. Further-
more, we describe the user interface developed in the scope of our thesis.

Chapter 4 presents the tile approach employed to create an image stream and examines
the dataflow in the shared autonomy pipeline.

Chapter 5 describes the autonomous part of the processing pipeline which enables the
shared autonomy system.

Chapter 6 provides implementation details of our system.

Chapter 7 evaluates and analyzes the overall system performance.

Chapter 8 contains on overview of the thesis, our conclusions and design recommendations
for further development.

1.4. Project Acknowledgements

This work is carried out as part of a public funded project by BMELV (German Fed-
eral Ministry of Food, Agriculture and Consumer Protection). The project partners are:
AMAZONE, Robert Bosch GmbH and the Hochschule Osnabrück.

11

2. Background

In this chapter, we provide an overview of previous work. Our approach to evaluate
different human-robot interaction concepts for the detection of weed plants is related to
several veins of research. Therefore, this chapter is divided up into three parts: At first, we
examine existing shared autonomy literature. Although our work touches only a partial
system of an agricultural robot, we want to provide a quick overview of modern agricultural
techniques summed up under the term Precision Agriculture. Finally methods and the
state of the art for autonomous weed detection systems are described. As the focus of
our thesis is how a human and a robot can achieve a common goal together and not the
implementation of a custom-made fully autonomous system, image processing and object
recognition techniques are not included in this chapter and will be introduced whenever
required.

2.1. Shared Autonomy

Conventional robotic design approaches focus either on the development of fully au-
tonomous systems or robots which can be teleoperated from a human user. Both of
these approaches are challenging. Fully autonomous systems often require restrictive as-
sumptions about the environment in order to operate. Teleoperation systems can be
cumbersome due to the need to control a high number of degrees of freedom, the require-
ment that large amounts of data must be transmitted in a short time, and the high level
of human involvement. While teleoperation is acceptable for robots that work for example
in environments which are dangerous for human users, it is not desirable for the goal of
robots reducing workload and increasing overall efficiency.

Shared autonomy approaches try to bridge the gap between the two described concepts
by combining the strengths of a robot such as data acquisition and storage, manipulator
control, localization and planning with that of a human for example perception, reasoning
and context awareness (compare Pitzer et al. [12]). There are two interfering goals:

• Reduce the user input and its complexity to a minimum.

• Maximize the overall system performance, robustness and reliability.

We define Shared Autonomy as the involvement of a human user in an otherwise au-
tonomous process.

13

14 2. Background

2.1.1. Interfaces for Human-robot Interaction

One important research question in the field of shared autonomy systems is the efficient
interaction between robot and user. This depends in large parts on the design of suitable
interfaces for collaboration. In their survey on human-robot interaction, Goodrich and
Schultz [13] define the Human Robot Interaction (HRI) problem as “to understand and
shape the interactions between one or more humans and one or more robots”. They name
five attributes which a designer can affect:

Level and behavior of autonomy There are numerous definitions for the level of auton-
omy. A straightforward one is “the amount of time that the robot can be ne-
glected” [14]. We will examine the level of autonomy further in one of the following
subsections.

Nature of information exchange Defines the manner how information is transmitted be-
tween human and robot. Goodrich and Schultz distinguish between the medium and
the format of information exchange. Whereas there is a wide variety of formats, the
following media are commonly employed for HRI tasks and can also be combined:

• Visual displays such as that of Leeper et al. [15] for the evaluation of shared
autonomy grasping approaches.

• Gestures such as the interface of Marge et al. [16] which uses operator following
and gestures for the control of an unmanned ground vehicle.

• Speech and natural language, one example in the field of robotics is the work of
Tellex et al. [17] who examine natural language commands for robotic navigation
and manipulation systems.

• Non-speech audio e.g. audio signals alerting an user about critical system con-
ditions as employed by Dixon et al. [18] in the field of unmanned aerial vehicle
flight control.

• Physical interaction and haptics such as the force feedback system of Chotipra-
yanakul et al. [19] who use a force field for collision avoidance in a teleoperation
scenario for robotic grit blasting.

Furthermore, a combination of different interaction modes is also possible. One
example is the multimodal interface of Ubeda et al. [20] which combines haptic
feedback, a graphical interface and electrooculography for the control of a robot
arm.

In their survey, Goodrich and Schultz cite four different metrics for the measurement
of interaction effectiveness: The interaction time, the cognitive or mental workload
of an interaction, the amount of situation awareness produced by the interaction and
the amount of shared understanding of common ground between humans and robots.

Structure of the team The structure of the team describes the amount of human users
and robots involved in the HRI task as well as their authorities and roles.

Adaption, learning, and training of people and the robot Both the user and the robot
have to adapt to variability in the interaction scenario. They can learn from the other
and might require training in order to optimize the overall system performance.

Shape of the task “Task-shaping is a term that emphasizes the importance of consider-
ing how the task should be done and will be done when new technology is intro-
duced” [13].

14

2.1. Shared Autonomy 15

Our thesis is interested in all of these aspects, but we put a special focus on the variation
of the level autonomy as one important question is to what extend an autonomous system
can enable a human user in the weed detection process. Furthermore, our work examines
how to best display information from the system to a human user so that he can intuitively
help the robot.

Goodfellow et al. [21] show, that it is not necessary to have one perfect implementation
of an interface for information exchange, but rather different task-oriented interface types
which enable to overcome restrictions in the communication between user and robot. One
example is a robot which has to pick a distinct bottle. It is easier to send images of
possible bottles to the user and ask him for the correct one than trying to determine the
available bottle types and contents and translate this information into natural language.
Goodfellow et al. describe the design and implementation of three different mobile user
interfaces for the domains navigation, perception, learning and manipulation.

2.1.2. Level and Behavior of Autonomy

One important research question is to find an optimal level of autonomy. In their research
about a model for types and levels of human interaction with automation [22], Parasur-
aman, Sheridan et al. start with the consideration of a task that is manually executed
by a human. They create a framework which allows to evaluate which parts of this task
can be automated by what extent. Based on a four-stage model for human information
processing they define ten levels of automation of decision and action selection as displayed
in Figure 2.1. They underline that “automation does not simply supplant human activity
but rather changes it, often in ways unintended and unanticipated by the designers of
automation” and demand “human-centered automation” [23].

Figure 2.1.: Levels of automation and four-stage model of human information processing
as defined by Parasuraman, Sheridan et al. [22]

The term Adjustable Autonomy is often utilized to underline the variable ratio between
the amount of user input and the level of autonomy of a robot. One important research

15

16 2. Background

question is to figure out the effectiveness of a human-robot team depending on this ratio.
An effectiveness measure can relate the amount of user input to the system performance.
In general, it is desirable to minimize the user feedback and maximize the robot’s perfor-
mance. Kaupp and Makarenko [24] define the level of autonomy of a robot as the cost
value for user feedback. Their robot fulfills a navigation task and requests user feedback,
when the expected information-gain justifies the costs. The team effectiveness is measured
as a function of the autonomy level. It is a weighted sum of the success rate, the task ful-
fillment time and the required user queries. Kaupp and Makarenko show that the optimal
choice of the level of autonomy of a robot highly depends on the metric employed to mea-
sure the team effectiveness. For three different scenarios, the optimal level of autonomy
varies between fully autonomous operation and continuously queried user feedback. All of
the scenarios achieve relatively good results for a high level of autonomy combined with a
small amount of user input.

In general, it is important to determine where to incorporate user input. It can be dis-
tinguished between low- and high-level tasks. Low-level tasks are often easy to solve for a
human and therefore have the potential to be outsourced, for example as a crowdsourcing
application. A classical use case is the solution of captchas. Montoyama et al. [25] state,
that a human-provided solution for one captcha costs around 0.001 $ and has a median re-
sponse time between 9 and 22 seconds. This information enables us to estimate the value
of human user input for simple, not time critical tasks. Our thesis aims at integrating
the user at such a low-level task as well—critical processing steps in the weed detection
pipeline are solved with additional human input. High-level tasks are commonly employed
in human-robot interaction scenarios and include beneath others robot surveillance, navi-
gation and failure recovery (Sankaran et al. [26]).

2.1.3. Nature of Information Exchange

As we are examining an image based weed detection approach and are interested to create
an user interface which is compatible with standard hardware, we will employ a visual
display as media of information exchange. In this subsection, a quick overview of state-of-
the-art visual interfaces for robots is provided.

Chen et al. [27] review research papers which examine the efficiency of user interface designs
for robot teleoperation. They name the main influencing factors which decrease the human
performance in teleoperation tasks: A limited field of view, limited depth information and
possible bandwidth restrictions. “As a result, the operator’s situation awareness of the
remote environment can be compromised and the mission effectiveness can suffer.” They
underline that one of the main design goals for an interface is to maximize the situation
awareness of the user.

It is important considering which data has to be visualized in an user interface. Therefore
they divide the information for teleoperation control stations up into five categories:

• Sensor view and/or data transmitted from the robots

• Plans and commands issued to the robots

• Health status of the robots

• Status of the tasks

• Map displays

Although our use case is different, this list provides a good example for the variety of data
which has to be considered in the GUI design process.

16

2.1. Shared Autonomy 17

Keskinpala et al. [28] share their experiences on the development of a GUI for the teleop-
eration of a mobile robot. They point out it is important to provide “rapid but meaningful
information”. Especially when the GUI is designed for inexperienced users robot internal
data has to be translated into a format that “provide[s] insight into a robot’s environ-
mental view”. Often, images are a good base for the visualization of information, as they
resemble the human visual system and contain “a large amount of information that is not
easily obtained with other sensory modalities”. These images can than be enhanced in the
fashion of an Augmented Reality approach with the overlay of additional sensor data, for
example that of a laser range-finder. Keskinpala et al. expect this overlay method induces
higher workload levels.

A high amount of interface research for human-robot interaction is carried out in the scope
of Urban Search and Rescue (USAR) applications. One example for this is the work of
Baker et al. [29]. They provide guidelines, which focus on the development of USAR
teleoperation interfaces but are also highly relevant for our thesis:

Enhance awareness Provide a map indicating where the robot has been. Pro-
vide more spatial information about the robot in the environment to make
operators more aware of their robots’ immediate surroundings.

Lower cognitive load Provide fused sensor information rather than make the
user mentally combine data from multiple sources.

Increase efficiency Minimize the use of multiple windows, and provide user
interfaces that support multiple robots in a single window, if possible.

Provide help in choosing robot modality Provide the operator assistance in
determining the most appropriate level of robotic autonomy at any given
time.

Baker et al. [29] demonstrate their design guidelines by the improvement of an existing in-
terface displayed in Figure 2.2a. They observed that the users focused mainly on the video
display in the interface. Thus, this is the new central element in their GUI. Furthermore,
they visualized information more effectively and got rid of “dead space” in the main view.
The resulting interface is shown in Figure 2.2b.

2.1.4. Shared Autonomy Applications

There are a wide range of applications for shared autonomy approaches in robotics. In
the following part, we will present some selected example applications that are especially
interesting.

Object Manipulation

Pitzer et al. [12] employ the skills of a human user in order to assist a robot with a complex
perception task: To segment an object which might be partially occluded correctly. They
are able to show that significant robustness improvements are achieved based a shared
autonomy approach. Pitzer et al. point out, “that a human-robot team can work together
effectively solving a typical object manipulation task.”

In an user study on human-in-the-loop robotic grasping [15], Leeper et al. evaluate four
different user interfaces with varying levels of autonomy in different environments. Inex-
perienced users had the task to grasp as many objects as possible while avoiding collisions.
Leeper et al. show, that interfaces with a higher level of autonomy perform better com-
pared to interfaces which allow the user to control the robot arm on a lower level of control.
However, the users tended to trust high level autonomous systems too much. Therefore,

17

18 2. Background

(a) Old existing interface

(b) Design of the new interface

Figure 2.2.: Redesign of an user interface for an USAR application [29]

one important conclusion of their work is that “autonomous components must establish
an appropriate level of trust with the operator in order to provide significant benefits, and
communicate their limitations in an appropriate way”.

In a related study, Witzig et al. [30] collected context information regarding an object
grasping task from a human user with the aim to improve the ranking of autonomously
created grasp suggestions based on the decision of a Bayesian Network. They demonstrate,
that their approach has the highest grasping success rates and produces less collisions
compared to other concepts with higher and lower levels of autonomy. On the other hand,
their user study shows tendencies that the participants preferred methods with a lower
level of autonomy which provides them with more control over the robot even if those
methods produce worse quantitatively measured results.

Mobile robotics

A good example for a high level shared autonomy task is the telepresence bot QB of the
company anybots1. While the user navigates the robot with keyboard commands, the
platform supports its supervisor in his navigation task and avoids obstacles.

1https://www.anybots.com

18

https://www.anybots.com

2.2. Precision Agriculture 19

The application of shared autonomy integrating the user into high level tasks enables new
scenarios in mobile robotics such as one user controlling several autonomous robots at the
same time. Fong et al. [31] introduce the system model of collaborative control, where
human and robot are considered to be active partners and communicate dialogue-based.
The human user is not only able to send high level commands to mobile robots, but can
also ask the robot simple questions regarding its task and system state. On the other hand,
the robot has the functionality to ask the user questions—“human and robot collaborate in
order to compensate for limitations of autonomy”. This architecture makes the interaction
between human and robot focus on the most important information and therefore increases
the efficiency.

Urban search and rescue

Typical Urban Search and Rescue scenarios involve a small robot, which is able to explore
areas of collapsed buildings that are inaccessible or too dangerous for human members of
a rescue team. Optionally, the robot is able to transport emergency utilities to trapped
persons or manipulate its environment. The employments of robots for USAR tasks gained
increasing publicity after the collapse of the World Trade Center and has high demands as
the robots execute possibly life-saving measures and are operated directly from end-users.
Murphy [32] provides a good overview of human-robot interaction in rescue robotics. He
states, that shared autonomy approaches in USAR mainly focus on the reduction of the
human to robot ratio and assisted failure recovery.

2.2. Precision Agriculture

On one hand, a growing world population, the employment of biomass as substitute for
other resources and increasing food prices boost the demand for agricultural production
in larger scales and with a higher efficiency. On the other hand, farming methods are
expected to have less environmental impact and sometimes also to obey extended restric-
tions regarding the employment of fertilizers and herbicides. Precision Agriculture (PA)
tries to moderate between these two demands by the employment of methods enabled by
advances in information technology.

Autonomous systems for active weed control are a typical Precision Agriculture applica-
tion. Pierce and Nowak define Precision Agriculture as “the application of technologies
and principles to manage spatial and temporal variability associated with all aspects of
agricultural production for the purpose of improving crop performance and environmental
quality” [33].

2.2.1. Methods

In their worldwide overview of precision agriculture, Zhang et al. [34] distinguish between
six different variabilities:

Yield variability Historical and present yield distributions.

Field variability The topology of the field, for example elevation and slope.

Soil variability Geometrical, chemical and physical characteristics of the soil, e.g. the soil
fertility or its water-holding capacity.

Crop variability Properties of the crops such as their height, density or stress for water
and nutrient matter.

Variability in anomalous factors Different influences which lower the crop performance
such as weed occurrence, insect infestation and wind damage.

19

20 2. Background

Management variability

In general, there are two methods to manage the named variabilities [34]: The map-
based approach: Data or samples are collected at distinct locations and then employed
for the offline creation of a site-specific map which is used for the final application. The
sensor-based approach: Application decisions are performed online based on synchronously
captured sensor data.

Whereas studies mainly focused on the management of soil fertility in former years, ad-
vanced sensing, computation and guidance technologies enable the application of PA tech-
nologies in new fields such as weed manipulation or plant phenotyping. Our concept of an
autonomous system for the active manipulation of weed plants aims at the management
of the variability of one anomalous factor: Weed infestation. The attempt to distinguish
between weeds and plants is strongly influenced by crop variability.

2.2.2. Trends

A recent trend in precision agriculture which is currently also present in modern media
is the employment of unmanned aerial vehicles (UAVs), also known as “farming drones”
(see for example Figure 2.3). In their review on the application of UAVs for precision
agriculture, Zhang and Kovacs name the main use cases: “Yield mapping, chemical content
measurement, vigor mapping, vegetation stress monitoring and assessment of impacts of
fertilizing on crop growth.”The advantage of UAVs for those monitoring tasks are before all
relatively low costs and the flexible availability. However, Yhang and Kovacs list also the
shortcomes such as high initial costs, low reliability and sensor capability, strict aviation
regulations and problems with the acceptance by farmers.

Figure 2.3.: Aeryon scout quadrocopter for image acquisition

2.3. Autonomous Weed Control

Robots for autonomous weed control do not only enable a higher productivity, but also
reduce the amount of required herbicides. The technique is also highly interesting for
organic farming, where current weed control methods rely on cost- and labour intensive
human work. It is distinguished between inter-row and intra-row weeding. The latter one
is more difficult because crop damage has to be avoided, but also more relevant as inter-
row weeds can be managed by passive control techniques such as chemical or mechanical
solutions.

2.3.1. State of the Art

Slaughter et al. [7] provide an overview of autonomous weed control systems. Four core
technologies are identified:

20

2.3. Autonomous Weed Control 21

• Guidance

• Weed detection and identification

• Precision in-row weed control

• Mapping

Figure 2.4 provides an overview of a choice of autonomous vehicles employed for scientific
studies of active weed control techniques or related research projects. All vehicle are
equipped with row detection algorithms for row navigation and are, except of the platform
in Figure 2.4b, designed with a flexible four wheel steering concept .

(a) BoniRob1 (b) Mobile robot of Åstrand and Baerveldt

(c) Platform of the Danish Institute of Agricultural
Sciences

(d) Platform of Bakker et al.

Figure 2.4.: Vehicles for autonomous weed control and related precision agriculture re-
search applications

BoniRob1 (Figure 2.4a, Rahe et al. [2]) is a mobile platform with adjustable track width
created in the predecessor project. In contrast to its successor BoniRob2, it has no plant
manipulation functionality. The main purpose of BoniRob1 is plant phenotyping. There-
fore it is equipped with a variety of optical sensors for the measurement of plant morphol-
ogy.

The mobile robot of Åstrand and Baerveldt [35] in Figure 2.4b is equipped with two
cameras for row detection and a simple approach for crop identification, which resulted in

21

22 2. Background

accuracies of up to 97 % in a test trial with sugar beets. However, the plant segmentation
was manually supported. A height-adjustable wheel rotating around an axis parallel to
the row-line is employed for intra-row weed control.

Figure 2.4c shows the platform of the Danish Institute of Agricultural Sciences. It does not
contain any weed manipulation tools but is equipped with a real time kinematic global po-
sition system (RTK-GPS) for precise localization. The main focus of this research project
is on robot control, guidance and the mapping of crop positions (Bak and Jakobsen [36]).

The platform of Bakker et al. [37] is built for the evaluation of intra-row weed detection and
manipulation concepts. In their paper, they provide an excellent overview of the design
process of the vehicle, possible design choices and their decisions. Currently, there is no
information about field experiments for weed control is available.

To sum it up, all of the four presented concepts are similar, but focus on different dis-
ciplines. The system of Åstrand and Baerveldt is the only one with a functional weed
control mechanism. Our shared autonomy approach for weed detection is the first one of
its kind. Except for manual data preprocessing, no attempts to increase the functionality
and robustness of plant detection algorithms by involving the user in the critical processing
step have been made so far to the author’s best knowledge.

2.3.2. Commercial Products

There is a manageable amount of commercial products for autonomous weed control.
Existing solutions focus mainly on the combination of robust techniques out of autonomous
weed detection systems with traditional agricultural methods. An overview of available
technologies is provided in Figure 2.5.

(a) WeedSeeker (b) WEEDit (c) CLASS CAM PILOT

(d) Robocrop inrow (e) Blue River vision

Figure 2.5.: Commercial products related to autonomous weed detection

One example is the WeedSeeker2 (Figure 2.5a), a combination of a nozzle for herbicide
application and a plant sensor based on spectroscopic techniques which use the different
reflectance characteristics of plants and stones/soil. The system is able to distinguish
between plants and ground without vegetation and sprays herbicides only when plants

2http://www.ntechindustries.com/weedseeker-home.html

22

http://www.ntechindustries.com/weedseeker-home.html

2.3. Autonomous Weed Control 23

are below the nozzle. This reduces the amount of required chemicals with the effect of
decreasing costs and a lower environmental impact. The system is not able to distinguish
between weed and crop plants, it is a pure plant detection technology.

A similar system on a larger scale is offered by WEEDit3. WEEDit sensors are mounted
on a spraying vehicle (see Figure 2.5b) and include a red light source which illuminates a
line on the field. They detect NIR light emitted from the plants as chlorophyl converts
red light partially to NIR light. One sensor is able to control 5 nozzles with a distance of
200 mm. Array widths of up to 36 m cover can be realized by default.

The CLAAS CAM PILOT 4 (Figure 2.5c) is an example for the commercial availability
of guidance systems. A 3D camera system navigates tractors beneath other through crop
rows or ridges and therefore avoids crop damage and operator fatigue.

Probably the most advanced product for autonomous weed control is the garford robocrop
inrow5 shown in Figure 2.5d. This is a farming tool for inter- and intra-row weeding
which can handle up to 6 m field width at once. One or several cameras detect the crop
positions, which must be the dominant plants in the image. Sewing pattern are additionally
employed for a robust detection. The intra-row weed control is executed by weeding discs
rotating with variable angular speed around an axis orthogonal to the soil plane. The
speed is controlled in such a way, so that the resulting cycloid curve of the tool on the
soil plane does not damage crop plants but covers the soil region between the crops of one
row. Additional fixed tines accomplish mechanical inter-row weeding. Although a human
driver is still required for the system the active weed manipulations works autonomously.

A promising approach for fully autonomous systems for crop thinning as well as organic
weed control is the Silicon Valley startup company Blue River6 (see Figure 2.5e). Further-
more, the Danish startup RoboWeed7 is working on an autonomous GPS-based system
with an adjustable rotor weeding tool for active weed control [38].

2.3.3. Weed Detection and Identification

In their review on autonomous weed control systems, Slaughter et al. [7] conclude that
the greatest remaining challenge is plant detection and identification. Approaches to solve
this problem are divided into three groups based on the employed information: Biological
morphology, texture and spectral characteristics. In general, most of the plant detection
studies do not consider temporal variabilities over several growing seasons.

Biological morphology

The usage of morphological features such as the plant shape or also the shapes of single
leaves are a widely spread approach with promising results. Yang et al. [39] provide a
general overview of the enormous amount of shape feature extraction techniques and their
specific characteristics. They underline in their conclusion, that the selection of shape
features depends on the task.

Weis and Gerhards [6] name three different kind of features for the discrimination between
weed species in multispectral images:

• Region-based features such as size, compactness and Hu moments [40]

3http://www.weedit.com.au
4http://www.claas.com/cl-pw/en/products/easy/on_field/optische_ls/cam_pilot
5http://www.garford.com/PDF/robocrop%20inrow%20en.pdf
6http://bluerivert.com
7http://www.venturecup.dk/competition/roboweed-winner-cleantech-and-technology

23

http://www.weedit.com.au
http://www.claas.com/cl-pw/en/products/easy/on_field/optische_ls/cam_pilot
http://www.garford.com/PDF/robocrop%20inrow%20en.pdf
http://bluerivert.com
http://www.venturecup.dk/competition/roboweed-winner-cleantech-and-technology

24 2. Background

• Contour-based features such as fourier descriptors and curvature scale space repre-
sentation [41]

• Skeleton-based features, which describe the plant structures

Weis and Gerhards make clear that it is important to reduce the dimensionality of the
feature space to approximately 15 features with suitable methods. Especially skeleton and
region-based features are selected by rating methods. They assign weed plants to four
classes depending on their sensitivity to herbicides. A classifier evaluation shows, that
different classifier types can all perform higher than 95 % correct classification rate and
the choice of the classifier type is a minor influencing factor in the weed identification
process.

Åstrand and Baerveldt [5] show, that not only geometric information about the plant itself
but also sewing patterns of crops can be enabled for crop-weed discrimination. In field
experiments, their algorithm is able to “identify 99 % of the crops and remove about half
of the intra-row weeds”.

Other sensing techniques employ ultrasonic sensors for plant height measurements with
the goal to detect areas with a high weed density (Andújar et al. [42]) or a 3D LIDAR
sensor which measures morphological information in combination with reflectance values
(Weiss et al. [43]).

Texture

Texture features are rarely used for plant classification and most of the studies are executed
under lab conditions. Burks et al. [44] are able to achieve an overall accuracy of around
90 % for the classification of five different weed types and soil with the Color Co-occurrence
Method. Yet their experimental setup involves complicated artificial lighting conditions
and the manual extraction of class samples.

Spectral characteristics

Spectral characteristics are widely utilized for the discrimination between soil and plant.
As plants absorb contrary to soil and stones a high amount of light in the red band and
have higher reflectance values in the other bands, multispectral camera images can be used
for good plant segmentation results. Some possibilities are to compare normalized red-
and green-values [5] or to work with more expensive camera hardware which is able to
capture infrared images additionally and create a differential image between the infrared
and red camera channel [45].

Furthermore, spectral reflectance is also used in order to distinguish between different
plant types. Slaughter et al. [7] note, that this technique is more robust to partial occlusion
and less computational expensive than shape-based methods. However, in his review on
spectral properties of plants and their potential use for crop/weed discrimination in row-
crops Zwiggelaar concludes, that “spectral information on its own is not sufficient for
robust crop/weed discrimination, although in some specific cases it might give sufficient
information. [...] The spectral information is optimal in the red and near-infrared regions
of the spectrum” [46].

24

3. Shared Autonomy Approach

The weed detection process is a highly complex task. An autonomous system is able to
handle parts of this tasks, however in order to ensure high detection accuracies, a robust
detection process and to be able to react to failures in one of the process steps, we involve
the user in the pipeline. Therefore, we introduce the shared autonomy approach in this
chapter. At first, we suggest different concepts for integrating the user into the weed
detection process. One promising strategy is the interaction between Remote Farmer
and classifier. We examine different interaction scenarios. Finally, the realization of our
pipeline-user interaction is presented and we describe the user interface.

We sum up the most important aspects considering the pipeline-user interaction and define
the following items which have to be considered for the evaluation of our shared autonomy
concepts:

Human insertion point The human insertion point is the processing step where the user
is integrated into the system. For example, the user can be involved in the algorithm
which detects the weed stems based on the contours of weed plants. It is necessary
to identify promising insertion points. These are processing steps which are hard to
solve autonomously and suitable for human-robot interaction. The performance of
an autonomous algorithm applied on a task and the expected improvement by user
integration have to be considered for the choice of the insertion point.

Query type Once an insertion point is found, different means of communication between
robot and user must be evaluated. The main question is the design of the request
for user input, the interface between robot and user. It is a complex challenge, as
the requirements on both sides are very different.

Query behavior The query behavior defines, at which point and how often the user is
asked for help. In general, we consider the user input as a highly valuable and
cost-intensive source. Often, the reaction time of a system is increased drastically
when requesting user feedback, as this input requires in general more time than the
autonomous computation of a task. Therefore, it is important to develop concepts
that allow an intelligent detection of required user input. The query behavior defines
the level of autonomy of a robot.

Response usage In general, there are two different ways how a query response can be
used:

25

26 3. Shared Autonomy Approach

• Utilize the user feedback directly for the instance of data which triggered the
query. For example, the user might be presented a classification result for a
detected plant, correct its label and send it back to the robot. The robot can
now integrate this response into the dataset describing the type of this plant.

• Employ the user response in such a way, so that it affects the future behavior
of the autonomous system. This approach is known as learning or also active
learning, when combined with intelligent query behavior. To continue the ex-
ample used above, the robot might add the features associated with the plant
and the user-assigned class label to a training dataset for its plant classifier.

It is desirable to combine those two characteristics in order to maximize the outcome
of user input.

User expertise It is important to consider the user suitability for a defined task. Does the
user require any special skills or training or is the task so easy, that it could possibly
even be outsourced in the fashion of a crowdsourcing application? This assessment
also helps to estimate the expected quality of the user response. While a response
with high precision and accuracy might be used as a ground truth overwriting au-
tonomously computed results, a more sophisticated data fusion is required for lower
response quality.

Impact on the overall system design In general, the design of a shared autonomy sys-
tem is an iterative approach. It is not sufficient to design the autonomous system
first without consideration of the user integration, identify then critical parts of the
system and apply then a shared autonomy strategy for the solution of these parts.
The problem of this procedure is the high aberration between algorithm and user
requirements. While an algorithm is able to work on a very high abstraction layer
with a sharply defined amount of information, the performance of a human user
depends on the quality of the visualization of the data and the user might require
context information for good response quality. Therefore, it is important to consider
the user involvement from the very beginning of the system design. Yet the design
focus should always be on the autonomous capabilities of the system in order to
avoid an excessive employment of user feedback.

Furthermore, the different capabilities of humans and machines have to be consid-
ered. In general, it is not promising to employ the user as a simple replacement or
additional information source for distinct autonomous processing tasks. For exam-
ple, one of the most challenging tasks in the pipeline for the detection of weed stem
positions is the proper segmentation of plants. The user could be asked to segment
plant regions which cannot be handled by the segmentation algorithm. However, this
is a challenging and time-consuming user task and the following processing steps such
as classification and stem position extraction introduce new uncertainties. A better
user integration is to ask the user to select the stem positions of weed plants for this
regions directly which requires one click per weed plant. This decreases not only
the processing time significantly but also eliminates uncertainties in the detection
process as some processing steps can be skipped.

Side effects The integration of the user facilitates processing steps, but also yields new
challenges which have to be considered:

• What is the reaction time of an user and is there a time limit marking the
maximum allowed reaction time?

• What happens, if this maximum limit is exceeded?

• How is a quick and fail safe data transmission between user interface and robot
ensured?

26

3.1. User Integration 27

3.1. User Integration

Now that we have developed the main points of consideration for the design of a shared
autonomy system, we must integrate the user into our approach for the weed detection
pipeline. Our major goal is to identify and evaluate human insertion points and possible
query types. In the end, we choose the most promising concept which will be realized in
the scope of this thesis.

3.1.1. Human Insertion Points

Figure 1.6 gives an overview of the steps in the weed detection process. This design is
already created with the shared autonomy approach in mind as the interfaces between
the processing steps are clearly defined and therefore allow the insertion of additional
dataflow. Furthermore, the employed concept of plant contours as abstract elements de-
scribing plant characteristics is a good basis for the visualization of processing results and
for user interaction.

We identify three promising human insertion points. The human input has the poten-
tial to increase the quality of the processing steps Segmentation, Classification and Stem
Localization. All of these insertion points have in common that a high user expertise is
required, especially the classification step requires the Remote Farmer to be able to distin-
guish between different plant types. We compare the performance of inexperienced users
with an expert user in Section 7.2.

Segmentation

The goal of the segmentation is the detection of the shapes describing the plant contours.
It is the most important step in the processing pipeline as nearly all following steps such
as feature value extraction, classification and stem localization depend on its results. We
already showed in 1.1, that 65 % of weed plants are overlapping with other plants. As no
depth information is available this occlusion will cause undersegmentation. On the other
hand, fine plant structures such as stems may lead to oversegmentation.

The user input can be employed to resolve such segmentation errors by modifying the
autonomous segmentation results or by providing ground truth information about image
background and foreground data so that user-interactive segmentation algorithms such as
grabcut [47] can be applied. In terms of response usage, the main purpose of this input
is to correct distinct failures in the weed detection process directly. However, there are
also approaches to improve the segmentation algorithm based on user input with Machine
Learning techniques [48].

It is hard to establish a selective query behavior as at least standard implementations
of segmentation algorithms do not include a way to detect the quality of a segmentation
result.

The main problem of a shared autonomy approach for segmentation is the high user
interaction time and restricted learning possibilities. Moreover, experienced user skills are
required to work with segmentation tools. As already mentioned above, a direct placement
of stem markers in critical segmentation regions is a much more effective way of interaction
for an approach like this, where the main focus is on the direct modification of processing
decisions and not on learning.

Classification

It is often difficult distinguishing between different plant types. This underlines the com-
plexity of the classification task as the classifier can only be provided with a restricted set

27

28 3. Shared Autonomy Approach

of values describing features of a plant. An evaluation of different classifier types applied
on our plant dataset as described in Section 5.1 underlines that an autonomous classifica-
tion algorithm is not able to handle such a complex task under field conditions with high
accuracy.

The user task in this insertion point is to check or assign class labels to contours. A high
number of classifiers can be extended with a probabilistic model that assigns certainties
to each class label corresponding to a queried instance. This enables us to implement an
intelligent query behavior. The user response can easily be employed as direct input in the
classification process but it can also be stored for future classifier training. Depending on
the choice of the classifier, online-learning is possible. This means the classification model
is altered during runtime.

Additionally, a supervised classifier is depending on training data generated by a supervi-
sor. The shared autonomy approach facilitates the generation of such a training dataset.

Stem Localization

The localization of the plant stem is a challenging task as its position varies within the plant
contour (compare Section 1.1). While it is hard implementing a sophisticated algorithm
for this processing step, a trained user is in most cases able to solve this task without
problems. The stem position can be marked with one single click per weed plant, so that
the query response is the image coordinate of the plant stem.

As for the segmentation step, this input can be easily used to correct autonomous results
for particular instances, however it is difficult to employ it for a learning process, as a
high number of additional feature values such as skeleton features [49] would be required
in order to establish a supervised learning concept for stem localization. Such a system
would also be required in order to realize an intelligent query behavior.

3.1.2. Realization

Each user insertion point has a variety of pros and cons that must be considered when
creating a shared autonomy system. The segmentation is a critical processing step, but
user involvement is time-intensive, it requires high user skills and the learning possibilities
of the autonomous system are limited. The latter problem is also one downside of the user
involvement in the stem localization step. Furthermore this is a special operation which
cannot be transferred to other use cases.

The most promising concept is the user integration into the classification process. Not only
enables us this approach to selectively filter the samples sent to the user and employ the
user feedback in a learning process, but also is the classification one of the core components
in the weed detection pipeline. High performance improvements with a minimum amount
of user input seem to be achievable for a shared autonomy classification scenario. Further-
more, this processing step is more generic than the other two ones suggested. Therefore
it can be applied in the scope of a lot of other scenarios and is not restricted to the plant
classification domain.

3.2. User-classifier Interaction

There are different approaches for the integration of the user in the classification step. In
this section, we introduce and analyze four different concepts.

28

3.2. User-classifier Interaction 29

3.2.1. Interaction Scenarios

Figure 3.1 provides an overview of four potential ways of user-classifier interaction. All
of them have in common, that the user feedback can be employed for the creation of
additional training data for the classifier. This feedback path is not displayed in the
figures for the reason of simplicity. Each concept is based on the usage of one user and one
classifier and has an acyclic dataflow except of the classifier feedback. The concepts can
be extended to more complicated arrangements by introducing several users/classifiers or
a cyclical dataflow.

C

(a) Feature Extension

C

(b) Classifier Monitoring and Correc-
tion

C

Fusion

(c) Meta Classifier

Fusion

Filter

C

(d) Meta Classifier with Selective
Querying

Figure 3.1.: Different concepts for user-classifier interaction for object classification

Feature extension

As can be seen in Figure 3.1a, the user processes the data before the classifier. He extends
the existing feature vector with additional features. These components can be defined
differently, for example one feature can be a simple numeric value defining the plant class.
Also more abstract values are possible such as simple visual attributes of the plant, the
amount of leaves or the estimated stem height for example.

The advantage of this approach is that the user does not necessarily require the expertise
to assign plant labels to a contour. He might already support the classifier by extending
the feature vector with information, which is hard to obtain autonomously but can be
easily given by a human. The idea to utilize simple information from an user in a human-
computer cooperation in order to solve a problem which cannot be solved by the user
directly is described by Branson et al. [50].

29

30 3. Shared Autonomy Approach

The downside of this concept is the missing selective sampling in order to reduce the load
on the user and the complete lack of a learning process as long as the user does not assign
plant labels.

Classifier monitoring and correction

Figure 3.1b displays the second concept. The classifier assigns labels to the data and the
user verifies and corrects them if necessary.

It is obvious that, in this approach, the user has a much higher priority compared to 3.1a
as he is the final decision-making instance in the classification process. This implies that he
must be proficient in his task. Once again, the user has to process all data and cannot be
requested distinct instances. Compared to 3.1a the user has access to additional classifier
information, which might facilitate its task or also influence him in a counterproductive
way.

Meta classifier

The user and the classifier are setup in a parallel layout (Figure 3.1c). Both user and
classifier process all the data and after this their output is fused.

In this approach, the user has to classify all objects and cannot rely on any additional
classifier information for his decision. The data fusion step allows a flexible weighting of
user and classifier influence that can be varied based on the classifier’s certainty for an
assigned class label or the expected user expertise.

Meta classifier with selective querying

In Figure 3.1d the concept of the meta classifier is extended by a filter which enables us
to realize a selective querying scenario. All autonomously classified instances are filtered
and send to the user, if a defined criteria is met. The user feedback is integrated into the
classification result.

This approach combines most advantages of the other other three concepts: The user can
utilize the autonomous classification results, the load on him is decreased and the balance
between user- and classifier input can be adjusted. As the results of the classification
algorithm are available before the filtering step, this information can be utilized for an
intelligent filtering of instances. In case the user response directly alters the classification
and the filtering model, this scenario becomes an Active Learning approach.

3.2.2. Realization

As we consider user input highly cost-intensive and want the ability to experiment with
different filter and fusion approaches, we design our weed detection pipeline in the style
of Figure 3.1d. The flexible configuration of filtering parameters allows also an usage as
described in Scenario 3.1b.

Figure 3.2 provides an overview of the weed detection process with user integration. The
first four steps Image Preprocessing, Segmentation, Extraction of Feature Values and Clas-
sification are executed autonomously. After that, a filter decides for which of the objects
additional information in the form of user input has to be requested. This feedback is re-
ceived from a graphical user interface interacting with the Remote Farmer and afterward
fused with the pipeline data. Finally, the weed stems are localized and sent back to the
robot with an image for Visual Servoing.

30

3.2. User-classifier Interaction 31

Camera Image

Image Preprocessing

Segmentation

Extraction of
Feature Values

Classification

Filter

User

Data Fusion

Stem Localization

Visual Servo
Control Im-

age Extraction

VS Images, Weed markers

Figure 3.2.: Weed detection process with shared autonomy classification

Query strategy for the filter

We have to formulate a query strategy for the active learning approach . There are several
possibilities how to select the samples to be labeled by the supervisor. One is to query
data randomly, but results as described by Costa et al. [51] show, that this method is
ineffective. A promising approach is Uncertainty Sampling [52]. The idea of this strategy
is to get those instances labeled by a supervisor which lie in regions where the classification
model has a high uncertainty. For example, these instances are points which are close to
the hyperplane separating two classes in a Support Vector Machine classifier. It is not
only desirable from the active learning point of view to request user feedback for uncertain
classification results, but also, because these instances should be checked by the supervisor
before they are accepted and further processed in the pipeline.

Data fusion

In case the user assigned a plant label to queried instances, his feedback has to be fused with
the autonomous classification results. The data fusion should depend on the uncertainties
assigned to the label-providing sources, so that the source with the higher certainty is
considered with an heavier weight.

We consider the user input as correct and to not model errors made by the user. This is
left as an area for future work. Therefore, an user-defined label corresponding to a plant
contour overwrites the label assigned by the classifier. When the user ignores a queried
uncertain instance it is considered as non-weed object, as a high precision in the weed
detection process is preferred over a high recall.

Optional user input

The results of the weed detection pipeline highly depend on the plant segmentation quality,
as there is no way provided to correct segmentation failures. As discussed, a direct user
involvement with the aim to correct segmentation results is inefficient. Therefore, we

31

32 3. Shared Autonomy Approach

implement an optional tool which enables the user to overcome segmentation mistakes:
Markers for stem positions of weed plants can be set in the images presented to the user.
In this way, under- or unsegmented weed plants can still be treated in the end.

3.3. User Interface

The task of the graphical user interface is to visualize computational results of the weed
detection process and enable the user to interact with the detection pipeline by providing
feedback.

3.3.1. Interface Concepts

We designed different mockups for user interfaces in the scope of our thesis. As the
interface will mainly be used by workers not familiar with computer sciences, we put a
high focus on the implementation of an intuitive interface with a game-like design that
catches the permanent attention of the user and motivates him to carry out his task with a
constantly high performance. All mockups are created in such a way so that they can either
display still images or a vertically scrolling image stream. This enables plant labeling on
overlapping as well as non-overlapping images. Furthermore, we employ the plant contours
for visualization purposes and integrate the possibility to incorporate labeling results of
an autonomous classifier in the visualized data. We present four different GUI mockups
in Figure 3.3.

Concept 1 User interaction requests are presented in the form of speech bubbles. Each
bubble refers to one plant, yet depending on the query strategy some bubbles might
not even be displayed at all. The user assigns class labels by clicking on a button.
Classes which are considered by an autonomous classifier as highly probable could
be highlighted to support the user in his decision. The advantage of this interface is
an animating design. The speech bubbles give the user the feeling of a very direct
communication with the autonomous system which is supposed to motivate him in his
task. The downside of this mockup is that the bubbles can occlude some important
information in the image and this concept cannot be applied for high plant densities.

Concept 2 Concept 2 enhances Concept 1. The bubbles scroll now synchronously with
the image stream in a bar on the right of the GUI and therefore cause less occlusion.
This concept can only be realized in combination with a very restricted plant density.

Concept 3 In Concept 3, single plants are highlighted iteratively. The user has to assign
labels referring to the currently highlighted plant by clicking one of the class buttons
on the bottom of the interface. Additionally, keyboard shortcuts can be provided so
that this interface does not depend on mouse input. The next contour is highlighted
as soon as the user clicks one of the buttons. This approach provides an easy way
to assign class labels to a completely unlabeled dataset. However, iterating over the
contours can be cumbersome when the user just wants to check classifier-assigned
labels quickly.

Concept 4 In this concept, a right-click of the user on a plant contour opens a context
menu with the labeling choices. The advantage is high flexibility and low occlusion.
The disadvantage is a high clickload, two clicks are required to assign one class label,
whereas all other concepts require only one click.

3.3.2. Realization

In the final realization of the user interface, we incorporated the ideas of Concept 3 and
Concept 4 as they complement one another: An iterative high frequency class label assign-
ment by keyboard is possible as well as a selective choice of a fraction of contours which
require class label correction. Additionally, we add some features:

32

3.3. User Interface 33

Crop Weed

Undefined

Multiple plants

Other

Crop Weed

Undefined

Multiple plants

Other

Crop Weed

Undefined

Multiple plants

Other

Crop Weed

Undefined

Multiple plants

Other
Crop Weed

Undefined

Multiple plants

Other

Crop Weed

Undefined

Multiple plants

Other

(a) Concept 1

Crop Weed

Undefined

Multiple plants

Other

Crop Weed

Undefined

Multiple plants

Other

Crop Weed

Undefined

Multiple plants

Other

Crop Weed

Undefined

Multiple plants

Other

Crop Weed

Undefined

Multiple plants

Other

Crop Weed

Undefined

Multiple plants

Other

(b) Concept 2

Crop Weed UndefinedMultiple plants Other

(c) Concept 3

Crop
Weed

Undefined

Multiple plants
Other

(d) Concept 4

Figure 3.3.: Design mockups for user interfaces

33

34 3. Shared Autonomy Approach

• The plant contours are slightly dilated and overlay the tile or full image for a maxi-
mum amount of scene context.

• Class labels assigned by an autonomous classifier are displayed below each contour.
This facilitates the label correction task of the user. The query strategy decides,
whether a contour is marked as unlabeled.

• In case of a scrolling image stream, the currently highlighted contour iterates to the
next one when it reaches the image border and a label is already assigned—either by
the classifier or by the user. If an unlabeled, highlighted contour reaches the image
border, the tile stream stops scrolling and waits for user input. This ensures that
the user does not forget to assign all labels.

• When the stem marker mode is enabled the user can place additional stem markers
by a left-click on points in the image.

Figure 3.4 is a screenshot of the GUI implemented in the scope of our project.

3

4

5

2
1

Figure 3.4.: Interface for user feedback in the weed detection process

The field view tab (1) displays a field scene scrolling from top to the bottom and overlaid
with stem markers placed by the user, detected plant contours and their assigned classifier
labels. In the current configuration, classifier labels with a low certainty are visualized as
unlabeled (3) so that a label has to be assigned by the user. All other labels are displayed
unchanged and can, but do not have to be modified or confirmed by the user. As already
described, labels can be changed either by a context menu which is displayed when the
user right clicks on the contour in question or by iterating over the contours with the
buttons provided in the Command Panel (2) under Labeling Tools. A click on a class
button assigns the corresponding label to the contour currently highlighted in red and

34

3.3. User Interface 35

moves the iterator to the next contour. While the context menu provides a convenient
method to modify only selected contour labels, is the button approach highly valuable for
iterating quickly over a completely unlabeled dataset.

Several plants are unsegmented at the bottom of the field view, because they were filtered
out as there exists no full image containing the whole contour (see Section 5.2) which indi-
cates that multiple plants are segmented within one contour. Such segmentation failures
can be compensated by the user placing a stem marker at the position of weed stems (4).

The bar at the bottom of the field view (5) gives an overview of the amount of images
waiting in the GUI queue and enables to user to pause the scrolling process or to change
the scrolling velocity. Beneath the Labling Tools contains the Command Panel (2) on the
right a button which establishes the connection with the image processing pipeline and two
checkboxes for the choice of the labeling mode. This enables us to evaluate different user
interaction scenarios as only contours, only stem markers or a combination of both can be
displayed in the field view and therefore also used for the generation of user feedback.

35

4. Concept of Tile Images

In this chapter the tile image approach is introduced. We motivate the need for this
concept, introduce tile contours and describe the dataflow in our shared autonomy system.
The last section of the chapter explains and discusses the tile creation algorithm.

The images sent from the robot contain overlapping areas and are created while the robot
moves linearly over the field. Although the same weed plant can appear in several images,
the robot only needs to manipulate it once. As our goal is to detect weed plants based
on this image data, it is necessary to gain transformation information in order to merge
image-associated data such as plant contours.

The only external data which can be employed to create transformations between the
images is the robot’s odometry values which have a much higher uncertainty than required
for the image data association. Therefore, we use image information in order to create a
mosaic out of the original images received from the robot, the so-called tile stream. The
basic idea of this approach is illustrated in Figure 4.1. A tile image is the partial image
data of an image as received from the robot, in the following called full image. Each tile
is built such that redundant information contained in the overlapping full images is non-
redundant in the tile images—the tile images are non-overlapping. One tile contains data
of one full image and exactly one tile is created per full image. The tile stream is an image
mosaic built by assembling neighboring tiles at their upper and lower image borders. In
the following, we assume that the full images are oriented in such a way that a tile created
out of the latest image can be assembled to the bottom border of the image stream (see
also Figure 4.1).

The tile stream ensures that transformations between arbitrary full and tile images are
available as long as the images captured from the robot are overlapping in such a way that
a registration between each two neighbor images can be found.

4.1. Advantages

The main motivation of the tile stream is the association of information from several full
images. More advantages are:

Input layer for the shared autonomy approach In the shared autonomy approach, the
performance of the autonomous detection pipeline is improved by user feedback. As
we are required to reduce the expensive user input to a minimum, the tiles provide

37

38 4. Concept of Tile Images

OverlappingFull
Images

Newtiles

Transformations

Robot images
Perspective transfor-

mationbasedon feature-
pointcorrespondences

TileImage
Stream

Figure 4.1.: The tile approach. One tile image is created out of every image received from
the robot. The assembly of tile images results in the tile stream.

a good layer for the pipeline-user interaction, as it is ensured in this way that the
user does not process redundant image data.

Extended scene context for the user The tile stream allows us display a scrolling image
to the user that results in a better understanding of the scene context. The user has
the feeling of receiving a ’live’-camera image from the robot and it is sufficient to
observe newly scrolled-in parts of the stream instead that a whole image has to be
scanned every time a new one is displayed to the user.

Reduction of transmission data The user has to be able to interact with the system from
a remote destination, as this improves the user convenience of the system and can
even enable future developments such as a central“call center”operating weed control
robots simultaneously. Since the bandwidth available for data transmission may be
limited, it is desired to keep the amount of image data sent to the user as low
as possible. The tiles are a more efficient way of sending the complete field scene
captured by the robot to the users without transmitting redundant image regions.
We evaluate the reduction of transmission data in Subsection 7.1.2.

4.2. Image and Tile Contours

The segmentation step yields contours describing plant shapes in the full images. It is
important to understand the difference between the two existing types of contours and
their relationship. Each full image contour (full contour) is associated with a tile contour.
This is the transformation of a full contour to the tile image stream. Therefore, the newly
detected image contour is transformed into the tile space first. There are two possibilities
now: either it is detected that the transformed contour overlaps with another tile contour.
In this case, both contours are merged to one common tile contour. The merge process
selects one of both contours for tile display and stores a list of image contours associated
with those tile contours (compare Figure 4.2). Or the transformed contour does not overlap
with another tile contour, probably because it is detected in a field region that has not

38

4.3. Dataflow 39

been covered by any previously processed image yet. Then a new tile contour is created.
The algorithm for the detection of overlapping contours is described in Subsection 5.2.3.

The relationship between the different image and contour types is illustrated in Figure 4.2.
A full image contains an arbitrary amount of contours. Each is associated with one tile
contour. However, a tile contour can contain the information of several full contours. One
tile contour belongs always to exactly one tile image. Per definition, this is the latest
image received from the robot which contains a part of the contour.

Figure 4.2.: Relationships between the different image and contour types

4.3. Dataflow

One important question the pipeline design depends on is how the data between tile and
full images are associated and which processing step is based on what kind of image.
Figure 4.3 gives on overview of the dataflow between the different layers. A general rule of
thumb is, that all autonomous image processing is operated on the full images in order to
avoid additional errors due to tile creation uncertainties and because the image processing
library employed in this project (see Section 6.2) expects single images and no image
stream as input data. On the other hand, the tile image stream is utilized as base layer
for user interaction and for contour data merging.

At first, the images received from the robot are converted to the data format used in the
processing pipeline and stored in a buffer as one thread receives images and another one is
responsible for the image processing. As soon as the latter thread is done with the previous
processing tasks, it takes the last image out of the buffer, preprocesses it and creates a
tile image.This process is described in Section 4.4. Plant contours and their corresponding
feature values are extracted out of the preprocessed full image and either associated with
existing tile contours or used for the creation of new ones as described above.

Next, the full image contours are assigned class labels and certainties by the classifier. The
label of a tile contour is determined based on the labels of its associated image contours.
Therefore, this label cannot be assigned immediately, because it has to be waited until all
associations of this tile contour are established. Instead, the image data is temporarily
buffered until it is ensured that no new incoming images will alter the tile information of
this image. This is the case as soon as the upper border of the latest image received from
the robot and transformed to fit into the tile image stream is below the lower border of
the tile in question. As soon as this criteria is met, the tile contour labels and certainties
can be determined (compare Subsection 5.4.4) and tile data requiring feedback is sent to
the Remote Farmer.

All images are buffered until the corresponding user feedback is received. Buffer 3 has the
additional function to control the access to shared states between the thread that processes
the images and another one which receives the user feedback and postprocesses the data. It
is ensured that the user handles all requests sequentially in the order of reception. The user
response is received back in the pipeline, added to the tile data and if possible employed

39

40 4. Concept of Tile Images

Full imagespace Tile imagespace User interaction

Preprocessing

Tile creation

Contour
segmentation &
Feature extraction

Contour classification

Tile contour creation
/ association

Contour classification

User feedback

Feedback merging

Image input

Buffer2

Contour classification
merging

Buffer3

Active Learning Filter

Training data
creation

StemLocalization

Stemmarker
transformation

VS Image Extraction

Image and marker
output

Data cleanup

Buffer1

Buffer3

Buffer2

Data cleanup

Buffer4

Figure 4.3.: Dataflow between the full image layer, the tile image layer and the user

40

4.4. Tile Creation 41

for the creation of training data. This dataset can be used for extended classifier training
on the next pipeline startup.

All plant contours that are marked as weed are consulted for the localization of the stem
positions of weed plants (compare Section 5.5). These stem markers are transformed back
into the original full images. A buffer stores the full image data until it is ensured that
no additional markers from tile images will be mapped to this full image. This is the case
as soon as the lower border of the full image transformed into the tile stream is above
the border of the last tile received back from the GUI. Then the visual servoing image
is created out of the original image data received at the very beginning from the robot
in order to ensure the highest recognition value. In the current pipeline implementation,
the whole full image and all associated markers are published as this approach facilitates
debugging and pipeline demonstrations. For the system integration, one visual servoing
image should be extracted per marker and sequentially marker-image-pairs published back
to the robot. Finally, the data that was sent is cleaned up.

4.4. Tile Creation

The goal of the tile creation process is to create a tile image out of each original image
received from the robot. This tile is created directly after a new image was received and
preprocessed. A new tile extends the existing tile image stream when assembled to the
lower border. We assume again, that the full images are overlapping, captured during
a linear robot motion and oriented in such a way that a tile created out of the latest
image can be assembled to the bottom border of the image stream. Our system is also
able to process non-overlapping image data. However, adjustments should be made if the
image input is generally not overlapping in order to exclude the mosaicing step from the
processing pipeline.

There is a high number of algorithms available, that can be used to stitch panoramic
images. Szeliski [53] provides a good introduction in the steps required for image stitching.
A state-of-the-art solution is the algorithm for multi-raw stitching described by Brown
and Lowe [54]. It is implemented in the software Autostitch and also the OpenCV image
stitching pipeline is based on this algorithm. We cannot directly employ this approach
as it does not assume linear camera movement but the rotation of the camera around its
optical centre instead. Furthermore, there are several requirements beyond the scope of a
typical image stitching application:

Number of images Typical panoramic image stitching applications are based on the as-
sumption that only a very limited number of input images is used. However, we
create a planar mosaicing algorithm which has to be able to handle a very high num-
ber of images as typical dam-lengths treated by the weeding robot can be several
hundreds of meters. It has to be ensured that the transformation of images does not
create singularities (see Subsection 4.4.3).

Mosaicing Contrary to a typical image stitching software it is not required to blend neigh-
boring images, as a clear border between tile images enables us to recognize matching
problems and does not blur the information on which part of the tile an user is work-
ing currently. We use the term mosaicing instead of stitching to underline that there
is no blending.

Transformation One of the main purposes of the image mosaicing process is to obtain
transformation information between neighboring images. Therefore all image mo-
saicing steps have to be chosen in such a fashion that forward- and backward trans-
formations between two images are stored and can easily be calculated.

41

42 4. Concept of Tile Images

4.4.1. Transformation

Under the assumption that plant objects and soil lie in one plane, the camera is not
mounted completely vertical to this plane and the camera image is undistorted, each
overlapping image part is a perspective transform of a cut-out of its previous image. Two
neighbor images can be matched to a mosaic by finding this transform. Therefore we use
a homography in order to describe the transformation between two images, as also applied
in [54]:

ũi = Hijũj (4.1)

whereas ũi and ũj are homogenious image coordinates ũi = s

(
ui
1

)
, ui being the image

coordinate.

4.4.2. Mosaicing Algorithm

A feature matching approach (compare [53, p. 30ff.]) is used in combination with a
RANSAC filter [55] to determine the perspective transformation between two images.
Afterwards, the tile image is created as a cut-out of the transformed image.

The mosaicing algorithm is based on [54] and an OpenCV tutorial for feature point match-
ing1. The following steps are executed in order to create a new tile image which can be
assembled to the top border of the latest tile:

1. Extract feature points and their descriptors out the new image. We use SURF
features [56], as they are invariant towards translation, rotation, scaling and also
robust towards changes of the viewpoint and the illumination within limits.

2. Match the detected features with the feature points of the last tile image. Therefore
the FLANN library [57] for approximate nearest neighbor search is employed.

3. The best feature matches are found based on their descriptor distance di. For this,
we calculate a distance threshold ythresh and use all matches with yi < ythresh:

ythresh = min
yi∈Mdist

(yi) + k
(

max
yi∈Mdist

(yi)− min
yi∈Mdist

(yi)
)

(4.2)

Mdist is a set containing all matching descriptors’ distances. k ∈ [0; 1] defines the
range of descriptor distances which are considered to be good matches. Based on
visual obervations, a value of k = 0.3 yielded in the best mosaicing results for our
case. Figure 4.4 shows the feature matches of two images after the initial filtering
process for k = 0.15.

4. Calculate the perspective transformation H
(1)
ij between the two images. A RANSAC

filter [55] ensures robustness by ignoring outliers. We use a reprojection threshold of
20 px. This means a match of feature points is considered to be an outlier as soon as
the point distance is larger than the given threshold after the feature points of the
new image were transformed with the calculated perspective transformation. Lower
values for the reprojection threshold yielded in worse mosaicing results.

5. Transform the new image with Hij , so that a mosaic image can be created out of
both images. Figure 4.5 shows the last tile and the transformed new image which
will be used for tile creation.

1http://goo.gl/TQ7BL

42

http://goo.gl/TQ7BL

4.4. Tile Creation 43

Figure 4.4.: Filtered feature point matches for two images

Fitted image

Resulting new tile

Cutting border

Latest tile

Tile stream

Figure 4.5.: The transformed image and its resulting tile in the tile image stream

6. The new tile image is created as a cut-out of the transformed image. Therefore a
horizontal cutting border is determined first. Its vertical position is the mean value
of the position of the upper border of the latest tile and the upper corner of the
lower border belonging to the fitted image. The latest tile is cropped at this cutting
border. The rectangle for the new tile is defined by the cutting border, the left and
right border of the tile stream and the lower intersection point of the upper border
of the transformed image with the tile stream’s borders. In case the intersection
point does not exist because both upper corners of the fitted image lie within the
tilestream, the new tile’s upper border is restricted by the lower upper corner of the
transformed image.

7. Finally, we transform the position of the feature points detected at the beginning of
the algorithm into the tile stream as well, so that they can be used for the matching
with the next incoming full image.

4.4.3. Tile Deskewing

Figure 4.6 shows the tile stream resulting from the mosaicing algorithm applied on 21
full images. A problem becomes clear that is already indicated in Figure 4.5: For a high
number of images the tile stream becomes increasingly distorted. In our case a small
tilt of the camera results in progressively deformed tile images. In order to handle these
deformations, we introduce an additional perspective transformation.

At first, the fitting transformation H
(1)
ij is obtained as described in Subsection 4.4.2. Next,

this perspective transformation is not applied to the full image but only to four points
describing the border of this image. This yields a quadrangle representing the position of

43

44 4. Concept of Tile Images

Figure 4.6.: Assembly of 21 tile images without tile deskewing. The bottom of the tile
stream is on the right.

the fitted image in the tile stream (Figure 4.7a). Now, a second perspective transformation
can be applied with the goal to fit this image into the tile stream.

Therefore, we detect the points of intersection between the fitted image’s borders and the
cutting border (Figure 4.7b). These points will be fixed in the second transformation in
order to ensure the newly created tile still fits to its predecessor. Next, the lower corners of
the fitted image are dragged onto the lines which define the borders of the tile stream. The
mean value of the distance between the upper and lower points of each side transformed
back into the original full image define the vertical distance d to the cutting border. This
ensures that a vertical stretching of the image is corrected.

Fitted image

Cutting border

Latest tile

Tile stream

(a) Latest tile and the fitted image (b) Points describing the second
transformation

Resulting new tile

Transformation of
fitted image

(c) Resulting image and tile after the tile
deskewing

Figure 4.7.: Steps of the tile deskewing process

To sum it up, we have four pairs of points: Each couple defining one origin and one
destination point, whereas two pairs contain identical source and destination points. Based

on these point correspondences, the homography for tile deskewing transformation H
(2)
hi

is calculated. The final image transformation is the combination of image fitting and tile

44

4.4. Tile Creation 45

deskewing (see Figure 4.7c):

H
(3)
hj = H

(2)
hi H

(1)
ij (4.3)

The tile creation process is continued with the cut-out of the tile as outlined in 4.4.2 with
the cutting border already determined.

The result of the additional tile deskewing step can be seen in Figure 4.8. It becomes clear
that this approach overcomes the effect of increasingly distorted tiles shown in Figure 4.6.

Figure 4.8.: Assembly of 21 tile images with tile deskewing. The bottom of the tile stream
is on the right.

4.4.4. Error Handling

It is important to detect incorrect image matches in the mosaicing process. We apply some
heuristics in order to detect incorrect matches. As soon as one of the following criteria is
met, the mosaicing process is considered to have failed for the image in question:

• The lower corner of the upper edge of the fitted image is above the upper edge of
the latest tile image.

• The fitted image is ‘twisted’ or flipped horizontally or vertically, for example one or
both left image corners become right image corners after the fitting transformation.

• The angles between the edges of the warped image exceed given tolerance regions.

In the case of a fitting failure, the whole full image is stored as new tile image and it is
remarked that no association between the two full images in question could be found. The
same procedure is also used for the first image sent to the pipeline.

4.4.5. Discussion of the Tile Creation Process

The tile creation process is an effective way to create quickly the tile stream. However, it
is based on some assumptions which do not always hold and therefore small failures are
introduced in the mosaicing process.

The main problem is that the mosaicing by perspective transformation of the original
images assumes that plants and soil lie in one plane. As a high percentage of feature points
for image fitting is extracted out of the soil which can be considered to be a plane, mainly
plant objects are not fitting correctly between tile borders. This problem is illustrated in
Figure 4.9, where the mosaicing algorithm is applied on three example images. While the
background of the three original images employed is fitted well, an object which does not
lie in the background plane causes mosaicing errors.

A negative side effect of the additional tile undistortion step is that the transformation
can alter the pixel positions on the cutting border between the latest tile and the newly
created one. The only exception are the two corners of the fitted image which are used as
fixpoints. The effect is shown in Figure 4.10. It is visible that the position of transformed

45

46 4. Concept of Tile Images

Figure 4.9.: Limitations of the mosaicing algorithm for a non-planar environment

points on the line A′C′ varies between the two images except for the points A′ and C′ (see
the intersections of the thin black lines with A′C′). This motivates the need to mount the
camera properly orthogonal to the ground on the robot and make sure that the camera
images are undistorted before they are sent to the processing pipeline, so that no larger
adjustments in the tile undistortion process are necessary any more.

(a) (b)

Figure 4.10.: Illustration of the effects of a perspective transformation with two fixed points
A′ and C′2

In the current approach, one tile image per input image is created. This means, the size
of the tile images is determined by the overlapping factor of input images. For a high
factor, an unnecessary amount of tile images is created which does not only result in high
computation times but also in an increased probability of mosaicing errors. Therefore it is
important to ensure in the system integration step that the overlapping factor is around
0.3. In case of a higher overlapping factor, this can be easily ensured by subsampling
created camera images, so that just a fraction of them is used for image processing.

2Created with http://www-m10.ma.tum.de/bin/view/MatheVital/GeoCal/GeoCal2x1

46

http://www-m10.ma.tum.de/bin/view/MatheVital/GeoCal/GeoCal2x1

5. Object Classification and Stem
Localization

We introduced our approach for the user integration in the weed detection process in
Chapter 3. This chapter describes the autonomous part of the process applied on each
image sent to the detection pipeline with the final goal to detect the stems of weed plants.
It is important that the autonomous system is created with respect to a shared autonomy
approach. Whenever possible out-of-the-box solutions are employed as our main focus
is the setup and evaluation of a complete shared autonomy framework rather than the
optimization of single processing steps. In the following sections, all steps concerning
processing of images are explained in the order they are applied on the dataflow.

The pipeline starts with the image preprocessing and the creation of tile images. The
sections afterward explain, how plant contours are segmented out of the image data and
feature value corresponding to these shapes extracted. After this, we motivate the choice
of our classification setup and finally describe, how stem positions can be determined based
on plant contours.

5.1. Image Preprocessing

The raw image data is captured by a multi-spectral camera1 with one Near Infrared (NIR)
and RGB channels. Unlike soil and stones, chlorophyll absorbs a high amount of light in
the red band but has high reflectance values in the infrared band [58]. This characteristic
can be used to subtract the image background [45]. The process is illustrated in Figure 5.1.

5.1.1. Optimization for Channel Subtraction

We add an additional optimization step to achieve better results. The brightness and
contrast of the red channel is adjusted iteratively, so that the mean squared error between
the value of background pixels in the infrared and the red channel is minimized.

1. Obtain an initial guess for background pixels B0. We calculate the intensity range in
the NIR channel, cut it at 25 % of the value range and use all pixels with intensity
values in the lower part. The value of 25 % is empirically derived with the goal to
retrieve a subset of background pixels with high precision.

1http://www.jai.com/en/products/ad-080ge

47

http://www.jai.com/en/products/ad-080ge

48 5. Object Classification and Stem Localization

NIR Vis-R Diff

Optimized
Diff

- =

Brightness and
contrastadjustment
based on iterative

fitting of background
pixels

Figure 5.1.: Image subtraction for plant-soil discrimination

2. Iterate over the following steps for a given number of iterations i = 0..(N − 1) or
until another stop criterion such as a small change of the calculated adjustment
parameters is met:

a) Find the parameters α̂0,i, α̂1,i ∈ R which minimize the sum of squared differences
between the background pixels’ intensity in both channels:

Ei(α0,i, α1,i) =
∑
ui∈Bi

[
srcNIR(ui)−

(
α1,i srcVisR(ui) + α0,i

)]2
(5.1)

b) Calculate the current optimized differential image

srcDiff,i(x) = srcNIR(ui)−
(
α̂1,i srcVisR(ui) + α̂0,i

)
(5.2)

c) If this is not the last iteration, define a new set of background pixels Bi+1. This
set includes all pixels of srcDiff,i, which value is below an intensity threshold ti
. We determined experimentally good visual results for a value of ti = 20 for
eight bit images.

3. The last differential image srcDiff,N−1 is the result of the optimization process.

This algorithm requires that the background pixels have a wide intensity range. This is the
case for the field images in our application. It is important to ensure in the implementation
that the pixels’ intensity range of a manipulated image does not exceed the values allowed
by the data format.

The algorithm can be sped up significantly by decreasing the image size used to estimate
the adjustment parameters and by limiting the number of iterations. In our case, a re-
duction of the image size from 105 px to 103 px decreases the processing time from 32 s to
10 ms without noticeable changes in the results for N = 2. Two iterations are sufficient to
find good adjustment parameters, as the α-values converge quickly.

5.2. Segmentation

In this section, we describe the choice and evaluation of segmentation algorithms.

48

5.2. Segmentation 49

5.2.1. Segmentation Algorithm

The goal of this step is to segment the contours of all plants. The contours are highly
suitable for our approach, as on one hand they can be employed for autonomous plant
classification and stem localization, but on the other hand they do also fit in the user-
centered system design concept, as they provide a good visualization of single plants in
the GUI.

Four different segmentation algorithms for contour retrieval are compared on the test
dataset. All of them are applied on the differential gray level image obtained in the
preprocessing step.

Simple thresholding The algorithm has a low processing time. As a threshold parameter
has to be set manually the algorithm cannot adjust to varying lighting conditions.

Thresholding with Otsu’s Method[59] A fixed threshold is calculated by the algorithm
with the aim to divide the values of an image optimally into two different classes.
As darker regions of plants are assigned to the background class, plant details such
as stipes are lost.

Adaptive thresholding The basic idea of the algorithm is to facilitate a threshold that
varies depending on the image position. The threshold for one pixel depends on an
average value calculated out of the pixel’s adjacent region. This enables the algorithm
especially to handle varying light conditions in an image. As the illumination in the
test dataset is convenient, Adaptive Thresholding does not improve the results and
produces unwanted noise in regions with a very high or low plant density.

Watershed A non-parametric, marker-based Watershed implementation [60] leads to the
best results and is our final choice. The basic idea of a watershed algorithm is to
create a relief out of the gradient image. The relief height is the magnitude of the
gradient (see Figure 5.2). As object contours result in high gradients, each object
is represented by a basin. Positive and negative ground truth markers define ‘water
sources’. Figuratively, the relief is filled with water, whereas the height of the water
level is gradually increased. As soon as the waterfronts of two basins with different
types of ground truth meet, an image contour is created.

The advantage of this watershed algorithm is its flexiblity towards changing lighting
conditions, low noise and good segmentation results. As Otsu’s Method tends to
oversegment the dataset its segmentation results are used as positive ground truth.
The negative ground truth is defined by simple thresholding with the threshold value
defined as a fraction of the Otsu-calculated threshold and a slight erosion. We use
tgt- = 0.25 · tOtsu

The outer object contours are extracted out of the detected non-background watershed
regions. A low-cut filter eliminates contours with small area. Contours displayed only in
the very left or very right image region are filtered, as only the center strip of the soil
dams has to be treated. Additionally, all contours which intersect with a bottom or top
image border are filtered out. As a tile stream is created in vertical directions and these
contours do not label complete plants, they are not allowed to be displayed in the tile
stream. Edge contours of neighbor images could be merged to one contour, but this effort
is not necessary, as it is highly possible that, due to the overlapping images, the plant in
question will appear completely in another image.

5.2.2. Evaluation of Image Subtraction and Segmentation

As described in Section 5.1 an additional step is introduced in order to optimize the
subtraction of the NIR- and R-image channels. We evaluate this step based on a visual

49

50 5. Object Classification and Stem Localization

(a) Relief of the gradient image (b) Resulting watershed segmentation

Figure 5.2.: Segmentation with the watershed algorithm

assessment of the segmentation results. Figure 5.3 shows one example output of the image
preprocessing module without and with optimized image subtraction and the resulting
watershed segmentations.

Figure 5.3.: Top-left: Unoptimized differential image. Top-right: Optimized differential
image. Below: Their resulting watershed-segmentations with unfiltered con-
tours. Each image shows two weed (top, bottom) and two carrot plants (mid-
dle). In both cases, the upper carrot is split up in two contours. The lower
one is segmented correctly in the right image.

Fine plant contours such as the stipe of the upper weed plant are more distinct in the
optimized differential image. This results in less oversegmentation (lower weed plant),
while no significant contour details are lost due to the optimization step. The optimization
step improves the segmentation results without any strong negative side effects.

5.2.3. Contour Overlapping Detection

The contours of the same plant which appears in several images are clustered in one
tile contour as described in Section 4.2. For this process it is necessary to implement
an algorithm which detects overlapping contours in the tile image space. We define two
contours as overlapping as soon as the ratio of the overlapping area of the two contours to
the area of one of the contours is higher than a threshold nthresh:

AC1∩C2

AC1

< nthresh or
AC1∩C2

AC2

< nthresh (5.3)

50

5.3. Extraction of Feature Values 51

We employed the empirically determined value nthresh = 0.5. Additionally, we added two
optimization steps for the contour overlapping detection. In order to compensate errors
from the image mosaicing or a change of the camera perspective, we correct small dis-
placements of two overlapping contours. Therefore we make the centroids of two contours
identical, if their distance is lower than a threshold of 20 px before the overlapping ratios
are calculated (compare Figure 5.4a). In order to detect the overlapping of fine plant con-
tours more robustly, we dilate all contours with a circle tool which has a diameter of 7 px
as shown in Figure 5.4b. These two measures can the source of false-positive overlap de-
tection, but our observation is they resulted mainly in an improved overlapping detection
behavior.

(a) Displacement correction

(b) Optimization for the overlapping detection of thin contours

Figure 5.4.: Optimizations in the contour matching algorithm

5.3. Extraction of Feature Values

This section examines the extraction and evaluation of feature values employed in our
shared autonomy pipeline.

5.3.1. Feature Extraction

20 shape- and 2 texture-based features are extracted out of the outer plant contours and
the texture within. They are completely listed in the Appendix under Section A. All of
these features except the contour area are invariant to translation, rotation and scaling2.
Although they are rarely used for plant identification (compare to Subsection 2.3.3), we
use texture features, as our plant contours do not contain holes and these features are able
to indicate soil regions within a plant contour.

The shape-based features include amongst others Hu-Moments , Compactness, area ratios
of bounding forms to the contour area and statistical values derived from convexity defects.
The latter seem to be highly interesting for the description of plant contours, but have
only been used in other fields such as human activity recognition [61] yet to the author’s
best knowledge.

5.3.2. Evaluation of Feature Values

As our feature space with 22 features can be considered as relatively high-dimensional and
some state-of-the-art weed detection research such as that of Weis et al. [6] suggests the

2Not considering a restricted image resolution.

51

52 5. Object Classification and Stem Localization

employment of a lower number of features, we apply a feature selection approach in order
to determine important dimensions of our feature vector and to evaluate a reduction of
our set of features.

Specifically, we apply the WEKA implementation of RELIEF (Kira and Rendell [62]), a
correlation-based feature selection approach. The basic idea of this method is that only
statistically relevant features are chosen. The algorithm is inspired by lazy classifiers:
For a randomly picked instance the near-hit instance, the closest instance with the same
class, and the near-miss instance, the closest instance which belongs to another class,
are determined. For each dimension of our feature vector i the distance of the near-miss
instance to our selected instance dnear-miss,i and of the near-hit instance to the selected
instance dnear-hit,i is calculated. The higher dnear-miss,i−dnear-hit,i, the higher is the relevance
of this feature. This process is repeated and in the end, a ranking of the features can be
done. The advantages of this feature selection methods are according to the authors noise
tolerance and “not being fooled by feature interaction”.

We select the ten best feature values (compare to Appendix, Section A):

• Perimeter over the square root of the contour area
√
AC (F8)

• Eccentricity of a bounding rectangle (F12)

• Number of convexity defects (F13)

• Median of the depth of convexity defects divided by
√
AC (F14)

• Mean value of the depth of convexity defects divided by
√
AC (F15)

• Standard deviation of the depth of convexity defects divided by
√
AC (F16)

• Median of the length of convexity defects divided by
√
AC (F17)

• Standard deviation of the length of convexity defects divided by
√
AC (F19)

• The normalized mean of intensity values in the differential image (F20)

• The normalized standard deviation of intensity values in the differential image (F21)

It is interesting to note that none of the Hu-moments are considered relevant, whereas
our features derived from convexity defects were selected as well as the texture features.
Two other feature evaluation approaches, one based on Information Gain and another on
correlation-based subset selection [63] yielded similar results. They additionally incorpo-
rated the contour area.

An evaluation of different classifier types with the selected feature subsets shows that the
classification accuracy varies within a few percents points compared to a classification
based on all features. It seems to be possible to reduce the dimensionality of the feature
space in order to optimize the processing time. However, we evaluate our system with all
feature values as we want to avoid additional uncertainties introduced by feature subset
selection.

5.4. Object Classification

The function of the classifier is to assign class labels to each segmented contour. This
information can be used either to detect weed plants autonomously or to support the
Remote Farmer. In general, classifiers can be divided into two different types:

Supervised The classifier is provided with a priori knowledge in the form of a training
dataset containing supervisor-labeled instances. The classifier’s model is either cre-
ated generalizing its training data before a query (eager learning) or the classifier uses

52

5.4. Object Classification 53

the provided training data directly for the prediction of labels for unseen instances
(lazy learning) during the query.

Unsupervised An a priori training dataset does contain instances and their associated
features, but no class labels. Based on this information, the classifier is able to
group instances (clustering) but cannot predict class labels. This method is applied
when one or all classes a population can be divided into are unknown.

5.4.1. Choice of Classes

As all classes for contours are known in our use case, we rely on a supervised classifier.
We define the following classes:

Crop Contour around one crop plant or a part of it.

Weed Contour around one weed plant or a part of it.

Multiple Plants Resulting contours from under-segmentation that contain several plants
or the parts of several ones.

Other Object A non-plant object, e.g. stones or pieces of wood.

Undefined This label can only be assigned by the supervisor and is applied for segmenta-
tion errors or plants which cannot be classified by the supervisor. When the training
data for the classifier is created, all instances that belong to the class Undefined are
filtered out.

A simple binary classifier for the detection of weed plants is not utilized because it limits
extension possibilities. For example, it might be necessary to filter detected weed plants
based on their distance to crops. If a weed plant is very close to a crop it is not allowed
to be manipulated in order to ensure that the crop is not damaged. Furthermore, image
regions recognized as multiple plants could be processed with additional user input in order
to detect possibly included weed plants.

5.4.2. Classifier Requirements

In order to find a suitable classifier, the following points were considered:

Multi-class classification As multiple classes are defined, the classifier has to support
multi-class problems. This is in general possible for all classifiers, as multi-class prob-
lems can be split up in binary problems by decomposition [64]. Famous approaches
are “one-against-one“, where each class is compared against each other classes and
“one-against-all‘, where multiple binary classifiers are trained to compare one class
against all other remaining ones summed up.

Performance in the use case A basic classifier requirement is that it predicts queried
data as correctly as possible. Furthermore, the classifier has to be able to generalize
given a priori training information so that it behaves robustly. This means that the
classifier does not only perform well on a known dataset, but is also able to transfer
the knowledge gained from this set to accurately label an unknown dataset. Several
classifier types were evaluated in the scope of this thesis. See Subsection 5.4.3 for
more information.

Incremental Learning Incremental Learning is the ability of a classifier to maintain a
dynamic model that can be refined with additional training data perceived during
runtime. This approach is highly interesting for the project, as user feedback can
be employed to improve the classifier’s behavior instantaneously. There are three

53

54 5. Object Classification and Stem Localization

different ways how incremental learning can be realized [65]. One option is to retrain
the classifier during runtime from scratch as soon as some additional training data
was gathered. Therefore, quick classifier retraining has to be possible. Other options
are classifiers allowing on-line learning or the use of instance-based classifiers such
as k-nearest-neighbor.

Certainty metric A common query strategy for Active Learning is Uncertainty Sampling.
The results of Lewis and Gale [52] illustrate, that this sampling approach can re-
duce the amount of training data requested from an user without a decrease in the
classifier’s effectiveness. In order to apply such a technique, a classifier is required
to assign certainties to its output labels e.g. as shown in Figure 5.5.

Availability We use existing implementations of typical classifiers, as our work does not
focus on the development of a classifier which is optimized for the shared autonomy
approach but rather focuses on a basic evaluation of classifier types and the inter-
action process between user and classifier. We want to test all classifiers with the
existing framework, so a C++ implementation should be available. In this way, the
use of interfaces which can decrease the framework performance, can be avoided.

5.4.3. Evaluation of Classifier Types

Besides the classifier requirements, we experiment with different types of classifiers in order
to evaluate the classification performance of different types on our dataset. Therefore an
image dataset containing 64 non-overlapping images with carrot and weed plants was
created. The automatically extracted contours were hand-labeled as crop, weed, multiple
plants or other. Afterwards the WEKA Data Mining Software [66] was utilized to run a
10-fold stratified cross-validation with varying classifiers configured with WEKA-standard-
parameters.

The results of this evaluation are displayed in table 5.1.

Classifier name Accuracy [%]

lazy.lB1 [67] 68.6 (±3.7)

lazy.lBk (k = 5) [67] 72.6 (±5.6)

functions.SimpleLogistic [68] 76.1 (±4.4)

functions.Logistic [69] 75.8 (±4.5)

functions.MultilayerPerceptron 75.6 (±6.0)

functions.SMO (speed up for SVM [70]) 73.0 (±3.7)

bayes.NaiveBayes [71] 66.7 (±2.6)

bayes.BayesNet 68.5 (±4.2)

trees.J48 [72] 72.7 (±5.8)

meta.logitBoost (DecisionStump) [73] 76.5 (±3.9)

Table 5.1.: Classification accuracy with standard deviation for different classifiers

It becomes clear, that the choice of the classifier type does not influence the performance of
the classification step statistically significantly—at least for out-of-the-box solutions. The
standard deviation varies between different classifier types. An important remark is, that
the final choice the classifier not only depends on its accuracy but also on its suitability
for the implementation in our shared autonomy approach (compare Subsection 5.4.2).

54

5.4. Object Classification 55

5.4.4. Realization

We decide to use the C-Support Vector Classification of the LIBSVM library [74] in the
framework. This is a multi-class implementation of a Support Vector Machine available
in C++, which is able to assign probability estimates [75] for the possible labels of each
queried instance. A Radial Basis Function is employed for the classifier’s kernel. This
classifier fulfills most of our requirements described in Subsection 5.4.2. Furthermore, it
is shown in the evaluation of different classifier types, that this type of Support Vector
Machine has a good accuracy on the plant dataset compared to other techniques.

The classification process is illustrated in Figure 5.5. It is required to detect uncertain
instances for the active learning scenario. These instances are selected based on two
strategies. Either a certainty threshold is applied to the class with the highest certainty or
another threshold is applied on the certainty differences between the class with the highest
certainty and the second highest one.

Training data

Classifier
Multiclass implementation

with probability output

Contour features

Class labels and probabilities

Normalization
Model

Calculate
normalization model

Select parameters
and train classifier

Figure 5.5.: The contour classification process

Normalization

First, a normalization model must be created, as it is important that the values for each
feature are in the same numerical range to achieve the same weighting of all features. Based
on a set of training instances with the feature vectors ui ∈ Rm, i = 1 . . . n the factors for
linear scaling are created so that each feature value xi,j is in the range I = [rmin, rmax].

x̄i,j = mjxi,j + cj (5.4)

with mj =
rmax − rmin

maxi=1...n{xi,j} −mini=1...n{xi,j}
(5.5)

and cj = rmin −mj · min
i=1...n

{xi,j} (5.6)

55

56 5. Object Classification and Stem Localization

The normalization model is applied both to the training dataset and to each queried feature
vector.

Parameter selection and training

The training data is not only utilized for classifier training, but also to determine two
important parameters which influence the classifier’s accuracy significantly:

The soft margin parameter C defines the tolerance of a support vector machine towards
classification mistakes. For large values, the SVM is more tolerant towards mistakes
(“Soft-Margin SVM”) and the hyperplane seperating two classes is defined by an
equal or higher number of support vectors.

The factor γ scales the Radial Basis Function which is used as kernel:

K(ui,xj) = e−γ‖ui−xj‖2 (5.7)

Both parameters are determined in a grid search. At first, points representing different
value pairs for C and γ are defined in a grid. In the next step, a 5-fold cross-validation
based on the training data determines the classifier accuracy for each grid point. Finally
the results for the grid search are visualized in a contour map as can be seen in Figure 5.6
and either the parameter pair resulting in the highest accuracy is interpolated or a refined
second grid search is conducted based on the results of the first one.

As soon as the parameters were determined, the whole normalized training dataset is used
in order to create the classifier model.

Figure 5.6.: Second iteration of a grid search for SVM parameter selection. The resulting
parameters are C = 2 and γ = 4.

Classification

Before the feature vector ui derived from a plant contour can be classified, it has to be
normalized based on the existing model. Then it is sent to the classifier which outputs the
class label with the highest probablitiy as well as all other class labels and their probability
(see also Section 5.5).

56

5.5. Stem Localization 57

Classification merging

The autonomous classifiers assigns all labels and class probabilities to the contours of full
images. These contours are associated with unclassified tile contours (compare Section 4.2).
It is necessary to determine the class label of a tile contour based on the classification
results of its associated full image contours. This is done in two steps. At first, the class
probabilities of the tile contour are computed as mean value of the probabilities of its
associated full contours. For k classes and N associated full contours it is:

Ptile(y = i) =

∑N
n=1 Pfull,i(y = i)

N
, i = 1, . . . , k (5.8)

In the second step, the class with the highest probability is assigned to the tile contour.

5.5. Stem Localization

The goal of the stem localization step is to determine for every weed contour the posi-
tion where the plant stem intersects with the soil surface. This location is the point of
application for the weed manipulation tool of the robot. Figure 5.7 gives an overview of
detected weed plants and their ground truth stem location assigned by an experienced
user. It becomes clear, that the stem position within the contour has a high variation and
not only depends on the plant type, but also on the growing direction of the weed.

Figure 5.7.: Weed plants, their contours and user-assigned stem locations

The implementation of a sophisticated stem localization algorithm would require substan-
tial efforts. The contours’ feature values introduced in Section 5.3 are too general and do
not provide enough detailed information about the plant structure. Additional values such
as skeleton features [49] would be required for a machine learning approach localizing the
stem position within a contour.

Therefore, we introduce a heuristic which places the marker in the centroid of each contour.
This approach is straightforward and promising as most of the weed plants grow upright
and their leaves are therefore distributed equally around the orthogonal stem. The stem
position of a weed contour in the tile image space is determined by mapping all stem
positions of associated full image contours into the tile space and calculating the average
position out of these coordinates.

57

6. Implementation

In this chapter we explain general implementation decisions and introduce the tools and
software libraries we leveraged as part of our implementation. Our goal was to use tools and
existing infrastructure to quickly create a complete basic system in order to evaluate the
potential of a shared autonomy concept and generate design suggestions for future systems.
Furthermore, we aim to keep the variety of employed libraries as small as possible to avoid
a high number of dependencies and compatibility problems.

6.1. Middleware

We use the ROS (Robot Operating System) [76] framework for communication and as build
system. ROS provides a structured communication layer that enables to user to create
encapsulated processing units, the so-called nodes, which are connected based on a peer-
to-peer topology. There are several ways of communication between the nodes, we employ
ROS topics, an asynchronous communication method based on standard- or user-defined
message types. The ROS-version utilized for this project is fuerte in combination with the
operating system Ubuntu 12.04LTS.

6.1.1. Code Structure

Different function units can be divided into packages. Several packages can be summed up
in one stack. Every stack and package has the possibility to define dependencies on other
stacks or packages. The complete source code for the detection framework is bundled
in one ROS-stack. Table 6.1 provides an overview of the packages included. All core-
components are written ROS-agnostic in C++ and wrapped in a ROS package, so that any
other communication framework could replace the current solution.

6.1.2. Advantages

The main advantages of the use of the ROS framework for this project are:

Build system ROS ships with an integrated build system. This facilitates the installation
of the weed detection framework on a new machine.

Code structure The concept of ROS nodes enforces the separation of different function
units. This results in a good code maintainability including the possibility to quickly
exchange complete nodes with minimum effort.

59

60 6. Implementation

Package name Description

rf_detection_pipeline The basic weed detection pipeline. It receives images from
the robot, processes them and sends them to the GUI for
user feedback. This additional input is merged with the
autonomous detection data and used to determine the stem
positions of weed plants which are published back to the
robot.

rf_detection_gui The GUI receives images with labeled or unlabeled plant
contours and/or stem markers from the pipeline, displays
them to the user and offers modification tools. After this,
the data is published back to the pipeline. Two basic in-
terfaces are available. One is for scrolling and one for still
image display.

Table 6.1.: Overview of the main ROS-packages contained in the project stack

Communication It is important to consider that the robot and the Remote Farmer are lo-
cally separated and it might even be interesting to outsource the processing extensive
image mosaicing to an additional external computer. Therefore, the communication
framework has to provide the possibility for inter-platform communication. The
concept of ROS topics enables us to use existing ethernet connections in order to
run several nodes on different machines. Figure 6.1 is an overview of the network
topology of the weed detection pipeline during runtime.

guidetection_pipelinerobot

image_raw

image_vs

gui_input

gui_output

Figure 6.1.: Network topology of the weed detection pipeline. The ellipses are ROS nodes
which can be run on different machines. They communicate by ROS topics.

Dependencies The ROS framework supports a high number of libraries typically used
for robotic applications. Existing stacks and packages facilitate the integration of
system dependencies such as OpenCV or Qt and ensure high code reusability.

Debug utilities ROS provides a number of debug utilities such as tools to detect network
communication problems or to record and replay messages sent during runtime.

Project compatibility As ROS is not only used for the image processing pipeline, but also
for functions of the remote farming robot such as navigation or image transportation,
the interfaces to the weed detection pipeline can be easily accessed.

6.2. Image Processing

Most of the image processing is done with the OpenCV [77] library. “OpenCV is an open-
source, computer-vision library for extracting and processing meaningful data from images”
(Ibid.). It not only offers a good choice of state-of-the-art image processing algorithms, a
C++ interface and extensive library documentation but is also able to handle large amounts
of image data effectively, for example by zero copy passing of data between different objects

60

6.3. Graphical User Interface 61

or by offering low level C-style access for pixel-wise operations. OpenCV is employed for
all image processing steps except of contour classification (see Subsection 5.4.4 for classifier
implementation).

There is no central storage for full- and tile image objects. Instead, those objects are
connected in the style of a linked list as it is important to maintain the sequential rela-
tionship of the data. Figure 6.2 shows, how different image objects are associated. There
is no direct connection between neighboring tile images, as this association is indirectly
established over their corresponding full images. In case it is not possible to match two
neighboring full images, the connection between the full image objects is created anyway,
but a flag is set which indicates the missing visual association. The tile image data of
the full image which could not be matched with its predecessor equals the full image data
itself as it could not be fitted to the existing tilestream.

Figure 6.2.: Associations between full- and tile images

6.3. Graphical User Interface

The main challenge regarding the graphical user interface is displaying the scrolling image
stream composed out of several tile images with an abstract overlay containing high-level
information such as detected plant contours and interaction requests. As the final GUI
is wrapped in a ROS-node, an easy integration into the ROS build- and communication
system has to be possible.

The cross-plattform framework Qt is widely used in ROS applications such as rviz and
rqt. Furthermore, the QGraphicsScene provides tools to overlay the animated user output
with additional layers that can respond to user input events. The platform independency
of Qt would theoretically even allow to use the GUI in combination with MS Windows,
an operating system that is probably more familiar to a typical Remote Farmer than the
Linux environment. Yet there is currently no stable ROS implementation for Windows, so
the communication system would have to be changed.

6.4. Thread Handling

In the image processing pipeline some computationally expensive operations such as the
matching of feature points for image mosaicing (compare Subsection 4.4.2) are executed.
Furthermore, some events such as the reception of new image data from the robot or the
reception of user feedback are triggered externally in a spontaneous fashion. In order to
make as well the pipeline and the graphical user interface responsive to such events and
to avoid processing intensive operations from blocking the whole data flow, we implement
pipeline and GUI in a multithreaded fashion.

Figure 6.3 provides an overview of the different threads running in the system. The
threading architecture is implemented employing the Boost.Threads library [78] in the
processing pipeline and the Qt multithreading functionality for the graphical user interface.

61

62 6. Implementation

Processingpipeline

Thread2
•Receive ROS-messages
•Assign message data to buffers

Thread3
•Detect and classify contours
•Create tile images
•Forward images / tiles to the
GUI and the next buffer

Thread4
•Fuse user input and
classification results
•Store training data
•Create Visual Servoing image
•Publish results back to the robot

T
h
re
ad

1
(M
ai
n
)

•S
ta

rt
up

of
al

lo
th

er
th

re
ad

s
•S

ys
te

m
sh

ut
do

w
n

(a) Processing pipeline

Graphical User Interface

Thread2
•Receive ROS-
messages
•Addmessagedata to
the buffer

Thread1(Main)
•Respond to user input
•GUI control
•Update the view layer
•PublishGUI feedback

(b) Graphical user interface

Figure 6.3.: Overview of the threads and their tasks running in the processing pipeline and
the GUI

62

7. Evaluation and Analysis

In the first section of this chapter the influence of the tile approach on the pipeline perfor-
mance is evaluated. After this, we introduce an user study with the goal to evaluate five
different concepts for user involvement in the weed detection process. Finally, we evaluate
the impact of the shared autonomy approach for our overall system.

7.1. Tile Approach

In this section, we evaluate the effects of the tile approach on our system.

7.1.1. Accuracy of Marker Placement

It is important to examine the decrease in accuracy due to the uncertainties introduced
by the image stitching approach. In a basic shared autonomy scenario, the user marks the
stem position of weed plants in a floating image stream which was created by the image
processing pipeline. These tile marker positions are then mapped back to the original
full images which are returned to the robot for visual servoing based manipulation of the
detected weed plants.

The goal of this evaluation is to test the tile-to-full-image mapping functionality and to
determine the accuracy-loss during the mapping of marker positions. In a first step, five
different datasets each containing 15 overlapping images are selected. The ground truth is
created by an expert user who places weed stem markers in the full images. Next, the same
expert user marks the weed stems in the five tile streams created out of the datasets. For
every tile image, all markers are mapped back to every full image in which they appear.
The position of these markers are compared to the ground truth stem markers, whereupon
a mapped marker was considered as ’hit’ when its distance to the next ground truth marker
that has not been hit so far is below a threshold. Several thresholds are applied and for
each threshold, the precision, recall and the F0.5-score measured. For our evaluations, we
prefer the F0.5-score (see Chinchor [79]) over the F1-score, as we want to emphasize the
importance of precision. In the context of our project, the a false-positive weed plant
detection is worse than an undetected weed (false-negative), as a possibly destroyed crop
weights more than an undestroyed weed. An example for the distance tolerance can be
found in Figure 7.1.

The results as shown in Figure 7.2 underline that the mapping seems to work reliably,
if a position tolerance radius of 25 pixels can be accepted. As no camera calibration

63

64 7. Evaluation and Analysis

Figure 7.1.: Example for a distance threshold of r = 25 px

information and no description of the camera position relative to the field in the test
setup is available, the real-world distances can only be roughly estimated based on camera
images with a measuring tape lying on the soil. The 25 px tolerance corresponds to a value
of 4.5 mm.

5 10 25 50 100
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

F0.5-score
precision
recall

Radius ofposition tolerance [px]

Figure 7.2.: F0.5-score, precision and recall of the stem marker mapping for different dis-
tance thresholds

An error of around 8 % in the recall and 4 % in the precision remains even for extremely high
position radius tolerances. The main source of this difference cannot be uncertainties in
the image mosaicing process itself—these should also result in an equal precision decrease.
Rather this phenomenon can be ascribed to the expert user who is proficient in marking
detected weed plants correctly (high precision) but tends to miss some of them. This effect
is amplified for missed weed plants in the tile image stream, as one tile marker usually
results in several full image markers due to overlapping. If we assume the user missed
the same percentage of weed plants in the full images and the tile image stream, we can
conclude that the decrease in the recall must be higher than the decrease in the precision.

It is unclear, to which parts the missing 4 % of precision refer to a mapping error and to
which parts they refer to missed weed plants in the ground truth data. In general, an
inaccurate placement of markers by the user seems to be neglectable for higher precision
tolerances, as the same user marked both the ground truth and the image stream dataset
and it seems implausible that an experienced user varies a marker position for more than
5 pixels.

To sum it up, the image mosaicing introduces mapping uncertainties that can be accepted,
if a position tolerance of is allowed. This value depends on the final choice of the weed

64

7.1. Tile Approach 65

manipulation method. It is important to keep in mind that the evaluated phenomenon
appears in every scenario, where stem positions in the tile image stream are set by the
user or created by an autonomous algorithm and adds to the total error estimation.

There are several approaches to reduce the mapping uncertainty:

• Improve the image mosaicing algorithm e.g. by obtaining depth information in the
images.

• Do not work with stem positions in the tile image stream.

• Introduce a second region-restricted image association for every stem position in the
tile image stream. This is an algorithm that fits the image regions around tile stem
positions with the expected region in the full image and uses the information gained
for an improved position mapping.

7.1.2. Processing Efficiency

We want to show three main advantages of the tile approach: The reduction of the clickload
on the user and the decrease of processing time and transmission data. Therefore we need
an estimation of the length of a tile image stream first.

Length of the tile image stream

We want to derive a formula which enables us to approximate the total length of a tile image
stream based on a given number of full overlapping images. Therefore, some assumptions
have to be introduced:

• All full images have the same size h · w

• The centroids of the fitted images are positioned on a vertical line.

• The only transformation required for fitting two neighbor images is a translation in
the image plane.

• The overlap factor between every pair of neighbor images is constant.

Based on the measures defined in Figure 7.3 we define the overlap factor as followed:

k =
l0
h

(7.1)

Figure 7.3.: Two overlapping images

The resulting function for the length of the tile stream for n full images is:

l(n) =
(
n− (n− 1)k

)
h ∀n ∈ N≥1 (7.2)

Proof. We can show this with mathematical induction:

Base case: Clearly l(1) = h.

65

66 7. Evaluation and Analysis

Inductive step: We want to show that if l(n) is true for a n ∈ N≥1, then so is l(n+ 1):

l(n+ 1) = l(n) + h− l0 = l(n) + (1− k)h =
(
n− (n− 1)k

)
h+ (1− k)h

=
(

(n+ 1)−
(
(n+ 1)− 1

)
k
)
h = l(n+ 1) (7.3)

Clickload reduction

We expect that the tile approach reduces the user interaction time significantly. The
overlapping of full images results in some of the tile markers being mapped back to several
images. This reduces the clickload on the user, as one click per weed plant is required and
it is avoided that the same plant appears in several images and therefore has to be marked
multiple times.

Based on the formula derived in 7.1.2 we estimate the expected decline: In a first step,
the k-factor for image overlap has to be found. From the total length of the tile streams
of the five datasets for the mapping test is the average value and its standard deviation
calculated: k = 0.32(±0.0098). The weed density in the full image stream and in the tile
image stream can be assumed to be identical. With this information the ratio between
the amount of tile markers and full image markers is calculated. It equals the ratio of the
length of the tile image stream to the sum of the length of all full images:

x =
ltile
lfull

=

(
n− (n− 1)k

)
h

nh
= 1− (1− 1

n
)k ≈ 0.70 (7.4)

Reduction of processing time

The time the user took to process the five datasets was measured in the study described
above. The results can be found in Figure 7.4a. The most interesting observation is that
the processing time for the tile image streams is not, as expected, reduced by 30 % but
rather decreases by 54 % — the user takes less time to mark a weed plant when working
on the tile data.

Full images Tile image
stream

0

5

10

15

20

25

30

35

Time [s]

(a) Processing time per image

Run1 Run2 Run3 Run4 Run5
0

1

2

3

4

5

6

7

8

(b) Weed ground truth markers per image

Figure 7.4.: Evaluation results of the tile image approach

We ascribe this effect to the better scene context of the tile image stream: While the user
has to search every full image completely for weed plants, he only has to scan the upper
region of the currently scrolling in tile. This effect shows, that the tile approach is not only
more efficient because it condenses the feedback required from the user but also, because

66

7.2. Evaluation of Shared Autonomy Approaches 67

the data is presented in a way to the user that enables quicker interaction. This effect
is expected to be independent on the user interaction scenario and we expect the same
results could be achieved for the user labeling plant contours instead of placing markers.

As seen in Figure 7.4b is the number of weed plants highly dependent on the chosen
image datasets and varies between the test runs. This results in the high variance of the
processing times.

Reduction of transmission data

It is crucial to ensure a good communication between robot and Remote Farmer especially
for an online shared autonomy scenario, where the robot requests information from the
user during his field activity. As the bandwidth of this connection may be limited, the
amount of data transmitted from the robot to the user and back has to be kept to a
minimum.

One of the most data-intensive tasks is sending the field images from the robot to the user.
Therefore it is desired to condense all full images in a way such that the user still has all
necessary information, but the transmission of redundant data is avoided. This is exactly
what is pursued in the tile image approach. If we assume the image transmission data
is proportional to the image area, Equation 7.4 enables us to estimate the ratio between
tile image data and full image data for a given amount of images and a given overlapping
factor.

Future implementations of the pipeline might go other ways in order to reduce transmission
data. For example, it is possible to send only cropped images to the user in case that his
feedback is required for an instance. However, we want the user to be able to observe all
classifier decisions and therefore this is not an option.

7.2. Evaluation of Shared Autonomy Approaches

We evaluate different approaches for the integration of the user in the weed detection
pipeline and the interaction between user and classifier. The goal of this study is to
determine the best scenario for the human-machine interaction and to identify problems
arising from the shared autonomy concept.

7.2.1. User Study Setup

We develop five different scenarios for pipeline-user interaction. They are introduced in
Figure 7.5. All of the five scenarios depend on the GUI with scrolling tile images created
out of 15 full original images. In the simplest approach, the autonomous pipeline does
only create the tile image stream and the user places stem markers in this stream which
are mapped back to the original images. Other scenarios with a higher level of autonomy
aim at detecting plant contours and classifying those. The labeled contours are checked
by the user and finally one stem marker per weed contour is created.

Scenario 1 The segmentation results are presented to the user in the form of unlabeled
plant contours. The user has to assign a class label to each contour and cannot place
any stem markers. This scenario does not involve any classifier and can also be seen
as the training data generation step for an untrained classifier.

Scenario 2 Every contour displayed in the GUI has a plant label assigned by the classifier.
Uncertainties in the classification process are not considered at all. The user has
to check the assigned labels and correct them whenever he detects mistakes. The
comparison with Scenario 1 enables us to evaluate how strong the user is influenced
by the classifier and how the introduction of a classifier affects the system behavior.

67

68 7. Evaluation and Analysis

(a) Scenario 1: All detected plant contours are
marked as unlabeled (white contours) and pre-
sented to the user, who is asked to assign a label
(compare Subsection 5.4.1) to each one.

(b) Scenario 2: The detected plant contours are
additionally pre-labeled by a classifier trained
with 821 instances of plant contours created out
of a different dataset. The user has to check
the labels assigned by the classifier and correct
wrong ones.

(c) Scenario 3: Additionally to the functionality of
scenario 2, the user has the possibility to place
markers on the stem of weed plants which were
either not segmented by the classifier or are part
of a segmented multiple plants-object.

(d) Scenario 4: A plain image stream without any
high-level information such as contours or labels
is displayed. The user has the task to place all
stem markers manually by mouse-clicks on the
stem positions of weed plants.

Figure 7.5.: The first four different types of interfaces evaluated in the user study

68

7.2. Evaluation of Shared Autonomy Approaches 69

(e) Scenario 5: A filter is applied to segmented and
pre-labeled plant contours. This filter calculates
for each contour the difference between the class
with the highest and second highest probability
as assigned by the classifier. If the difference is
below a threshold of 20 % the associated contour
is marked as unlabeled. The user is asked to label
only all of those filtered contours, but leave the
other labels unchanged.

Figure 7.5.: The fifth interface evaluated in the user study

Scenario 3 Additional to the setup of Scenario 2 the user is provided with the opportunity
to place weed stem markers in the scrolling field view. He is asked to place a stem
marker for every weed plant which is not segmented correctly for example because
of undersegmentation.

Scenario 4 In this scenario, the whole abstraction layer created out of segmented contours
and their class labels is abolished. Instead, the user is asked to place a stem marker
for every weed plant in the image. This scenario allows us comparing the high-level
interaction approaches against human-machine interaction on a lower level.

Scenario 5 This scenario is a combination of Scenario 1 and Scenario 2. A selective
querying strategy is introduced as described in Subsection 3.2.2. All contour labels
are assigned by the classifier and presented to the user except of contours where the
probability difference between the class with the highest and second-highest value is
below 20 %. These contours are marked as unlabeled. The user is asked to assign a
class label to all unlabeled contours, but leave all other contours with their classifier-
assigned label.

It remains to compare these different approaches against each other. We are not only
interested in the weed detection performance, but also in the user experience. Therefore,
five inexperienced users, 1 female and 4 male adults aged between 20 and 29 years, were
asked to support the weed detection system by interacting with the five different types of
interfaces.

In a first step, the users were introduced to the project and taught how to distinguish
between different plant types. After this, they tested the different interface functionalities
in an introduction run. Next, the user processed the data with each of the different
interfaces described above. The interfaces were presented to the users in random order.
Not only the input perceived from the users was logged, but also the processing time per
interface and the amount of input events (mouse-clicks, key-presses). After every run, the

69

70 7. Evaluation and Analysis

users were given a quick questionnaire and asked to evaluate the interface from different
point of views. The questionnaire can be found in the appendix in Section B. Finally, after
all of the five interfaces were processed, they were asked to sum up their experiences in an
evaluation sheet.

The results of this user study should be considered preliminary since the subjects were
mainly young people educated in computer technologies and may not be representative of
the general population. However, the results show general trends which are valuable for
future design decisions.

7.2.2. Weed Detection Performance

Processing time

Figure 7.6 displays the average processing times for the different interfaces. It becomes
clear, that the “intelligent” approaches required more user time than the simple markers-
only interface. The active learning filter interface required the least user time since users
only had to lane a limited number of contours marked as unlabeled due to classifier un-
certainty. This shows, that an intelligent interface can improve the performance in terms
of processing time. However, the accuracy of this approach still has to be evaluated. Pre-
labeled contours help the user to fulfill his task quicker compared to the interface which
presents the user unlabeled contours only.

Unlabeled
contours only

Labeled
contours only

Labeled contours
andmarkers

Markers only Labeled contours only
with active learning

0

100

200

300

400

500

Time [s]

Figure 7.6.: Average processing times and standard deviation of the different interfaces

In general, it takes an inexperienced user around 150 seconds to process the 15 images for
the quickest interface. The total length of the image stream of around 7900 px corresponds
to an estimated real-world distance of 1381 mm. Based on this data we can calculate the
length of a field section the user can process per second: 9.2 mm. As the target driving
speed of the weed manipulation robot is 50 mm

s [3], an online-processing of the data seems
not to be feasible even under these best-case assumptions. There are several approaches
how this challenge can be tackled:

Stop-and-go The robot stops while the user processes the data and continues as soon as
the user feedback on the current field region was received and all weed manipulation
tasks were done or it can be ensured that they can be finished while the robot is
driving on.

Parallel processing The data collected from the robot is distributed to several users. This
scenario is challenging in terms that the single user tasks have to be assigned sophis-
ticatedly under the consideration of transmission and user reaction times.

Others There is a high number of alternative solutions. They include reduction of the
robot speed, improved user training so that he can process the data quicker or a
realization with a higher degree of autonomy that requests less data from the user
or is not directly dependent on the user’s feedback but rather only utilizes it in a
long-term learning process.

70

7.2. Evaluation of Shared Autonomy Approaches 71

The fully autonomous weed detection takes around 19 s for the same amount of images
(compare Section 7.3). This results in possible driving speeds up to 73 mm

s , which is
acceptable. We will examine the impact of the shared autonomy approach in detail later.

Input events

Not only the processing time but also the amount of user input events are recorded during
each testrun. An user required one right-click and one left-click to assign a new label to
a contour and one left-click in order to place a marker. The key-presses refer to pause-
and unpause-events as the user had the possibility to stop the scrolling image stream by
pressing the space-key.

A look at the amount of user input events (Figure 7.7) shows a strong correlation to the
processing times. This indicates, that it is essential for a quick processing of the data to
restrict the required user input to a minimum.

Unlabeled
contours only

Labeled
contours only

Labeled contours
andmarkers

Markers only Labeled contours only
with active learning

0

20

40

60

80

100

120

140

Left-clicks
Right-clicks
Keypresses

Figure 7.7.: Average user input events and standard deviation

Stem detection performance

The most important metric for comparison of the different user interaction approaches are
the final detection rates for weed stem positions in the full images. This is the output of
the image processing pipeline that is sent back to the robot. The stem positions detected
in every run of the user study are compared against a ground truth. Figure 7.8 shows the
resulting detection rates. As all interfaces are based on scrolling tiles, the results of the
marker mapping evaluation from 7.1.1 can be considered to be the best values achievable.
We use a marker position tolerance of r = 25 px, as we could show that this value yields
to a good balance between avoidance of mapping errors and precisely manipulated weed
plants.

Unlabeled
contours only

Labeled
contours only

Labeled contours
andmarkers

Markers only Labeled contours only
with active learning

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

F0.5-score
Precision
Recall

Figure 7.8.: F0.5-score, precision and recall of the weed stem detection with different in-
terfaces for a distance threshold of 25 px

71

72 7. Evaluation and Analysis

The interface where the user only has to place markers directly yields the best results,
because many error sources can be excluded from the weed detection process. However,
an average F0.5-score not higher than 56% can be achieved. This is extremely low compared
to the performance of an expert user of around 94 % (Figure 7.2) and underlines, that the
task of the Remote Farmer cannot be considered as a typical crowdsourcing application.
It requires a reasonable training to be able to detect all weed plants correctly. The user
introduction at the beginning of the study seems to be insufficient for a good performance.
The noticeably high standard deviation for all three different metrics shows, that the
variation between the different users was extremely high. In general, the standard deviation
can be seen as a measure of user uncertainty.

This uncertainty can be reduced by introducing the abstraction layer. When the users are
given unlabeled contours only the recall values for all five participants are between 40 %
and 50 %. However, the standard deviation for the precision is roughly the same value as
before—some user’s seem to label a high amount of non-weed plants as weed. In general,
the detection rates of this interface are around 10 % lower compared to the markers-only
approach. This seems to be a result of the plant contours, which restrict the user, as a
proper plant segmentation and marker extraction is assumed for good performance. As
shown in the user experience evaluation (Figure 7.12), this effect is also noticed by the
user.

The introduction of the classifier which produces prelabeled contours that only have to
be verified by the user can compensate user uncertainties, but also results in a slightly
worse detection performance. A fully autonomous classifier performs significantly worse
(compare Section 7.3). The user tends to trust the classifiers choice and therefore does
not correct all classification mistakes. The performance decrease is in contrast to a much
better average processing time (compare to Figure 7.6).

The interface with combined contour labeling and and markers increases the recall remark-
ably to the level of the markers-only interface. This is due to the gained user flexiblity—
finally the user has a tool to mark weed plants that are not correctly segmented by the
classifier, e.g. because they belong to a multiple-plants object. However, the precision re-
mains on a low level. Probably two factors yield to this bad performance: The extraction
of a stem position for weed contours has a low precision and the user tended to label
non-weed plants as weed.

The active learning approach performs poorly. The main problem here is a high amount of
classifier mistakes that cannot be corrected by the user, because the active learning filter
considers these wrong labels as ’certain’. Either the certainty filtering threshold was set
too low or the probabilistic model in the SVM classifier does not perform in the expected
way.

In total, we could show that a good integration of the user into the autonomous weed
detection process decreases the user’s processing time and increases the system overall
performance. It is hard for high-level interfaces to compete against less sophisticated
user integration concepts in the terms of processing time and overall weed stem position
detection rate. A selective user input querying strategy can result in significantly decreased
processing times, however it also decreased the detection performance in our approach
noticeably.

7.2.3. User Experience

The user experience is evaluated based on a questionnaire each user has to file after he
is finished working with one interface and on a final evaluation sheet in which the user is
asked to sum up his experiences with the different human-robot interaction scenarios.

72

7.3. Impact of the Shared Autonomy Approach 73

All users confirm, that every interface is easy to understand (Figure 7.9) and the addi-
tional data such as contours or contour labels provided in some of the scenarios is helpful
(Figure 7.10). The test group is split in the question, whether their task was easy or hard
to fulfill. This underlines the observation during the different testruns, that some users
had problems to distinguish between the different plant types even after the introduction.

Labeled contours only
with active learning

Markers only

Labeled contours
andmarkers

Labeled
contours only

Unlabeled
contours only

0% 20% 40% 60% 80% 100%

Strongly agree
Agree
Neutral
Disagree
Strongly disagree

Figure 7.9.: All interfaces are easy to understand

Task hard to fulfill

Additional data helpful

0% 20% 40% 60% 80% 100%

Strongly agree
Agree
Neutral
Disagree
Strongly disagree

Figure 7.10.: General questions

It can be seen in Figure 7.11 that the users consider the first and the third interface
partially as stressful to handle. There seem to be different reasons for this. In case of
the first interface, a high amount of clickwork has to be done (Figure 7.7). Interface 4
is perceived as stressful, because multiple tasks have to fulfilled: The user has to check
contour labels and place markers additionally. On the other hand, Figure 7.12 illustrates,
that the combination of contour and marker interface enabled the user to provide feedback
to the robot in a satisfying way. All other interfaces were rated worse in terms of flexibility.
Some users seem to desire an interface that provides them with other improved methods
for providing feedback. Especially interface 5 restricted the users noticeably, as they could
see wrongly labeled contours, but were not allowed to correct them because they were
supposed only to assign labels to unlabeled contours.

Labeled contours only
with active learning

Markers only

Labeled contours
andmarkers

Labeled
contours only

Unlabeled
contours only

0% 20% 40% 60% 80% 100%

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

Figure 7.11.: Whether user consider the interface to be stressful to use

7.3. Impact of the Shared Autonomy Approach

In our user study, we evaluated different human-machine interaction concepts with varying
levels of autonomy. Now, we want to determine the influence of the user on the performance

73

74 7. Evaluation and Analysis

Labeled contours only
with active learning

Markers only

Labeled contours
andmarkers

Labeled
contours only

Unlabeled
contours only

0% 20% 40% 60% 80% 100%

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

Figure 7.12.: Users’ answers to the question, whether they felt restricted in providing feed-
back to the robot

of the overall system. Therefore, we incorporate the results of Scenario 2 in the user study,
where all plant contours are prelabeled by the classifier and the user can change contour
labels, but is not allowed to place additional stem markers. We compare the performance
of the five inexperienced users involved in the study against a fully autonomous approach.
In this scenario the labels of the classifier are directly used for the stem localization step
without user interaction. The results for this configuration are maintained as the average
values out of five runs as well. Additionally, we add a third scenario for comparison: An
expert user takes over the label checking and correction task. As only one expert user was
available, we were not able to repeat this test for several times and therefore provide his
results for one run and without standard deviation.

In Figure 7.13 the F0.5-score, precision and accuracy are displayed for the three different
configurations. Again, we employ a distance threshold of 25 px to determine, whether a
resulting stem marker is positioned correctly. It becomes clear that even the integration
of an inexperienced human user is able to double the detection rates. The classifier seems
to have problems distinguishing between weed and non-weed plants. This is an interesting
observation as we could show in a preliminary classifier evaluation presented in Subsec-
tion 5.4.3 that our choice of feature values and classifier types results in classification
accuracies of around 73 % without any parameter optimization. However, the accuracy
metric is good to estimate the overall classifier performance on a multiclass problem, but
not for this use case, where we are particularly interested in a binary classification prob-
lem and have a biased class distribution. Out of the confusion matrix for our preliminary
results, we can calculate the SVM performance for weed detection: A precision of 82 %
and a recall value of 38 %. It becomes clear that the SVM classifier has problems when
it comes to identifying all existing weed plants in a dataset correctly. This explains to
some extent the problems in our classifier-only testruns. The most important additional
influencing factors are:

• The employed implementation of the SVM classifier and the plant dataset differs
between the two evaluations.

• In the user study, the classifier is applied on full image contours. Later the labels
and the class probabilities of one or more full image contours are merged for the
classification of tile image contours, which are the base for the stem localization
(compare Subsection 5.4.4). This merging introduces additional uncertainties.

The recall of the inexperienced and the expert user are on the same level. If we consider
the results of the expert user as ground truth, we can conclude that also an inexperienced
user is able to determine all contours of weed plants. However, the limitation of stem
markers only derived from centroids of contours in this scenario prevents the users to

74

7.3. Impact of the Shared Autonomy Approach 75

achieve higher recall values than 40 %. The increased precision of the expert user indicates
that inexperienced users produced some false positives—non-weed plants labeled as weed.
It is interesting to note that the standard deviation of the inexperienced users and the
classifier runs are in the same range. As identical training data was used for all classifier-
only runs, the classifier’s performance seems to vary because of probabilistic deterministic
behavior which is introduced at several points in the autonomous weed detection pipeline
such as the image matching with support of a RANSAC filter or the classifier training.

Classifier only Inexperienced user Expert user
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

F0.5-score
Precision
Recall

Figure 7.13.: F0.5-score, precision and recall of the weed stem detection without any users
and with two different user types for a distance threshold of 25 px

Finally, we compare the processing times for the configurations without any users and
with inexperienced users in Figure 7.14. It is obvious that the user integration increases
the processing time for our 15 overlapping images significantly by a factor of 15. This can
be accepted for an offline scenario, where the user works on data previously recorded by
the robot, but is critical for online weed control.

Classifier only Inexperienced user
0

50

100

150

200

250

300

350

400

450

Time [s]

Figure 7.14.: Processing times for 15 images of the fully autonomous approach and with
an user integrated into the weed detection process

In this chapter, we evaluated the performance of our overall system. We demonstrated
that the tile approach introduces small uncertainties, if a distinct position tolerance can
be accepted. Furthermore, it reduces the load on the user, his processing time and the
transmission data significantly depending on the overlapping factor of the full images. We
examined our system in an user study with users that worked on five different interfaces
with varying levels of autonomy. It turned out that it is difficult for a system with a high
level of autonomy to compete against less sophisticated integration solutions of the human
user due to the complexity of the weed detection process. More complicated interfaces were
considered as stressful by the users, but they realized that such approaches provide addi-
tional flexibility for robot feedback. Finally we compared our shared autonomy approach
to a completely autonomous system which revealed a significant performance improvement
by the integration of the user, but also an noticeable increase of the total processing time.

75

8. Summary and Future Work

8.1. Summary

In this thesis, we describe the development, implementation and evaluation of a shared
autonomy weed detection framework which is designed for the integration into an agricul-
tural robot. The goal of our system is to receive overlapping images that are created while
a robot is driving over a field, process these images and detect the point of application for
weed plants, the so-called stem markers. These points are employed by a manipulator for
active weed control.

We inserted a human user into our processing pipeline to increase the robustness, reliability
and performance of the overall system. Therefore, we developed a framework which is
designed in an user-centered manner. For example, we employed plant contours as an
abstract unit that can be easily handled by object recognition algorithms as well as provide
good visualization and interaction possibilities when displayed in an user interface. As
our focus was the evaluation of different interaction scenarios between user and system,
we used out-of-the-box solutions for the autonomous data processing, analyzed different
human integration concepts and finally evaluated a choice of five interfaces in an user
study.

First, we examined different points of application for our shared autonomy concept based
on the functionality of a fully autonomous weed detection system. We determined three
possible different human insertion points, the segmentation, the classification and the stem
localization step. Our implementation involves the user in the plant classification step, as
user feedback for autonomous classification results can be provided easily and quickly and
our approach for shared autonomy classification can be transferred to other use cases.
Next, we introduced different user-classifier interaction scenarios. We finally integrated
the user in such a way that he can check and correct a filtered amount of instances of data
already processed by an autonomous classification algorithm. Different concepts for graph-
ical user interfaces were suggested and we finally implemented one flexible solution. In this
GUI we added the optional possibility for the user to mark stem positions directly in order
to overcome segmentation failures. The ROS framework was employed as build system
and for the communication between the user and the autonomous processing pipeline.

We introduced the concept of an image tiling technique. Created tiles can be assembled
to an image stream with two main goals: To create associations between the overlapping
images received at the beginning of the pipeline and to provide an intuitive visualization of

77

78 8. Summary and Future Work

the stream of overlapping images collected by the robot and therefore improve the system-
user collaboration. The scrolling stream of tile images is displayed in the GUI and serves
as base for all user interaction requests. Out of the overlapping full images we created
an image mosaic with homographic transformations by matching received images with a
feature point based algorithm. As our image stream can be, contrary to conventional
panorama pictures, indefinitely long in one dimension, we introduced a deskewing step
which avoids singularities in the image transformation.

In Chapter 5 is the autonomous portion of the image processing described. We developed
a custom algorithm for the subtraction of the NIR and red image channel in order to
improve the contrast between plants and background. A non parametric, marker-based
watershed algorithm is used to detect plant contours. Out of these contours, 20 shape-
and 2 texture-based features are extracted. Based on the normalized features and a set
of training data, the implementation of a support vector machine classifier assigns a class
label and class probabilities to all plant contours. This information is the initial point for
the user interaction. Either the user checks and corrects all labels assigned by the classifier
or only selected instances are queried from the user, if the certainty of the assigned label
is low. The user feedback is employed to correct classifier decisions and for the creation
of new training data. The last autonomous processing step extracts markers for the stem
position out of weed contours and maps them from the tile image space back to the original
images.

We evaluated the overall performance of our system based on qualitative and quantitative
measures. At first, we examined the implementation of the tile approach. We could show,
that the mapping of stem markers from the tile space to the full image space introduces
only small uncertainties, if a position tolerance of 25 px can be accepted. Additionally, the
tile approach reduces the processing time, the clickload on the user and the transmission
data between processing pipeline and user interface significantly.

Furthermore, we examined five different shared autonomy scenarios with various levels of
autonomy in an user study. We showed that it is difficult for high level approaches where
the user interacts with the classification step of the weed detection pipeline to compete
against approaches with a low level of autonomy. In our low level approach, the user places
stem markers directly per click and is only supported by the autonomous part of the system
which creates the tile image stream. The click interface had the second shortest processing
time but also produced the highest stem detection performance. Only in one case, the
total image processing time was quicker. In that scenario, the user was only requested to
check and correct labels of instances which were determined by an uncertainty sampling
strategy. In this way, the load on the user was decreased. However, this scenario yielded
in the worst overall detection performance. We observed that the user is influenced when
presented with the results of the autonomous classifier compared to a scenario where the
user is not presented these results. The human user tends to accept incorrect classifications
from the autonomous part of the system and be more certain in his actions.

The user experience was examined qualitatively with a questionnaire. In general, the users
did not have any problems to understand the interfaces and considered the additional
data displayed in the form of plant contours and preassigned classifier labels to be helpful.
The human users preferred the interfaces where they had to do less clickwork and could
concentrate on one task. On the other hand, they recognized that a more complex interface
offers a higher flexibility in terms of providing feedback to the weed detection system.

In a final evaluation, we determined the impact of the shared autonomy approach on the
overall system. It turned out, that an inexperienced user is able to improve the detection
rate of stem markers by a factor of 2 only by checking and correcting the labels of the
autonomous classifier. An expert user could increase the precision even more, but had the

78

8.2. Conclusions 79

same recall. The downside of the user integration is a processing time that is fifteen times
higher than the one of an autonomous system.

8.2. Conclusions

The autonomous image based detection of the stems of weed plants is an extremely com-
plex process with success rates depending highly on external influences such as the plant
density and the growth stage of plants. Due to the high occlusion and the restricted image
quality, we can consider the preliminary dataset which served as base for our thesis as diffi-
cult. We could show that an autonomous system created with out-of-the-box solutions has
difficulties detecting the positions of weed stems. Deeper investigation into custom-made
autonomous techniques is required, however this is beyond the scope of this thesis. The
introduction of a shared autonomy approach is necessary to overcome some of these diffi-
culties and increased the detection rate by the factor of 2 for an user interaction which is
restricted to the correction of autonomous classification results. However, to achieve better
detection rates it was necessary to overcome restrictions which arose from the design of
the autonomous framework and offer the user the possibility to interact with the system
on a lower level of control by placing stem markers directly. This additional information
is important immediate feedback, but hard to incorporate in learning processes.

Our user study revealed that human users are influenced by the decisions of an autonomous
classifier and become more certain in their choices. There were significantly higher varia-
tions in the detection rates between the single users when they placed the markers directly
(see Figure 7.8). This indicates that low level control depends highly on the experience
and skills of an user whereas our abstraction layer could equalize the user performance to
some extent. In general, all of our interfaces required some user introduction so that the
task of the human user cannot be considered for crowdsourcing to inexperienced users.

The human accepts to work on a more abstract level of control and corporate with some
machine intelligence, especially when he notices that this abstraction layer results in a
reduced amount of necessary user input. However, the more we increase the level of
autonomy, the higher are the demands regarding the performance of the autonomous
processing system in order to maintain a stable overall system performance. Additionally,
a high level of autonomy increases the risk of an user relying too much on the system’s
decisions and being not challenged enough to contribute his skills.

There are potential sources for errors in all portions of the autonomous framework, one of
the main challenges is the segmentation of plants. Occluded areas yield undersegmentation,
fine plant structures lead to oversegmentation. The cotyledons of carrot crops can be easily
confused with leaves of weed plants, this seems to be the main source of classification
mistakes.

8.3. Design Recommendations and Future Work

Our weed detection framework is built with the purpose to evaluate the interaction between
user and autonomous system. Therefore, we employed standard solutions for autonomous
processing tasks and did not focus on the tuning of this part. However, we hope that
our framework will be valuable as a base system for further development and we are
able to derive recommendations for future implementations based on our experiences and
evaluation results.

Segmentation and stem localization

Even an expert user is not able to detect more than 40 % of the weed stem positions (see
Figure 7.13) given he can only influence the classification results for detected contours.

79

80 8. Summary and Future Work

If we assume the expert user is capable of classifying all contours correctly, this is the
maximal performance an autonomous system is currently able to achieve.

This motivates the need to improve the contour segmentation step perhaps by increasing
the camera resolution or employing depth information. Further improvements are possible
by clustering oversegmented plant parts and allowing holes within contours. However, this
would affect the choice of feature values. Another option is the incorporation of user input
for the segmentation step. Stem markers set by the human user can be employed for the
correction of segmentation results based on interactive segmentation algorithms such as
grabcut [47].

Furthermore, it must be ensured that the stem position within a correctly segmented weed
contour can be determined with a higher certainty. Especially here the application of
depth data seems to be very helpful, as the intersection point between plant stem and soil
plane can easily be determined. Another approach is the use of a camera with the optical
axis parallel to the soil level that captures additional images from the side.

Classification

Based on our experiences, the final choice of the classifier does not affect the detection
accuracy significantly (see Subsection 5.4.3) and rather the classifier requirements and
its availability have to be considered. One important step will be the introduction of
a classifier which is able to learn incrementally or can be retrained quickly. This will
allow the system to maintain a dynamic classifier model during runtime which adjusts
according to user input. Therefore, the system will be more robust to environmental
changes during runtime. Furthermore, our experiences with the probability model for the
class labels assigned by the SVM classifier is that these class probability values are not
reliable. If the employment of a certainty based query strategy is continued, probabilistic
classification methods such as a Bayesian Network should be considered. In general, it is
a challenge finding a classifier that performs well, fulfills our system requirements and is
able to estimate its own performance reliably.

The choice of feature values depends highly on the image acquisition method and the
data structure used for the representation of plant objects. Additional interesting con-
tour features for plant classification are skeleton-based features [6], curvature scale space
representations [41] and fourier descriptors [80].

Tile approach

The creation of tiles is not a critical step in the image processing pipeline. However,
the feature point based image fitting is time consuming and odometry data of the robot
could be employed to obtain an initial estimation for the feature point matching process.
Currently the tile matching is restricted to a camera movement in one dimension, more
flexibility can be obtained by extending this matching algorithms to a second dimension.
In general, the concept of tile images improved the situation awareness and performance
of the user significantly and decreased transmission data.

Shared autonomy

The shared autonomy approach seems indispensable for such a complex system which op-
erates in highly unstructured environments. Future challenges will be to improve the user
performance by better training, maybe to develop even a game-like training application for
Remote Farmers. Furthermore, the online weed detection requires a decreased user pro-
cessing time, which could for example be introduced by the incorporation of several users
assigned to one robot. This results in new challenges regarding synchronization and task

80

8.3. Design Recommendations and Future Work 81

sharing. Another strategy to improve the user certainty is to make several users process
redundant data and than incorporate their results, maybe even including certainty values
assigned to the single users.

System integration

One of the most important tasks is the integration of the weed detection pipeline in the
robot. In general, the ROS architecture allows an easy exchange of nodes communicating
with each other, therefore only the corresponding camera image publisher and the receiver
for the visual servoing images have to be created. The more challenging system integration
part will be to establish the communication with the Remote Farmer, handle failure cases,
make sure that the raw images are overlapping with a given ratio and synchronize image
creation, robot movement, weed detection process including user input and manipulator
control.

81

Appendix

A. Feature Values

In this Section, all 22 employed feature values are listed. The explanation for symbols and
operators can be found in the Nomenclature.

F0–6 Hu-moments [40]: Position, rotation and scale-invariant features1 derived from
shape moments up to the 3rd order.

F7 Contour area AC

F8
p√
AC

p is the contour’s perimeter.

F9
Area of the convex hull [81]

AC

F10
Area of the minimum circle enclosing the contour

AC

F11
AbRect

AC

AbRect is the area of the contour’s minimum-area bounding rectangle.

F12
lbRect

hbRect
with lbRect ≥ hbRect

F13 Number of convexity defects (see Figure A.1).

F14
mediandi∈Ddepth

(di)√
AC

Ddepth is the set with all depths of convexity defects.

F15
meandi∈Ddepth

(di)√
AC

F16
stddi∈Ddepth

(di)√
AC

1Not considering a restricted image resolution.

83

84 Appendix

F17
medianli∈Dlength

(li)

p

Dlength is the set with all lengths of convexity defects.

F18
meanli∈Dlength

(li)

p

F19
stdli∈Dlength

(li)

p

F20 Normalized mean of intensity values in the differential image:

meanui∈C
(

srcDiff(ui)
)
−minui∈I

(
srcDiff(ui)

)
maxui∈I

(
srcDiff(ui)

)
−minui∈I

(
srcDiff(ui)

)
F21 Normalized standard deviation of intensity values in the differential image:

stdui∈C
(

srcDiff(ui)
)

maxui∈I
(

srcDiff(ui)
)
−minui∈I

(
srcDiff(ui)

)

Figure A.1.: Convexity defects of a shape, di is the defect depth and li the defect length

84

B. Questionnaire for the User Study 85

B. Questionnaire for the User Study

Evaluation questionnaire – Interface 1

Question:
strongly
disagree

disagree neutral agree
strongly
agree

This interface was easy to understand.

This interface was fun to use.

It was stressful to fulfill the given task with
this interface.

I had the feeling that I could help the robot to
do its task.

The interface restricted me in the means of
providing feedback to the robot.

The plant contours provided in the interface
were useful for me.

General comments:

Evaluation questionnaire – Interface 2

Question:
strongly
disagree

disagree neutral agree
strongly
agree

This interface was easy to understand.

This interface was fun to use.

It was stressful to fulfill the given task with
this interface.

I had the feeling that I could help the robot to
do its task.

The interface restricted me in the means of
providing feedback to the robot.

The labeled contours provided in the
interface were useful for me.

The labels previously assigned by the
classifier could not help me in fulfilling my
task.

General comments:

85

86 Appendix

Evaluation questionnaire – Interface 3

Question:
strongly
disagree

disagree neutral agree
strongly
agree

This interface was easy to understand.

This interface was fun to use.

It was stressful to fulfill the given task with
this interface.

I had the feeling that I could help the robot to
do its task.

The interface restricted me in the means of
providing feedback to the robot.

General comments:

Evaluation questionnaire – Interface 4

Question:
strongly
disagree

disagree neutral agree
strongly
agree

This interface was easy to understand.

This interface was fun to use.

It was stressful to fulfill the given task with
this interface.

I had the feeling that I could help the robot to
do its task.

The interface restricted me in the means of
providing feedback to the robot.

General comments:

86

B. Questionnaire for the User Study 87

Evaluation questionnaire – Interface 5

Question:
strongly
disagree

disagree neutral agree
strongly
agree

This interface was easy to understand.

This interface was fun to use.

It was stressful to fulfill the given task with
this interface.

I had the feeling that I could help the robot to
do its task.

The interface restricted me in the means of
providing feedback to the robot.

General comments:

87

88 Appendix

Final Questions

My favorite interface was:

Interface 1 Interface 2 Interface 3 Interface 4 Interface 5

Question:

strongly
disagree

disagree neutral agree strongly
agree

The additional data provided in some of the
interfaces helped me in fulfilling my task.

It was in general hard for me to fulfill the
task.

With which gave you the feeling of having the most control?

Interface 1 Interface 2 Interface 3 Interface 4 Interface 5

Which interface did support you the best?

 Interface 1 Interface 2 Interface 3 Interface 4 Interface 5

My sex:

 Female Male

My age:

 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-60

88

Bibliography

[1] Bund ”Okologischer Lebensmittelwirtschaft, “Zahlen, Daten, Fakten: Die Bio-
Branche 2013,” tech. rep., 2013.

[2] F. Rahe, K. Heitmeyer, P. Biber, U. Weiss, A. Ruckelshausen, H. Gremmes, R. Klose,
M. Thiel, and D. Trautz, “First field experiments with the autonomous field scout
BoniRob,” in Proceedings 68th International Conference Agricultural Engineering
2010, pp. 419–424, 2010.

[3] A. Michaels, A. Albert, M. Baumann, U. Weiss, P. Biber, A. Kielhorn, and D. Trautz,
“Approach towards robotic mechanical weed regulation in organic farming,” in Au-
tonomous Mobile Systems 2012, Informatik aktuell, pp. 173–181, Springer Berlin Hei-
delberg, 2012.

[4] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo control,” IEEE
Transactions on Robotics and Automation, vol. 12, pp. 651–670, October 1996.

[5] B. Åstrand and A.-J. Baerveldt, “Plant recognition and localization using context
information,” in Proceedings of the IEEE Conference Mechatronics and Robotics 2004–
special session Autonomous Machines in Agriculture, pp. 1191–1196, 2004.

[6] M. Weis and R. Gerhards, “Feature extraction for the identification of weed species
in digital images for the purpose of site-specific weed control,” Precision Agriculture
’07, pp. 537–543, 2007.

[7] D. Slaughter, D. Giles, and D. Downey, “Autonomous robotic weed control systems:
A review,” Computers and Electronics in Agriculture, vol. 61, no. 1, pp. 63–78, 2008.

[8] A. Paap, S. Askraba, K. Alameh, and J. Rowe, “Photonic-based spectral reflectance
sensor for ground-based plant detection and weed discrimination,” Opt. Express,
vol. 16, pp. 1051–1055, Jan 2008.

[9] S. Hiremath, V. A. Tolpekin, G. van der Heijden, and A. Stein, “Segmentation of
Rumex obtusifolius using Gaussian Markov random fields,” Machine Vision and Ap-
plications, vol. 24, pp. 845–854, May 2013.

[10] J. Bohren, R. Rusu, E. Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise, L. Mosen-
lechner, W. Meeussen, and S. Holzer, “Towards autonomous robotic butlers: Lessons
learned with the PR2,” in 2011 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 5568–5575, 2011.

[11] T. Fong, C. Thorpe, and C. Baur, “Robot, asker of questions,” Robotics and Au-
tonomous systems, vol. 42, no. 3, pp. 235–243, 2003.

[12] B. Pitzer, M. Styer, C. Bersch, C. DuHadway, and J. Becker, “Towards perceptual
shared autonomy for robotic mobile manipulation,” in ICRA’11, pp. 6245–6251, 2011.

[13] M. A. Goodrich and A. C. Schultz, “Human-robot interaction: a survey,” Foundations
and Trends in Human-Computer Interaction, vol. 1, no. 3, pp. 203–275, 2007.

89

90 Bibliography

[14] J. W. Crandall, M. A. Goodrich, D. R. Olsen Jr, and C. W. Nielsen, “Validating
human-robot interaction schemes in multitasking environments,” Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 35, no. 4,
pp. 438–449, 2005.

[15] A. E. Leeper, K. Hsiao, M. Ciocarlie, L. Takayama, and D. Gossow, “Strategies for
human-in-the-loop robotic grasping,” in Proceedings of the seventh annual ACM/IEEE
international conference on Human-Robot Interaction, pp. 1–8, ACM, 2012.

[16] M. Marge, A. Powers, J. Brookshire, T. Jay, O. Jenkins, and C. Geyer, “Comparing
heads-up, hands-free operation of ground robots to teleoperation,” in Proceedings of
Robotics: Science and Systems, (Los Angeles, CA, USA), June 2011.

[17] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. Teller, and
N. Roy,“Understanding natural language commands for robotic navigation and mobile
manipulation,” Proc. AAAI, 2011.

[18] S. R. Dixon, C. D. Wickens, and D. Chang, “Unmanned aerial vehicle flight control:
False alarms versus misses,” in Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 48, pp. 152–156, SAGE Publications, 2004.

[19] N. K. Pholchai Chotiprayanakul, Dalong Wang and D. Liu, “A haptic base human
robot interaction approach for robotic grit blasting,” in The 25th International Sympo-
sium on Automation and Robotics in Construction. ISARC-2008, pp. 148–154, Vilnius
Gediminas Technical University Publishing House “Technika”, 2008.

[20] A. Ubeda, E. Ianez, J. Azorin, J. Sabater, N. Garcia, and C. Perez,“Improving human-
robot interaction by a multimodal interface,” in Systems Man and Cybernetics (SMC),
2010 IEEE International Conference on, pp. 3580–3585, 2010.

[21] I. Goodfellow, N. Koenig, M. Muja, C. Pantofaru, A. Sorokin, and L. Takayama,“Help
me help you: Interfaces for personal robots,” in Proc. of Human Robot Interaction
(HRI), (Osaka, Japan), ACM Press, ACM Press, 2010.

[22] R. Parasuraman, T. Sheridan, and C. D. Wickens, “A model for types and levels of
human interaction with automation,”Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on, vol. 30, no. 3, pp. 286–297, 2000.

[23] D. Damos, “Aviation automation: The search for a human-centered approach,” ER-
GONOMICS, vol. 41, p. 560, APR 1998.

[24] T. Kaupp and A. Makarenko, “Measuring human-robot team effectiveness to deter-
mine an appropriate autonomy level,” in Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on, pp. 2146–2151, IEEE, 2008.

[25] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and S. Savage,
“Re: Captchas–understanding captcha-solving services in an economic context,” in
USENIX Security Symposium, vol. 10, 2010.

[26] B. Sankaran, B. Pitzer, and S. Osentoski, “Failure recovery with shared autonomy,”
in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pp. 349–355, Oct. 2012.

[27] J. Chen, E. Haas, and M. Barnes, “Human performance issues and user interface
design for teleoperated robots,” Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, vol. 37, no. 6, pp. 1231–1245, 2007.

[28] H. Keskinpala, J. Adams, and K. Kawamura, “PDA-based human-robotic interface,”
in Systems, Man and Cybernetics, 2003. IEEE International Conference on, vol. 4,
pp. 3931–3936, 2003.

90

Bibliography 91

[29] M. Baker, R. Casey, B. Keyes, and H. Yanco, “Improved interfaces for human-robot
interaction in urban search and rescue,” in Systems, Man and Cybernetics, 2004 IEEE
International Conference on, vol. 3, pp. 2960–2965, 2004.

[30] T. Witzig, J. M. Zöllner, D. Pangercic, S. Osentoski, R. Jäkel, and R. Dillmann,
“Context aware shared autonomy for robotic manipulation tasks.”.

[31] T. Fong, C. Thorpe, and C. Baur, “Multi-robot remote driving with collaborative
control,” Industrial Electronics, IEEE Transactions on, vol. 50, no. 4, pp. 699–704,
2003.

[32] R. Murphy, “Human-robot interaction in rescue robotics,” Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 34, no. 2,
pp. 138–153, 2004.

[33] F. J. Pierce and P. Nowak, “Aspects of precision agriculture,” vol. 67 of Advances in
Agronomy, pp. 1–85, Academic Press, 1999.

[34] N. Zhang, M. Wang, and N. Wang, “Precision agriculture—a worldwide overview,”
Computer, vol. 36, pp. 1130–132, Nov. 2002. Engineering and Technological Sciences,
International Conference on.

[35] B. Åstrand and A.-J. Baerveldt, “An agricultural mobile robot with vision-based
perception for mechanical weed control,” Autonomous Robots, vol. 13, pp. 21–35,
2002.

[36] T. Bak and H. Jakobsen, “Agricultural robotic platform with four wheel steering for
weed detection,” Biosystems Engineering, vol. 87, no. 2, pp. 125–136, 2004.

[37] T. Bakker, K. A. van, J. Bontsema, J. Müller, and G. S. van, “Systematic design of an
autonomous platform for robotic weeding,” Journal of Terramechanics, vol. 47, no. 2,
pp. 63 – 73, 2010.

[38] H.-W. Griepentrog, M. Nørremark, and J. Nielsen, “Autonomous intra-row rotor
weeding based on GPS,” in Proceedings CIGR World Congress-Agricultural Engi-
neering for a Better World, vol. 9, 2006.

[39] M. Yang, K. Kpalma, J. Ronsin, et al., “A survey of shape feature extraction tech-
niques,” Pattern recognition, pp. 43–90, 2008.

[40] Hu, “Visual-pattern recognition by moment invariants,” IRE Transactions on Infor-
mation Theory, vol. 8, no. 2, pp. 179–187, 1962.

[41] F. Mokhtarian and A. Mackworth, “A theory of multiscale, curvature-based shape
representation for planar curves,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 14, pp. 789 –805, aug 1992.

[42] D. Andújar, A. Escolà, J. Dorado, and C. Fernández-Quintanilla, “Weed discrimina-
tion using ultrasonic sensors,” Weed Research, vol. 51, no. 6, pp. 543–547, 2011.

[43] U. Weiss, P. Biber, S. Laible, K. Bohlmann, and A. Zell, “Plant species classification
using a 3D LIDAR sensor and machine learning,” in Machine Learning and Applica-
tions (ICMLA), 2010 Ninth International Conference on, pp. 339–345, Dec. 2010.

[44] T. Burks, S. Shearer, and F. Payne, “Classification of weed species using color texture
features and discriminant analysis,” Transactions of the ASAE, vol. 43, pp. 441–448,
Mar.-Apr. 2000.

[45] Weis and Gerhards, “Qualitative und quantitative Messung der Verunkrautung in
Kulturpflanzenbestaenden mittels Bildanalyse,” Bornimer Agrartechnische Berichte,
vol. Heft 60, 2007.

91

92 Bibliography

[46] R. Zwiggelaar, “A review of spectral properties of plants and their potential use for
crop/weed discrimination in row-crops,” Crop Protection, vol. 17, no. 3, pp. 189–206,
1998.

[47] C. Rother, V. Kolmogorov, and A. Blake, “”grabcut”: interactive foreground extrac-
tion using iterated graph cuts,” ACM Trans. Graph., vol. 23, pp. 309–314, Aug. 2004.

[48] S. H. Lee, H. Il Koo, and N. Ik Cho, “Image segmentation algorithms based on the
machine learning of features,” Pattern Recogn. Lett., vol. 31, pp. 2325–2336, Oct.
2010.

[49] L. Ji and J. Piper, “Fast homotopy-preserving skeletons using mathematical mor-
phology,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 14,
pp. 653–664, June 1992.

[50] S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder, P. Perona, and S. Belongie,
“Visual recognition with humans in the loop,” in Proceedings of the 11th European
conference on Computer Vision: Part IV, ECCV’10, (Berlin, Heidelberg), pp. 438–
451, Springer-Verlag, 2010.

[51] J. Costa, C. Silva, M. Antunes, and B. Ribeiro, “On using crowdsourcing and active
learning to improve classification performance,” in 11th International Conference on
Intelligent Systems Design and Applications (ISDA), pp. 469–474, November 2011.

[52] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text classifiers,”
pp. 3–12, Springer-Verlag, 1994.

[53] R. Szeliski, “Image alignment and stitching: a tutorial,” Foundation and Trends in
Computer Graphics and Vision, vol. 2, pp. 1–104, Jan. 2006.

[54] M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant
features,” Int. J. Comput. Vision, vol. 74, pp. 59–73, Aug. 2007.

[55] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography,” Communica-
tions of the ACM, vol. 24, pp. 381–395, June 1981.

[56] T. T. Herbert Bay, Andreas Ess and L. V. Gool, “Surf: Speeded up robust features,”
in Computer Vision and Image Understanding (CVIU), vol. 110, pp. 346–359, 2008.

[57] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic al-
gorithm configuration,” in International Conference on Computer Vision Theory and
Application VISSAPP’09, pp. 331–340, INSTICC Press, 2009.

[58] C. L. Wiegand, A. J. Richardson, D. E. Escobar, and A. H. Gerbermann, “Vegetation
indices in crop assessments,” Remote, vol. 35, pp. 105–119, 1991.

[59] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transac-
tions on Systems, Man, and Cybernetics, vol. 9, pp. 62–66, 1979.

[60] F. Meyer, “Color image segmentation,” in Image Processing and its Applications,
1992., International Conference on, pp. 303–306, 1992.

[61] M. Youssef, K. Asari, R. Tompkins, and J. Foytik, “Hull convexity defects features
for human activity recognition,” in Applied Imagery Pattern Recognition Workshop
(AIPR), 2010 IEEE 39th, pp. 10–7, October 2010.

[62] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in Proceedings
of the ninth international workshop on Machine learning, (San Francisco, CA, USA),
pp. 249–256, Morgan Kaufmann Publishers Inc., 1992.

92

Bibliography 93

[63] M. A. Hall, Correlation-based Feature Selection for Machine Learning. PhD thesis,
The University of Waikato, Department of Computer Science, 1999.

[64] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector
machines,” Neural Networks, IEEE Transactions on, vol. 13, no. 2, pp. 415–425, 2002.

[65] R. Polikar, L. Upda, S. Upda, and V. Honavar, “Learn++: an incremental learning
algorithm for supervised neural networks,” Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, vol. 31, no. 4, pp. 497–508, 2001.

[66] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
weka data mining software: An update,” SIGKDD Explorations, vol. 11, pp. 10–18,
Nov. 2009.

[67] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Ma-
chine Learning, vol. 6, pp. 37–66, Jan. 1991.

[68] N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,” Machine Learning,
vol. 59, pp. 161–205, May 2005.

[69] S. le Cessie and J. van Houwelingen, “Ridge estimators in logistic regression,” Applied
Statistics, vol. 41, no. 1, pp. 191–201, 1992.

[70] J. C. Platt, “Fast training of support vector machines using sequential minimal opti-
mization,” in Advances in Kernel Methods—Support Vector Learning (B. Schölkopf,
C. J. C. Burges, and A. J. Smola, eds.), pp. 185–208, Cambridge, MA, USA: MIT
Press, 1999.

[71] G. John and P. Langley, “Estimating continuous distributions in bayesian classifiers,”
in In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
pp. 338–345, Morgan Kaufmann, 1995.

[72] J. R. Quinlan, C4.5 : programs for machine learning. The Morgan Kaufmann series
in machine learning, San Mateo, Calif.: Kaufmann, 1993.

[73] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: A statistical
view of boosting,” Annals of Statistics, vol. 28, no. 2, pp. 337–407, 2000.

[74] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,” ACM
Trans. Intell. Syst. Technol., vol. 2, pp. 27:1–27:27, May 2011.

[75] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for multi-class classifi-
cation by pairwise coupling,” J. Mach. Learn. Res., vol. 5, pp. 975–1005, Dec. 2004.

[76] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop on
Open Source Software, 2009.

[77] G. Bradski, “The opencv library,” Dr. Dobb’s Journal of Software Tools, 2000.

[78] B. Kempf, “The boost.threads library,” C/C++ Users Journal, pp. 6–13, 2002.

[79] N. Chinchor, “Muc-4 evaluation metrics,” in Proceedings of the 4th conference on
Message understanding, MUC4 ’92, (Stroudsburg, PA, USA), pp. 22–29, Association
for Computational Linguistics, 1992.

[80] B. Jähne, Digital image processing : 155 exercises and CD-ROM. Berlin: Springer,
6 ed., 2005.

[81] J. Sklansky, “Finding the convex hull of a simple polygon,” Pattern Recognition Let-
ters, vol. 1, no. 2, pp. 79–83, 1982.

93

List of Figures

1.1. State-of-the-art weed regulation technique for organic carrot fields in Germany 6
1.2. Bonirob2 with delta kinematic for weed manipulation 7
1.3. Evaluation of difficulties in the weed segmentation process 8
1.4. Examples for plants encountered in our dataset 8
1.5. Overview of the system design with the shared autonomy approach 10
1.6. Autonomous weed detection process . 10

2.1. Levels of automation and four-stage model of human information processing 15
2.2. Redesign of an user interface for an USAR application [29] 18
2.3. Aeryon scout quadrocopter for image acquisition 20
2.4. Vehicles for autonomous weed control . 21
2.5. Commercial products related to autonomous weed detection 22

3.1. Different concepts for user-classifier interaction for object classification . . . 29
3.2. Weed detection process with shared autonomy classification 31
3.3. Design mockups for user interfaces . 33
3.4. Interface for user feedback in the weed detection process 34

4.1. The tile approach . 38
4.2. Relationships between the different image and contour types 39
4.3. Dataflow between the full image layer, the tile image layer and the user . . 40
4.4. Filtered feature point matches for two images 43
4.5. The transformed image and its resulting tile in the tile image stream 43
4.6. Assembly of 21 tile images without tile deskewing 44
4.7. Steps of the tile deskewing process . 44
4.8. Assembly of 21 tile images with tile deskewing 45
4.9. Limitations of the mosaicing algorithm for a non-planar environment 46
4.10. Illustration of the effects of a perspective transformation with two fixed points 46

5.1. Image subtraction for plant-soil discrimination 48
5.2. Segmentation with the watershed algorithm 50
5.3. Comparison of unoptimized and optimized preprocessed camera images . . 50
5.4. Optimizations in the contour matching algorithm 51
5.5. The contour classification process . 55
5.6. Second iteration of a grid search for SVM parameter selection 56
5.7. Weed plants, their contours and user-assigned stem locations 57

6.1. Network topology of the weed detection pipeline 60
6.2. Associations between full- and tile images 61
6.3. Overview of the threads and their tasks . 62

7.1. Example for a distance threshold of r = 25 px 64
7.2. F0.5-score, precision and recall of the stem marker mapping 64

95

96 List of Figures

7.3. Two overlapping images . 65
7.4. Evaluation results of the tile image approach 66
7.5. The first four different types of interfaces evaluated in the user study 68
7.5. The fifth interface evaluated in the user study 69
7.6. Average processing times and standard deviation of the different interfaces 70
7.7. Average user input events and standard deviation 71
7.8. F0.5-score, precision and recall of the stem detection with different interfaces 71
7.9. All interfaces are easy to understand . 73
7.10. General questions . 73
7.11. Whether user consider the interface to be stressful to use 73
7.12. Whether users felt restricted in providing feedback to the robot 74
7.13. F0.5-score, precision and recall of the weed stem detection without any users 75
7.14. Processing times for 15 images . 75

A.1. Convexity defects of a shape, di is the defect depth and li the defect length 84

96

List of Tables

5.1. Classification accuracy with standard deviation for different classifiers . . . 54

6.1. Overview of the main ROS-packages contained in the project stack 60

97

Nomenclature

AC Area of a contour

p Contour perimeter

di Convexity defect depth

li Convexity defect length

y Distance between two descriptor vectors of feature points

ũ ũ ∈ R3 is a homogeneous image position with ũi = s

(
ui
1

)
.

H Homography matrix.

mean meanxi∈X (xi) = 1
n

∑
xi∈X xi with n being the number of elements in the finite set

X ⊂ R

median medianxi∈X (xi) =

{
1
2(x(n

2
) + x(n

2
+1)) for n even

x(n+1
2

) for n odd
for a sorted sequence x(1), x(2), . . . x(n)

containing all elements of the finite set X ⊂ R

u u ∈ N2
0 is an image coordinate.

B B ⊂ N2
0 is a finite set containing all background coordinates of an image

C C ⊂ N2
0 is a finite set containing all pixel coordinates within a contour

Ddepth Ddepth ⊂ R is a finite set containing all convexity depth values of a contour

Dlength Dlength ⊂ R is a finite set containing all convexity lenght values of a contour

Mdist Mdist ⊂ R is a finite set containing the distance between the descriptors of feature
points.

I I ⊂ N2
0 is a finite set containing all pixel coordinates of an image

src src(ui) is the intensity value of an graylevel image at the coordinate ui.

std stdx∈X (x) =
√

1
n−1

∑
xi∈X

(
xi −meanxi∈X (xi)

)2
with n being the number of ele-

ments in X ⊂ R

GPS Global Positioning System

GUI Graphical User Interface

99

100 List of Tables

HRI Human Robot Interaction

NIR Near Infrared, infrared light close to the range of human-visible wavelengths

PA Precision Agriculture

Qt A cross-plattform framework mainly used for the development of graphical user
interfaces.

Remote Farmer The user interacting with the weed detection framework

ROS Robot Operating System

SVM Support Vector Machine. A classification algorithm.

UAV Unmanned Aerial Vehicle

USAR Urban Search and Rescue

VS Visual Servoing

100

	Contents
	1 Introduction
	1.1 Problem Definition
	1.2 Concept Overview
	1.2.1 Weed Detection Pipeline
	1.2.2 User Integration

	1.3 Thesis Structure
	1.4 Project Acknowledgements

	2 Background
	2.1 Shared Autonomy
	2.1.1 Interfaces for Human-robot Interaction
	2.1.2 Level and Behavior of Autonomy
	2.1.3 Nature of Information Exchange
	2.1.4 Shared Autonomy Applications

	2.2 Precision Agriculture
	2.2.1 Methods
	2.2.2 Trends

	2.3 Autonomous Weed Control
	2.3.1 State of the Art
	2.3.2 Commercial Products
	2.3.3 Weed Detection and Identification

	3 Shared Autonomy Approach
	3.1 User Integration
	3.1.1 Human Insertion Points
	3.1.2 Realization

	3.2 User-classifier Interaction
	3.2.1 Interaction Scenarios
	3.2.2 Realization

	3.3 User Interface
	3.3.1 Interface Concepts
	3.3.2 Realization

	4 Concept of Tile Images
	4.1 Advantages
	4.2 Image and Tile Contours
	4.3 Dataflow
	4.4 Tile Creation
	4.4.1 Transformation
	4.4.2 Mosaicing Algorithm
	4.4.3 Tile Deskewing
	4.4.4 Error Handling
	4.4.5 Discussion of the Tile Creation Process

	5 Object Classification and Stem Localization
	5.1 Image Preprocessing
	5.1.1 Optimization for Channel Subtraction

	5.2 Segmentation
	5.2.1 Segmentation Algorithm
	5.2.2 Evaluation of Image Subtraction and Segmentation
	5.2.3 Contour Overlapping Detection

	5.3 Extraction of Feature Values
	5.3.1 Feature Extraction
	5.3.2 Evaluation of Feature Values

	5.4 Object Classification
	5.4.1 Choice of Classes
	5.4.2 Classifier Requirements
	5.4.3 Evaluation of Classifier Types
	5.4.4 Realization

	5.5 Stem Localization

	6 Implementation
	6.1 Middleware
	6.1.1 Code Structure
	6.1.2 Advantages

	6.2 Image Processing
	6.3 Graphical User Interface
	6.4 Thread Handling

	7 Evaluation and Analysis
	7.1 Tile Approach
	7.1.1 Accuracy of Marker Placement
	7.1.2 Processing Efficiency

	7.2 Evaluation of Shared Autonomy Approaches
	7.2.1 User Study Setup
	7.2.2 Weed Detection Performance
	7.2.3 User Experience

	7.3 Impact of the Shared Autonomy Approach

	8 Summary and Future Work
	8.1 Summary
	8.2 Conclusions
	8.3 Design Recommendations and Future Work

	Appendix
	A Feature Values
	B Questionnaire for the User Study

	Bibliography
	List of Figures
	List of Tables
	Nomenclature

