
An Embedded Domain-Specific Language for

Type-Safe Server-Side Web-Scripting

Peter Thiemann
Universität Freiburg, Germany

http://www.informatik.uni-freiburg.de/~thiemann

May 12, 2003

Abstract

WASH/CGI is an embedded domain-specific language for server-side
Web-scripting. Due to its reliance on the strongly typed, purely functional
programming language Haskell as a host language, it is highly flexible and
—at the same time— it provides extensive guarantees due to its pervasive
use of type information.

WASH/CGI can be structured into a number of sublanguages address-
ing different aspects of the application. The document sublanguage
provides tools for the generation of parameterized XHTML documents
and forms. Its typing guarantees that almost all generated documents are
valid XHTML documents. The session sublanguage provides a session
abstraction that provides a transparent notion of session state and allows
the composition of documents and Web-forms to entire interactive scripts.
Both are integrated with the widget sublanguage which describes the
communication (parameter passing) between client and server. It im-
poses a simple type discipline on the parameters that guarantees that
forms posted by the client are always understood by the server. That is,
the server never asks for data not submitted by the client and the data
submitted by the client has the type requested by the server. In addi-
tion, parameters are received in their typed internal representation, not
as strings. Finally, the persistence sublanguage deals with managing
shared state on the server side as well as individual state on the client side.
It presents shared state as an abstract data type, where the script can con-
trol whether it wants to observe mutations due to concurrently executing
scripts. It guarantees that states from different interaction threads cannot
be confused.

1 Introduction

Since its inception in 1991, the Web has dramatically changed its face. What
started as a hypertext system for distributing scientific documents has changed
into a ubiquitous global network for exchanging all kinds of data. Along with

1

the content, the presentation of information in the Web has changed. Originally,
Web servers acted like file servers that produced stored documents on demand.
Nowadays, most Web pages are computed on the fly according to user profiles,
language and image preferences, or the latest news. Not only are those pages
generated dynamically, they also support all sorts of interaction, from chatting,
blogging, and browsing catalogs to buying groceries and booking entire travel
arrangements online.

Clearly, the implementation of all those interactive services requires sub-
stantial effort for developing software that runs on the Web servers and/or
associated application servers. Despite the fact that it is deceptively easy to
program dynamic Web pages (using CGI [5], for instance), it turns out that
programming reliable interactive Web services is very hard. This is due to a
number of reasons.

First, the protocol underlying all Web services is HTTP, the Hypertext
Transfer Protocol [8]. The problem with HTTP is that it only specifies a one-
shot request-response model of communication. It does not support any notion
of session or state management which is required to implement an interactive
transaction reliably. This places a burden on the programmer who has to im-
plement some notion of session management.

Second, the original “script-centric” approach to program a Web service is
derived from the one-shot model. Each request starts a “script” on the server
and this script computes the answer page and terminates. It is a non-trivial
software engineering problem to get a number of scripts to cooperate even on a
single server because their interdependencies are recorded in unchecked string
references.

Third, all communication between browser and server is in the form of name-
value pairs where the names are defined in one program (the script generating
the currently displayed form) and used in another program (the script processing
the submission of the form). This, again, gives rise to a non-trivial consistency
problem between a set of programs. And, again, this problem is caused by the
use of strings for external naming.

Fourth, the values communicated to the server are strings. For that rea-
son each submitted value must be checked and erroneous submissions must be
rejected before the actual processing can commence. To make the application
reliable, a large fraction of application code must be dedicated to validate the
input values [31].

Fifth, XHTML does not provide any means to structure forms into small
interaction components. Hence, all form-related code is monolithic in the sense
that even a form with many unrelated components (as for example on a typical
portal site) must be generated and processed by one chunk of code.

Sixth, the dynamically generated documents should be guaranteed to adhere
to the XHTML standard. This can be tricky, in particular, if documents are
generated from highly parameterized parts.

Last but not least, the management of persistent state on the server is a
difficult problem due to the nature of the browser interface that permits the use
of the back button and cloning of windows.

2

Hence, there is a growing demand for languages and tools that support this
kind of programming task. WASH/CGI addresses all problems listed above
by providing sublanguages for document generation, session management, wid-
get composition, and state management. Despite the very specific problems of
the Web programming domain, it is not necessary to design and implement a
language from scratch. Instead, it turns out that the purely functional pro-
gramming language Haskell provides the means to fulfill all requirements. The
key to make that work is the consistent use of abstract data types, type-safe
interfaces, and compositionality in the design of the sublanguages.

Specifically, WASH/CGI offers the following contributions to Web program-
ming.

1. WASH/CGI has a built-in notion of a session with transparently handled
session state.

2. The session sublanguage allows the construction of complicated interac-
tions from Web forms and other documents. Many interactions may be
specified within one program and there is no need to assure the consistency
of a set of programs.

3. Input values from a Web form are communicated via lexical binding. Since
an external name is not required, this eliminates a common source of
errors.

4. All input values are received by the script in their typed internal repre-
sentation. There is no need to explicitly convert strings to values in a
script. This conversion is performed and validated once and for all by
the WASH/CGI implementation. Errors are flagged automatically, with-
out further programming. Furthermore, there is an extension mechanism
that allows programmers to define their own datatypes, validations, and
conversions.

5. The widget sublanguage provides the means for specifying interaction frag-
ments, where an arbitrary part of a form may be specified together with
the code processing it. These interaction fragments may be composed and
reused even across applications.

6. All documents generated by a WASH/CGI script are guaranteed to be
well-formed (due to an internal tree representation) and to adhere to the
XHTML standard to a large degree.

7. WASH/CGI provides abstract data types for persistent server-side and
client-side state. Their interface is engineered to detect inconsistencies
due to concurrent updates of the state information.

Meanwhile, a number of languages provide support for Web programming in
one form or another (see the discussion in Section 10). However, the contribu-
tions 3, 4, 5, and 7 are unique to WASH/CGI.

3

Since many readers will not be familiar with the Haskell language, Section 2
provides a brief overview of its main features. The code examples in the running
text are designed to be understandable with just this introduction. After these
preliminaries, Section 3 introduces the document sublanguage. It first discusses
the basic interface and then enriches the interface to guarantee quasi-validity of
generated documents. Section 4 first reviews the requirements on implementing
sessions in Web applications and discusses some implementation schemes. Then
it presents the basic WASH/CGI operators for sessions. Section 5 describes the
widget sublanguage, which provides the building blocks for constructing typed
interactive services. Various notions of state make sense for Web applications.
Besides the session state that is implicit part of every WASH/CGI application,
Section 6 introduces the persistence sublanguage which supports two notions of
persistent state, client-side and server-side state.

Section 7 puts all of the above to work and develops a complete example.
All implementation related discussion is gathered in Section 8. This section

first explains the implementation ideas in general terms and concentrates the
discussion of host language specifics to one subsection. Full appreciation of
this subsection requires deeper knowledge of Haskell as can be obtained from
Section 2. We include it to demonstrate the feasibility of the whole scheme and
the simplicity and elegance of its implementation.

The rest of the paper performs a detailed assessment of the design decisions
taken (Section 9), discusses related work (Section 10), and finally concludes.

2 Preliminaries

This section is designed to convey just enough background on the Haskell pro-
gramming language so that readers can understand the examples in the text
and that they can code simple examples by themselves. The Haskell language
report [15] provides a complete reference.

2.1 Types and their values

Haskell is a strongly typed language with parametric polymorphism, overload-
ing, and type inference. For each expression, the compiler computes a most
general type and rejects programs that might cause type conflicts at runtime.

The Haskell types used in this paper are

• Int, fixed-length machine integers with constants written in the usual way
and equipped with the usual infix operations,

• Bool, truth values with elements True and False,

• Char, Unicode characters with constants written ’x’, ’y’, ’z’, . . . ,

• String, written in the usual string notation "abc", and

• (), the unit type with the single element ().

4

Haskell provides type constructors to build new types from existing ones.
There are a number of standard constructors available. If t, t1, and t2 are
types, then so are

• [t], the type of lists with elements of type t, a list is written as either [e1,
e2, . . .] or e1 : e2 : . . .: [], where : is the infix list construction
operator and [] is the empty list;

• Maybe t, the type of optional values of type t, where each element is either
Nothing or Just e for some e of type t;

• t1 -> t2 -> . . . -> t, the type of functions that map values of type t1,
t2, . . . to a result of type t;

• IO t, the type of I/O actions that yield results of type t.

Further types and type constructors may be defined by the programmer.
Types can be polymorphic. They may contain type variables which can be

substituted for by any type. For example, the function length that determines
the length of a list has type [a] -> Int. In that type, a is a type variable
indicating that length yields a result no matter what type is substituted for a,
i.e., no matter what the type of the elements of the list is.

2.2 Syntax of declarations and expressions

The syntax

f :: t

specifies a type signature for f , as in a C prototype or a Java interface. It
declares that f has type t. This declaration is optional as the compiler can
usually compute t from the definition of f . A definition for f has the form

f = e

or —if f is a function with formal parameters x1, x2, . . .—

f x1 x2 . . . = e

In either case, e is an expression formed from

• variables x1, x2, . . . ;

• constants;

• infix operators applied to expressions, e.g., e1 + e2;

• functions applied to expressions, e.g., f e1 e2 . . .;

• let x1 = e1 ...in e, definition of values x1, . . . for use in e (and e1, . . .);

• conditional expressions if e then e1 else e2;

5

• case expressions, which are used to decompose, e.g., lists

length xs = case xs of
[] -> 0
x : xs -> 1 + length xs

and optional values

fromMaybe x opt =
case opt of
Nothing -> x -- returns x if opt == Nothing
Just y -> y -- returns y if opt == Just y

A unique syntactic feature of Haskell is the offside rule. It specifies scope by
indentation and is used with let, do, case, and other expressions. Without
specifying it formally, the idea is to vertically line up items in the same scope.
For example, the start of the second alternative in the above case expressions
is indicated by indenting it to just below the respective first alternative.

2.3 Type classes and overloading

Haskell includes a notion of parametric overloading by restricting type variables
to range over a proper subset of all types. These sets are called type classes.
They are specified inductively and are associated to a set of overloaded member
functions. For example, in

(==) :: (Eq a) => a -> a -> Bool

the type variable a is restricted by prepending the constraint Eq a. This dec-
laration specifies the type of the (infix) equality function ==. The definition
of == for a particular type t (for the type variable a) is provided via a special
declaration syntax, the instance declaration. The same declaration makes t a
member of Eq.

The type class Eq is part of the Haskell standard. Further standard classes
are Read, for types a that have a function read :: String -> a, and Show,
for types a that have a function show :: a -> String. It means that each
type a in class Read has a method read to convert a string into a value of type
a. Similarly, the show method converts a value into a string.

2.4 IO

I/O operations and other side effects cannot be performed at arbitrary places
in a program because Haskell is a pure functional language where evaluation
can be performed in arbitrary order. To deal with I/O, there is an abstract
datatype IO a for I/O actions that yield values of type a. For example, the
action that reads a character from standard input is getChar and its type is IO
Char. There are operators to create trivial actions (return x is an action that

6

does not perform I/O but just returns the value x) and to combine actions by
putting them in sequence (action >>= nextAction is a combined action that
first performs action and then passes the returned value to function nextAction
that computes the following action depending on the returned value). I/O
actions are passive (like a data structure) until they are processed at the toplevel
of the program. At that point, they are executed in their specified sequence.

Another way of composing actions is the do notation:

do x <- action1
y <- action2
. . .
finalAction

This expression builds an action that first performs action1 and binds its result
to x. Next it performs action2 (which may depend on x) and binds its result to
y. And so on until finalAction, which may depend on all previously computed
results. The binding part x <- may also be omitted. In this case, the result is
ignored.

The operations return and >>= as well as the do notation may be used for
other kinds of actions, too. In fact, all these operations are overloaded using
the standard type class Monad.

3 The Document Sublanguage

The document sublanguage supports the creation of XHTML documents [40].
As such, it has to provide the means to create XHTML document nodes, that is,
element, attribute, text, and comment nodes. Our approach builds on our pre-
vious work [35] where each kind of node has its own typed construction function.
For ease of use, the name of the construction function for an HTML element is
the same as its element name. For better integration with the host language,
we are not supporting XHTML syntax1. Instead, WASH/CGI provides, for
each element tag, an element constructor function that takes as an argument a
sequence of child elements, text nodes, and attributes (arbitrarily mixed) and
returns a singleton sequence that contains just the newly constructed element.
Similarly, the function attr takes an attribute name name and its value value

(both strings) and constructs a singleton sequence with the attribute assignment
attr =value 2. Also, the function text constructs singleton sequence with a text
node from a string.

The notion of a sequence of document nodes is a unique feature of the doc-
ument sublanguage. Besides the element constructors, it provides operators for
constructing empty sequences and for concatenating sequences.

1A preprocessor would complicate the use of WASH/CGI.
2Unfortunately, the commonly used symbol @ is reserved in Haskell. However, it is possible

to use the notation (@@ name) value with mandatory parentheses.

7

3.1 Composing Documents

For reasons explained below in Sec. 5, sequences are constructed using actions
as explained for I/O in Sec. 2.4. Hence, the operators for composing actions
also concatenate sequences of document nodes: The do notation as well as the
binary infix operators ##, >>, and >>=3. The operator empty constructs the
empty sequence of document nodes. For example, the code fragment

do p (text "This is my first CGI program!")
p (do text "My hobbies are"

ul (do li (text "swimming")
li (text "music")
li (text "skiing")))

creates a document with two paragraphs. The first one contains the text node
This is my first CGI program! and the second one contains some text and an
embedded itemized list. The XHTML output generated from this code looks as
follows (pretty-printed for readability):

<p>This is my first CGI program!</p>
<p>My hobbies are

swimming
music
skiing

</p>

A parameterized document is a Haskell function that constructs a sequence
of document nodes. For example, WASH/CGI provides a standard document
wrapper, standardPage, which takes two arguments, a title string ttl and a
sequence of document nodes nodes, and returns a proper XHTML page. It is
implemented as follows:

standardPage ttl nodes =
html (do head (title (text ttl))

body (h1 (text ttl) >> nodes))

This small example already demonstrates that our notation for documents easily
scales to arbitrary parameterization. For this kind of document template to work
satisfactorily, it is crucial that the nodes parameter can construct a sequence of
document nodes, not just a single node. With WASH/CGI, nodes may provide
attributes for the enclosing body element as well as an arbitrary number of
element and text nodes which are to become children of body.

3The reason for having multiple concatenation operators will become clear later in Sec. 5.

8

3.2 Valid Documents

A frequently recurring problem with generated XHTML documents is their va-
lidity4. A valid document is well-formed and adheres to its DTD, in this case
the XHTML DTD [40]. Well-formedness just means that opening and closing
tags are properly nested. Beyond that, the DTD places restrictions on which
child nodes (attributes, text, other elements) may be used with which elements.
The child elements and text are also subject to ordering constraints imposed by
regular expressions. While it is easy to check the validity of a static document
using one of the existing checkers (e.g., [37]), it is not easy to guarantee that a
program generating XHTML will only produce valid documents.

Since the actions of the document sublanguage construct an internal tree
representation of the document without exposing its string rendition to the
programmer, well-formedness of the generated documents comes for free. To
guarantee validity, it is possible to impose all constraints defined in a DTD, by
exploiting Haskell’s type class-based overloading mechanism [35]. In practice, it
turns out to be too restrictive to program fully DTD-compliant document gen-
erators in that way. For that reason, the document sublanguage approximates
validity with quasi validity. Quasi validity enforces the parent-child restrictions
from the DTD, but it ignores the ordering constraints. See Sec. 9 for further
discussion.

WASH/CGI enforces quasi validity through the types of the construction
functions for document nodes:

text :: (Monad m, AdmitChildCDATA e)
=> String -> WithHTML e m ()

ul :: (Monad m, AdmitChildUL e)
=> WithHTML UL m a -> WithHTML e m a

The type parameter e of the WithHTML data type determines the context (i.e.,
the name of the parent element) in which a particular node constructor is used.
To apply the text node constructor, the context must admit a child of type
CDATA as indicated by AdmitChildCDATA e. Similarly, the ul function can only
be used in a context that admits a ul child element. In addition, it opens a new
context WithHTML UL m a, in which all constructors that produce admissible
children for UL may be used. There is an analogous mechanism for checking
attribute occurrences.

WASH provides, for each kind of document node, a type and a type class. For
example, the type CDATA models a text node and the type class AdmitChildCDATA
models the set of nodes that take a text node as a child, the type UL models an
element of name ul and the type class AdmitChildUL models the set of nodes
that take a ul element as a child, and so on. The values of these types are not
interesting, the types are only present to make information about the document
available to Haskell’s type checker.

The use of types for document nodes scales nicely to parameterized docu-
ments. For example, the standardPage function from Section 3.1 has type

4Or rather lack thereof.

9

standardPage :: (Monad m, AdmitChildHTML context) =>
String -> WithHTML BODY m a -> WithHTML context m a

standardPage ttl nodes =
html (do head (title (text ttl))

body (h1 (text ttl) >> nodes))

The type says that the ttl argument must be a string, that nodes must be a
sequence of nodes admissible as children to a body element, and that the result
must be used in a context that admits an html element. In this case, the type
accurately reflects the requirements imposed by the XHTML DTD.

4 The Session Sublanguage

To proceed from the simple one-shot request-response model dictated by HTTP
to a more session-oriented programming model, we first discuss what comprises
a session for an interactive Web service. Once we have laid out the require-
ments and the implementation options for sessions, we explain the design of
WASH/CGI’s session sublanguage.

4.1 Sessions on the Web

For Web-scripting purposes, a session is an alternating sequence of Web-forms
and form submissions starting with a form submission:

POST url0; FORM f1; POST url1; FORM f2; POST url2; ...

Each POST stands for an HTTP request sent by a client and each FORM stands for
the corresponding response. Each urli is a URL [2] that addresses a particular
resource on a server. For simplicity, we consider data that accompanies POST
requests part of the urli. Two conditions make such a sequence a session:

1. Each FORM response of the server is determined by the prefix of the se-
quence up to the response.

2. For each request POST urli, the urli is drawn from a set of URLs deter-
mined by FORM fi, with url0 drawn from a set of external entry points.

The concept of a session implies the existence of a session state that is
shared between the client and the server. Unfortunately, this is at odds with
the underlying transport protocol of the Web, HTTP [8]. Due to its stateless
nature, it is simple to implement, but it leaves the burden of implementing
sessions to the application programmer. To understand the issues involved in
this, we examine the computation of the FORM response from its request more
closely.

Whenever the Web server receives a request for a particular kind of URL5,
it does not simply deliver the contents of the file addressed by the URL, but

5For example, referring to a file in a directory which is script-enabled or a file with suffix
.cgi, depending on the configuration.

10

rather executes the file as an external program and passes the parameters of
the request to that external program. A standard convention for passing these
parameters is the CGI standard [5], hence the name “CGI scripts” for these
programs. The CGI script computes the response FORM, returns it to the Web
server, and terminates. Usually, the response is an XHTML document that
contains XHTML form elements, so that the interaction can continue from that
response.

To implement sessions under these conditions requires a CGI script to de-
termine the current session state before it can do anything else6. The usual
technique to recover the session state is to store a token in each FORM so that
the token is passed along with each POST url operation continuing the session.
Such a token may be implemented in a number of well-known ways.

1. With URL rewriting, the token gets incorporated directly in the URL,
either as a path component or via the parameter mechanism.

2. Using cookies [19], the token gets stored on the client side and it is passed
along with each POST operation for a qualifying URL.

3. Using hidden input fields [40], the token gets stored in the response doc-
ument itself (without being displayed) and is passed to the server along
with other parameters entered by the user.

In each case, the application maintains a mapping from tokens to current session
states, to recover the session state from the token. Quite often, the token only
identifies the session but not the position inside the session.

Unfortunately, the token-based approach leads to a number of problems
which are due to the way that users can navigate the Web [12].

1. Users can hit the back button to go back in the history of the browser and
resume the interaction from some earlier point.

2. Users can clone the session at any point and continue with each clone in
different ways.

3. Users can store the current form in a file and may resume the interaction
several months later. (Bookmarking)

Items 1 and 2 indicate that using a session token and one associated snapshot
of the session state in the server is a bad idea. Using the back button will
bring the server’s state out of sync with what the user is actually looking at.
Cloning is even worse because it mixes up the states from two or more interaction
sequences.

Clearly, a new token must be assigned for each interaction step (i.e., for each
generated form). However, this creates another problem because the server will
have to store very many token-state associations. As indicated in item 3, there

6The compile-time part of the session state may be provided via the name of the script,
but remembering run-time values requires other techniques.

11

is no way for the server to figure out which of these tokens are still required and
which can be discarded. Quite often, timeouts are used to address this problem,
but they do not really solve the problem.

Hence, we are pursuing another option that relies on the observation that
hidden fields may store large chunks of data whereas URLs and cookies are
restricted in size. The idea is not to store any state information on the server
but rather store the session information in the token itself. The server then puts
the token into a hidden field of the response page returned to the client.

That way, the server need not maintain a token-state association table
(hence, there are no problems with discarding entries of such a table), restor-
ing the state amounts to reading the token, and the state can be regenerated
at each interaction step. In consequence, our approach works with arbitrary
combinations of going back, cloning, and bookmarking.

Programmers often specialize the compile-time part of the session state by
implementing each interaction step in a different CGI script. Keeping this set
of programs in sync requires

• that each script run for the request POST urli only generates forms FORM
fi+1 that are understood by urli+1 and

• that all scripts agree on the session state that is passed along and the way
it is represented.

This is a non-trivial software engineering problem and it is the cause of annoying
errors in many existing Web applications [11]. These problems are not tied to
CGI scripts but recur for other scripting techniques like Servlets and Java Server
Pages.

4.2 Sessions in WASH/CGI

The WASH/CGI approach addresses these problems by

• enabling the programmer to implement the entire application in one pro-
gram and

• providing a transparent notion of session state to the programmer.

In fact, the programmer’s perspective on the Web application is similar to writ-
ing a GUI program. The difference is that the GUI is specified in XHTML and
that the structure of the interaction is limited due to the underlying request-
response protocol.

Sessions are constructed from documents by using two operators.

ask :: WithHTML XHTML_DOCUMENT CGI a -> CGI ()
tell :: (CGIOutput a) => a -> CGI ()

Some explanation of the types involved is in order before we can explain ask
and tell themselves.

12

A value of type CGI a is a CGI action that computes a result of type a.
CGI actions are the basic building blocks for sessions, they comprise the session
sublanguage. CGI actions can be composed (i.e., put in sequence) using the
operator >>= and the do notation.

A value of type WithHTML context CGI a is an HTML action that creates
a sequence of document nodes. In fact, the XHTML construction operations
like p, ul, and li introduced in Section 3 all have types like

p :: (Monad m, AdmitChildP context) =>
WithHTML P m a -> WithHTML context m a

The context XHTML DOCUMENT in the type of ask indicates that the context
expects a single html element to construct an XHTML document.

The (Monad m) constraint indicates that m a is the type of an action re-
turning a result of type a. In the type m a, the type variable m ranges over type
operators (constructors) whereas a ranges over types, as usual. That is, the
implementation of p will work for all kinds of actions that we substitute for m.
In many cases, m will be CGI, but sometimes other kinds of actions, like IO, are
used.

Coming back to ask and tell, ask is a function that takes an HTML action
and yields a CGI action. Conceptually, this CGI action constructs the document
and then presents it to the browser.

tell is an overloaded function (as indicated by the (CGIOutput a) => con-
straint of the type) that maps any value that can by converted to an HTTP
response to a CGI action. The action delivers this response to the browser. For
example, the response type a can be an HTML Element, a String (which is
shown as text/plain document), a FileReference (which specifies a content
type and a file name to be sent to the browser), a StatusCode (as defined in
the HTTP standard [8]), or a Location (which specifies a redirection URL).

The ask operation is different from tell in that the XHTML document
created by its HTML action argument may contain CGI actions that lead to
further interaction steps. In contrast, a response returned by tell terminates
an interaction sequence.

The typical script is specified as a single CGI action. Since Haskell only
accepts an IO action as a main program, there is a function run that maps a
CGI action to an IO action. Conversely, there is a function io that embeds an
IO action into a CGI action.

run :: CGI () -> IO ()
io :: (Read a, Show a) => IO a -> CGI a

The constraint (Read a, Show a) => in the type of io restricts the values that
may be returned from IO actions embedded in CGI actions7.

At this point, we can write our first script.

main =
7This is further discussed in Sec. 8.

13

run (ask (standardPage "Hello World!" myinfo))

myinfo =
do p (text "This is my first CGI program!")

p (do text "My hobbies are"
ul (do li (text "swimming")

li (text "music")
li (text "skiing")))

The argument of run is a CGI action that displays the result of standardPage
applied to the title "Hello World!" and the document myinfo. Since the latter
document does not specify further CGI actions, the interaction is finished after
the document is returned.

5 The Widget Sublanguage

In this section, we introduce the means to create interactive applications. In the
first step, we attach simple continuation actions to a Web form. In the further
steps, we introduce input widgets and explain how their values are passed to
callback actions.

5.1 Continuation Buttons

Many operations of the widget sublanguages are wrappers for creating input
elements with suitable attributes. The declaration

type HTMLField context a =
WithHTML INPUT CGI () -> WithHTML context CGI a

defines a type synonym HTMLField that captures the common type for these
wrapper operations.

A value of type HTMLField context a expects a sequence of attributes for
the INPUT field (of type WithHTML INPUT CGI ()) and returns a one-element
sequence with the input element8.

Creating a button and attaching a CGI action to it relies on the operation

submit0 :: (AdmitChildINPUT context) =>
CGI () -> HTMLField context ()

If action :: CGI () is a CGI action, then submit0 action constructs an
input element with attribute type="submit". In the browser, this element is
rendered as a button and clicking the button submits the form to the server.
This submission will trigger the action on the server. According to the XHTML
specification, an input element is only legal inside of a form element. The latter
should be created using the makeForm operation:

8Technically, the context type should be restricted to contexts admitting an input element,
but this restriction is not expressible with a type synonym.

14

Figure 1: Rendering of ”Hello World!”

makeForm :: (AdmitChildFORM context) =>
WithHTML FORM CGI a -> WithHTML context CGI ()

This operation is not called form because it does more than just creating a form
element: It also fills in the attributes action and method and stores the current
session token as a hidden field in the form9.

To extend the example, we might display the hobbies on a different page.
See Fig. 1 for a rendering of the code below.

main =
run page1

page1 =
ask (standardPage "Hello World!" (makeForm myinfo1))

myinfo1 =
do p (text "This is my second CGI program!")

submit0 page2 (attr "value" "Click for my hobbies")

page2 =
ask (standardPage "My hobbies are" (makeForm myinfo2))

myinfo2 =
ul (do li (text "swimming")

li (text "music")
li (text "skiing"))

The main novelty is in the line

submit0 page2 (attr "value" "Click for my hobbies")

It specifies a submission button which executes the CGI action page2 when
clicked. The button displays the text specified by the value attribute.

The above combination of ask, standardPage, and makeForm is so common
that it has become part of the standard library:

9See Sec. 8.1 for more information what is actually stored in this field.

15

standardQuery :: String -> WithHTML BODY CGI a -> CGI ()
standardQuery ttl nodes =
ask (standardPage ttl (makeForm nodes))

5.2 Callbacks With Parameters

Input widgets are HTML actions that actually compute something. In addition
to creating a suitable XHTML element with the correct set of attributes, a
widget constructor also returns an input handle. It is via the input handle that
the code can later extract the value entered into the widget. For example, the
widget constructor

textInputField :: (AdmitChildINPUT context) =>
HTMLField context (InputField String INVALID)

creates a textual input field and returns its handle of type InputField String
INVALID. Upon creation, this handle is invalid (as indicated by the INVALID
in the type) because it has not received a value, yet. In contrast to other
approaches, the programmer is never required to name the input widget, thus
eliminating a common source of errors10. Instead, the handle is bound to a
variable and passed along to those callback actions that wish to inspect the
value.

Passing an input handle to a callback action requires the use of the submit1
operation. Its type is

submit1 :: (AdmitChildINPUT context) =>
InputField a INVALID
-> (InputField a VALID -> CGI ())
-> HTMLField context ()

That is, in submit1 handle callback, submit1 takes an invalid input handle,
handle, gets the value for the handle and turns it internally into a valid input
handle (indicated by VALID in the type of callback), and then passes the latter
as a parameter to callback. The result is again an HTMLField, which takes
attributes for the button and constructs its XHTML representation, an input
with attribute type="submit". Inside the callback action, the operation value
extracts the value from a valid handle:

value :: InputField a VALID -> a

To illustrate parameter passing, we extend the example further by asking for
the Web surfer’s name before showing the hobbies. Figure 2 shows the browser’s
rendition of the code below.

main =
run page1

10In those cases where the name of the input field is externally mandated (as with ECML
[7]), the name attribute can be used explicitly.

16

Figure 2: Rendering of parameterized ”Hello World!”

page1 =
standardQuery "Hello World!" $
do p (text "This is my third CGI program!")

inf <- p (do text "Enter your name "
textInputField (attr "size" "10"))

submit1 inf page2 (attr "value" "Click for my hobbies")

page2 inf =
standardQuery "My hobbies are" $
do p (text "Hi, " ## text (value inf) ## text "!")

ul (do li (text "swimming")
li (text "music")
li (text "skiing"))

The $ infix operator used in the above code stands for function application. Us-
ing the infix operator (instead of just juxtaposition) avoids the need for putting
the two do blocks in parentheses.

At this point, we also have to explain how the values computed by HTML
actions are propagated. The notation

do ...aaa...
x <- htmlAction
...bbb...
finalAction

extracts the value computed by htmlAction and binds it to x. The variable x is
visible inside the remainder of the action, i.e., in ...bbb... and finalAction.
The result computed by the entire do expression is the result of finalAction.

Each XHTML constructor (e.g., p, ul, li, . . .) returns the value computed
by its argument action, as evidenced by their type, e.g.

p :: (AdmitChildP context) =>
WithHTML P CGI a -> WithHTML context CGI a

17

The operators ## and >> differ in the way that they propagate the results of
their operands. They can be easily explained in terms of the do notation:

act1 ## act2 =
do x <- act1 -- result is returned

act2 -- result is ignored
return x

act1 >> act2 =
do act1 -- result is ignored

act2 -- result is returned

Hence, in

do p (text "This is my third CGI program!")
inf <- p (do text "Enter your name "

textInputField (attr "size" "10"))
submit1 inf page2 (attr "value" "Click for my hobbies")

the result of the do block is the result of textInputField ..., that is, the input
handle for the field. This handle is then passed through by the p constructor so
that the variable inf is bound to the input handle.

5.3 Typed Input Fields

The textInputField of the previous subsection was only good for input of
strings. However, there is a more general operation

inputField :: (AdmitChildINPUT context, Reason a, Read a) =>
HTMLField context (InputField a INVALID)

that creates a typed input field for any type a, provided this type belongs to
type classes Reason and Read. The constraint Reason a implies that the type
a has an operation reason :: a -> String which provides an explanation of
the input syntax for a value of type a. The constraint Read a implies that type
a has an operation read :: String -> a which converts a string into a value
of type a. The latter class Read is a standard type class of Haskell [15]. Of
course, the explanation generated by reason should match the syntax parsed
by read.

Clearly, there is no guarantee that a Web surfer enters a parsable value into
a type field. For that reason, the submit1 function validates each handle before
it passes it on to the callback action. A handle is validated only if its input
is parsable to a value of the desired type. Hence, a valid handle guarantees
the presence of a value. If submit1 cannot validate a handle passed to it, it
redisplays the last form with the erroneous input marked.

As an example, consider the code below which reads an integer an displays
it again.

18

Figure 3: Capturing errors with typed input fields

main =
run page1

page1 =
standardQuery "Numeric Input" $
do inf <- p (do text "Enter a number "

inputField (attr "size" "10"))
submit inf page2 (attr "value" "Process")

page2 inf =
let n :: Int

n = value inf
in
standardQuery "Your Number" $
p (text "Your number was " ## text (show n) ## text "!")

In page1 the essential change is the use of inputField instead of textInputField.
In page2 the n :: Int in the let declares that n is an integer and then ex-
tracts the integer value from the input handle inf. The function show converts
(in this example) an integer to a string.

Without any further programming, the program behaves as shown in Fig. 3.
The left-hand snapshot shows the browser window after typing in an incorrect
input, but before clicking the “Process” button. The right-hand snapshot shows
the window after clicking the button. The erroneous input field is marked with
a question mark and its contents is selected.

With this approach it is easy to create an input field with customized syntax.
It amounts to defining a new type and providing a parser and a reason function
for it. Doing so requires some skill in Haskell programming. The following ex-
ample defines a type NonEmpty for non-empty strings and then provides a parser
(instance Read NonEmpty) and a description of the input syntax (instance
Reason NonEmpty).

newtype NonEmpty = NonEmpty { unNonEmpty :: String }
-- ‘NonEmpty str´ constructs a NonEmpty value from a string

19

-- ‘unNonEmpty n´ extracts the string from a NonEmpty value

instance Read NonEmpty where
readsPrec i =
do str <- many1 anyChar -- regular expression: .+

return (NonEmpty str) -- construct value of type NonEmpty

instance Reason NonEmpty where
reason _ = "non empty string"

To avoid an extended discussion of Haskell, we will not comment on it further
at this point. However, the code snippet should make it clear that defining a
new input field type is simple programming task.

Using the new NonEmpty type is as simple as using the numeric input in the
example above:

page2 inf =
let nonemptystring = unNonEmpty (value inf) in
-- nonemptystring is guaranteed to be a non-empty string

5.4 Non-textual Input Fields

The remaining input widgets (buttons, check boxes, selection boxes, images, etc)
are all be expressed in terms of typed input handles in WASH/CGI. For example,
check boxes yield handles of type InputField Bool INVALID, buttons can be
made to return any type a provided values of type a have a string representation,
selection boxes can return any value whatsoever, and images yield a handle
of type InputField (Int, Int) INVALID, i.e., they return a pair of integers.
Details about them may be found in the WASH/CGI documentation [36].

5.5 Combining Input Fields

Up to now, the examples have only dealt with callback actions that take a
single handle as a parameter. To pass multiple handles to a callback requires a
more general type than the one given for submit1. The function submit is this
upwards-compatible generalization for submit1 and its type is

submit :: (AdmitChildINPUT context, InputHandle h) =>
h INVALID -> (h VALID -> CGI ()) -> HTMLField context ()

The type h INVALID generalizes the former InputField a INVALID. The type
class InputHandle restricts the possible instantiations of h11. Creating a pair
of handles requires the use of a special pairing data constructor,

F2 :: a x -> b x -> F2 a b x
11Note that h ranges over type constructors and that the type class InputHandle specifies

a set of type constructors, not plain types. This is a standard feature of Haskell [15].

20

Furthermore, there is a rule (the instance declaration for class InputHandle and
type F2) that states that F2 h1 h2 belongs to InputHandle if both h1 and h2
are InputHandles, too. For convenience, WASH/CGI defines types similar to
F2 for other tupling operators and for lists.

As an example, the following code may be used to query for a name and
a password. The check function enforces that both name and password fields
are non-empty. The function passwordInputField works just like inputField
but generates an input element with type="password" so that the characters
entered are not echoed.

login =
standardQuery "Login" $ table $
do nameF <- tr (td (text "Name ") >>

td (inputField (attr "size" "8")))
passF <- tr (td (text "Password ") >>

td (passwordInputField (attr "size" "8")))
tr (td (submit (F2 nameF passF) check (attr "value" "LOGIN"))))

check (F2 nameF passF) =
let name = unNonEmpty (value nameF)

pass = unNonEmpty (value passF)
in
standardQuery "Authenticate" ...

5.6 Virtual Input Fields

In some cases, it is useful to have input fields that do not have a screen rendition.
An example for such a field arises with the use of the standard radio input type.
An input element of type radio gives rise to a radio button. In HTML, all radio
buttons of the same name form an implicit radio group, that is, the browser
makes sure that at most one of the radio buttons of this group is pressed.

WASH/CGI makes this concept explicit by providing a function

radioGroup :: Read a =>
WithHTML context CGI (RadioGroup a INVALID)

Its use fixes the value returned by a radio button that belongs to this group to
have type a. Moreover, the returned handle of type RadioGroup a INVALID is
used to attach buttons to the group:

radioButton :: (AdmitChildINPUT context, Show a) =>
RadioGroup a INVALID -> a -> HTMLField context ()

This design makes sure that

• radio buttons are not grouped by accident, they always have to be created
inside a specific radio group;

• all buttons of a group return values of the same type; and

21

Figure 4: Rendition of the payment form

• error processing can be done once and for all.

The next subsection has an example of using radio buttons.

5.7 Decision Trees

The submit function explained above requires that each callback validates one
fixed subset of the input fields present in the form. For some forms, this require-
ment is too restrictive. For example, consider a typical form fragment from the
payment processing part of a shopping application rendered in Fig. 4:

data ModeOfPayment = PayCredit | PayTransfer
-- declares an enumerated data type ‘ModeOfPayment´
-- with two symbolic values ‘PayCredit´ and ‘PayTransfer´

do rg <- radioGroup empty
tr (do td (radioButton rg PayCredit empty)

td (text "Pay by Credit Card"))
ccnrF <- tr ((td empty >> td (inputField (attr "size" "16")))

td (text "Card No"))
ccexF <- tr ((td empty >> td (inputField (attr "size" "5")))

td (text "Expires"))
tr (do td (radioButton rg PayTransfer empty)

td (text "Pay by Bank Transfer"))
acctF <- tr ((td empty >> td (inputField (attr "size" "10")))

td (text "Acct No"))
routF <- tr ((td empty >> td (inputField (attr "size" "8")))

td (text "Routing"))
tr (td (submit (F5 rg ccnrF ccexF acctF routF) payCGI empty))

payCGI (F5 rg ccnrF ccexF acctF routF) =
let ccnr = unCreditCardNumber (value ccnrF)

22

expMonth = cceMonth (value ccexF)
acct = unAllDigits (value acctF)
rout = unAllDigits (value routF)

in
standardQuery "Payment Confirmation"
(text "Thanks for shopping at TinyShop.Com!")

It contains a group of two radio buttons and four textual input fields. The
variable rg is the handle to the value representing the radio buttons’ selection
and the variables ending in F are handles to the values of the other input fields.
The last line submits the handles of the two radio buttons, rg, the credit card
number, ccnrF, its expiration date, ccexF, the account number, acctF, and its
routing number, routF, to the callback payCGI. The form is fully typed and set
up to reject unreasonable inputs without any further programming due to the
way the handles are accessed in payCGI. For example, the credit card number
and the account number are both submitted to the Luhn check12, the expiration
date must have the form as printed on the card, and so on. Before submitting the
form, a customer would select one mode of payment by clicking one of the radio
buttons and then fill in the two fields associated to it. However, the validation
built into submit tries to validate all five input handles, thus insisting that both
credit card data and the full account information are present!

To handle such cases requires introducing an additional data structure, a
decision tree. A decision tree is either a leaf that contains an unconditional
CGI action or it is a node that contains a group of input handles (of type h
INVALID) and a function that maps their validated versions to the next decision
tree. Hence, decision trees have two constructor functions:

dtleaf :: CGI () -> DTree x y
dtnode :: InputHandle h =>

h INVALID -> (h VALID -> DTree x y) -> DTree x y

The first, dtleaf, creates a trivial decision tree from a CGI action. The dtnode
constructor takes an invalid input handle, validates it, and (upon successful
validation) passes it to the second argument that builds the rest of the decision
tree. The function submitx transforms a decision tree into a submit button that
can be put into a Web form:

submitx :: (AdmitChildINPUT context) =>
DTree context y -> HTMLField context y ()

Submitting through the trivial decision tree, submitx (dtleaf action), is
equivalent to submit0 action and submitting through a one-stage decision tree,
submitx (dtnode handles (dtleaf . callback)), is equivalent to submit
handles callback.13

12A standard checksum algorithm for credit card numbers and bank account numbers, see
for example [23].

13The infix dot operation, ., stands for function composition.

23

dtnode rg next

dtleaf (payCredit ...)

dtnode (F2 acctF routF)

dtleaf (payTransfer ...)

rg == PayCredit rg == PayTransfer

dtnode (F2 ccnrF ccexF)

Figure 5: Decision tree for the payment example

The decision tree required in the example first dispatches on the payment
mode extracted from the handle rg for the radio buttons and then validates
either the credit card fields or the account information. The leaves of the
tree just invoke the respective code for processing the payment, payCredit
or payTransfer, where the computed price is assumed to be present in variable
price. Figure 5 shows the tree constructed in the code below.

let paymentOptions = dtnode rg next
next paymodeF =
case value paymodeF of
PayCredit -> dtnode (F2 ccnrF ccexF)

(dtleaf . payCredit price)
PayTransfer -> dtnode (F2 acctF routF)

(dtleaf . payTransfer price)
in tr (td (submitx paymentOptions empty))

payCredit price (F2 ccnrF ccexF) =
let ccnr = unCreditCardNumber (value ccnrF)

expMonth = cceMonth (value ccexF)
in standardQuery "Confirm Credit Payment" $

p $ text "Thanks for shopping with us!"

The payTransfer function is similar.

5.8 Summary

The examples above demonstrate that the widget sublanguage provides the
means of specifying and combining input elements in almost arbitrary ways.
Fragments of interactions can be specified and implemented separately, and
later be combined on one Web page. Even in this combination, all interactions
are still fully type safe and every submitted data is checked for validity without
programmer intervention.

Beyond the facilities discussed, it is also possible to compose new widgets

24

from existing ones. However, the techniques required to do so are out of the
scope of this paper.

6 The Persistence Sublanguage

WASH/CGI provides two abstractions for persistent state beyond the builtin
notion of session state: server state and client state. The main difference be-
tween these two is their scope. While the server state is globally visible to all
programs running on the server, the client state is only visible to scripts started
from one particular client. Hence, the global state acts as a database with which
scripts may interact while the client state keeps information particular to one
client (i.e., cookies [19]).

Compared to the usual string-based interfaces to server and client state, the
WASH/CGI interface is fully type-safe, even across separate programs. That is,
any attempt to store data of one type and retrieve it as a value of another type
will fail.

6.1 Server-side State

Server-side state is defined as a parameterized, abstract data type T a with the
following signature.

init :: (Types a, Read a, Show a) => String -> a -> CGI (T a)
get :: (Types a, Read a) => T a -> CGI a
set :: (Types a, Read a, Show a) => T a -> a -> CGI (Maybe (T a))
add :: (Types a, Read a, Show a) => T [a] -> a -> CGI (T [a])
current :: (Types a, Read a) => T a -> CGI (Maybe (T a))

A value of type T a is a handle to a persistent entity (i.e., a value in the server-
side state) of type a. These handles are the only means of accessing the state
from the script. The idea is that each handle uniquely identifies a particular
value of the persistent entity. Hence, getting a handle may be considered as
getting a snapshot of the persistent entity. We call a handle current as long as
its snapshot still reflects the current server-side state. In the implementation,
currency of a handle is checked using version numbers. This design addresses
two issues.

First, handles help keep the session state small: Since a handle identifies a
value, the session state need not contain the value which may be very large.

Second, a handle allows the script to explicitly notice changes to the value by
concurrently executing scripts. The script writer can choose to either continue
to use the value denoted by the handle (which is sufficient as long as no set
operation is attempted) or to observe the new value by discarding the handle
and obtaining a current handle. The latter choice places the obligation on the
programmer to check if the new value is still consistent with the assumptions of
the program.

25

The constraints placed on the types of the interface are of technical nature.
The constraint Types a indicates that there must be a term representation for
the type a and the constraints Read a and Show a indicate that there must be
conversion functions to and from strings for values of type a.

The operation init name initialValue attempts to create a new persis-
tent entity with name name and initialized with initialValue. If it succeeds
in creating a new entity, it returns a handle pointing to initialValue. If it
cannot create a new entity because there is already a persistent entity of the
same name and type, then the returned handle points to its current value.

The operation get handle returns the value of handle. This value may not
be current because the server-side state may have evolved further after creation
of the handle.

The operation set handle newValue attempts to overwrite the value of the
persistent entity pointed to by handle with newValue. If handle is current,
then it succeeds and returns a handle to the new value. Otherwise, it fails. In
the latter case, it is up to the programmer to further deal with the situation.

The operation add handle newValue deals with the special case where the
persistent value is a set, represented by a list where the order of elements does
not matter. In that case, adding newValue to the set always makes sense,
regardless whether the handle is current. Hence, add handle newValue never
fails and the value of the handle returned from the add operation is guaranteed
to contain newValue.

Finally, the operation current handle returns a current handle to the per-
sistent entity pointed to by handle. This operation is potentially dangerous
because it explicitly allows to observe changes to the persistent entity made by
concurrently running scripts. After using current, it is the obligation of the
programmer to check that the value identified by the handle is still the intended
one.14

The problem in implementing this interface is that the server might be forced
to keep all different values of a persistent entity until the end of time. However,
unlike session state, users will expect that server-side state evolves. Hence, the
server can reasonably garbage collect values that have not been used recently
and discard them. A script that tries to get a handle that has been discarded
receives an exception which can be translated into a user-level error message.

Here is a snippet from an example program that uses a persistent entity to
store a list of high scores for a game.

gameover myScore =
do initialHandle <- init ("hiscores") []

currentHandle <- add initialHandle myScore
hiScores <- get currentHandle
standardQuery "Hall of Fame" (ul (mapM_ showItem hiScores))

14The semantics of persistent entities and the current operation in particular has been
misinterpreted by Graunke and others [11] who claim that the WASH/CGI implementation
of server-side state is faulty.

26

showItem (name, score) =
li (do text name

text ": "
text (show score))

In the second line, the variable initialHandle becomes a handle to the current
value of the persistent entity named hiscores. It contains a list of high scores
of the game. The next line adds the new score to the list of scores as explained
above. The fourth line gets a list of scores that is guaranteed to contain myScore.
The sixth line generates a page containing an unordered list where the individual
list items are generated by applying the function showItem to each element
of hiScores (that’s what mapM_ does). The function showItem takes a pair
consisting of a string name and an integer score and generates a list item from
it.

6.2 Client-side State

The interface for accessing persistent client-side state is very similar to the one
for server-side state, but there are subtle differences in their behavior. The
operations are also given in terms of a parameterized abstract data type T a15.
They provide an abstraction layer on top of the implementation in terms of
cookies [19].

check :: (Read a, Show a, Types a) => String -> CGI (Maybe (T a))

init :: (Read a, Show a, Types a) => String -> a -> CGI (T a)

get :: (Read a, Show a, Types a) => T a -> CGI (Maybe a)

set :: (Read a, Show a, Types a) => T a -> a -> CGI (Maybe (T a))

current :: (Read a, Show a, Types a) => T a -> CGI (Maybe (T a))

delete :: (Types a) => T a -> CGI ()

Although a handle still denotes a snapshot of the client-side state, the value
corresponding to this snapshot may no longer be available by the time the script
accesses the handle. This can happen if the user runs several scripts dealing
with the same client-side value in different browser windows at the same time.

For that reason, get handle may fail! This is reflected in its returning
a value of type Maybe a: if successful, it returns Just theValue, otherwise it
returns Nothing. In the latter case, the script must obtain a new current handle
to continue.

The operations, init, set, and current, work as for server-side state. In
addition, there are operations check, to check for the existence of a cookie
and return a handle on success, and delete, for removing a cookie. There
is currently no way for a program to check if setting the cookie on a client is
successful. If the client does not return the cookie with the next request an error
message will be posted to the browser saying that cookies need to be enabled to
run the script. Beyond the operations shown here, there are further operations
to manipulate the expiration time of client-side state.

15A program that uses both, client-side and server-side state, must keep them apart using
Haskell’s module system.

27

WASH/CGI does not impose any restriction on where in the code the client-
side state may be read or written. This is in contrast to other Web programming
libraries that expose details of the cookie implementation by requiring that all
cookie related computations must be completed before any part of the response
page is sent to the browser. This restriction is due to the fact that cookies are
part of the HTTP headers, which must be flushed before the contents of the
page are sent.

7 A Complete Example

In this section, we give the code for a complete example, a guess-number game
inspired by code from various tutorials on Servlets [32]. In the game, the script
first generates a secret number. Then the user tries to guess the number guided
by the answers “to small” or “to large”. Guessing continues until the number
has been found. To make the example more interesting, we are using a cookie
to store the secret number (although session state would be sufficient) and we
have added a high score list to demonstrate the use of persistent entities. The
full code comprises 83 lines. The script is part of a suite of demo programs on
the WASH/CGI web page [39].

In the code, the cookie (client-side state) module is accessed via name C,
whereas the persistence (server-side state) module is named P. Hence, the op-
erations as well as the types from either module are prefixed with either “C.”
or “P.”. In instance, P.T is the type of a server-side state handle whereas C.t
is the type of a client-side state handle.

We start with code to initialize the high score list to the empty list of scores.
The name of this persistent entity is GuessNumber. A score is pair of the number
of guesses used and the name of the player.

type NumGuesses = Int
type PlayerName = String
type Score = (NumGuesses, PlayerName)

highScoreStore :: CGI (P.T [Score])
highScoreStore = P.init "GuessNumber" []

This code just defines highScoreStore as a CGI action that initializes a handle
to the persistent store. The action is only executed when the action is used.

type SecretNumber = Int
setNumber :: SecretNumber -> CGI (C.T (NumGuesses, SecretNumber))
setNumber secret = C.create "theNumber" (0, secret)

The operation setNumber defines the initializer for the cookie. The cookie
contains a pair of the current number of guesses and the secret number.

main :: IO ()
main = run mainCGI

28

message = text "I’ve thought of a number between 1 and 100."

mainCGI :: CGI ()
mainCGI = once
(standardQuery "Guess a number"
(do submit0 playTheGame (attr "value" "Play the game")

submit0 admin (attr "value" "Check scores")))
>> mainCGI

The first two lines are standard for starting a WASH/CGI program. The action
mainCGI implements the start of the interaction. It presents the player to either
run the program or check the high scores, which are both activated using a
parameterless button (submit0). As soon as either of these choices terminates,
the interaction is restarted (via the recursive invocation of mainCGI in the last
line).

Of the two choices the admin function is the simpler one.

admin =
do highScoreList <- highScoreStore

highScores <- P.get highScoreList
standardQuery "GuessNumber - High Scores" $ do
table $ do
attr "border" "border"
tr (th (text "Name") ## th (text "# Guesses"))
mapM_ showScore (sort highScores)

submit0 (return ()) (fieldVALUE "Continue")

showScore (guesses, name) =
tr (td (text name) ## td (text (show guesses)))

admin first initializes a handle highScoreList to the high score store and reads
its contents into highScores. Then it presents a high score table with two
columns, one for the player’s name and one for the number of guesses. The
function mapM_ applies function showScore to each element of the sorted list
of high scores and pastes the resulting HTML actions together. The function
showScore translates a score into one row of the enclosing HTML table. The
Continue button at the end of the page takes the client back to the start.

The other choice in the menu is the playTheGame function.

playTheGame =
do aNumber <- io (randomRIO (1,100))

numHandle <- setNumber aNumber
play numHandle message

It first chooses a random number between 1 and 100 (inclusive) using the pre-
defined I/O action randomRIO. Then it stores the number (and the number of
guesses so far) in a cookie and falls through to function play.

29

The function play is parameterized over the message aMessage to display.
From the main menu it is called with text "I’ve thought of a number ...".
This message is not restricted to be a text, it may contain any document nodes
that are appropriate at this place. The actual code fragment dealing with the
interaction is placed in a paragraph after the message.

play aHandle aMessage =
standardQuery "Guess a number" $
do aMessage

p (do text "Make a guess "
guessF <- inputField (attr "size" "3")
submit guessF (processGuess aHandle) empty)

play is straightforward. It displays the message, asks for a guess, extracts a
handle to the guess from the input field and passes it to submit. The callback
function processGuess performs the actual work.

processGuess aHandle guessF =
let aGuess = value guessF in
do mValue <- C.get aHandle

case mValue of
Just (nGuesses, aNumber) ->
let nGuesses’ = nGuesses + 1 in
if aNumber == aGuess
then do C.delete aHandle

youGotIt nGuesses’ aNumber
else do Just aHandle’ <- C.set aHandle (nGuesses’, aNumber)

play aHandle’ (do text "Your guess "
text (show aGuess)
text " was too "
if aGuess < aNumber
then (b (text "small."))
else (b (text "large.")))

Nothing ->
standardQuery "Don’t do that!" $ do
text "You are trying to outwit me by playing with "
text "the back button and by cloning windows!"
submit0 (return ()) (fieldVALUE "Restart")

Given the handle to the cookie and the next guess, processGuess first tries to
read the current value of the cookie. If this fails for some reason (case Nothing),
then it displays an appropriate error message. Otherwise, it increments the num-
ber of guesses and checks if the guess was correct. If it was, then the cookie is
deleted and control is passed to youGotIt to display a winning message. Oth-
erwise, the cookie is updated to the new number of guesses and play is invoked
recursively with a message (some text nodes and a b element) announcing the
result of comparing the two numbers.

30

youGotIt nGuesses aNumber =
standardQuery "You got it!" $
do text "CONGRATULATIONS!"

br empty
text ("It took you " ++ show nGuesses ++ " tries to find out.")
br empty
text "Enter your name for the hall of fame "
nameF <- textInputField (attr "size" "20")
submit nameF (addToHighScore nGuesses) empty

There is not much to say about youGotIt. It displays a parameterized HTML
page and then falls through to addToHighScore as soon as a name is entered in
the input field.

addToHighScore nGuesses nameF =
let name = value nameF in
if name == "" then return () else
do highScoreList <- highScoreStore

P.add highScoreList (nGuesses, name)
return ()

The function first obtains the contents of the input field (unrestricted text). If
the field is non-empty, then it gets a handle to the persistent highScoreList
and adds the new score to it. In either case, the interaction wraps back to the
start.

8 Implementation

The description of the implementation comes in two parts. The first subsec-
tions describe the techniques in general terms and the last subsection gives
implementation details specific to Haskell. This last subsection is not essential
for understanding the techniques used. However, it conveys that the techniques
map to Haskell code in a natural way.

8.1 Sessions

In Section 4, we stated that each form sent to the browser contains a hidden
token for the session state. Clearly, sheer size of the data does not permit to
store a memory snapshot of the application in the form.

At this point, Haskell’s purely functional nature becomes essential. Since all
functions definable in Haskell are free of side effects, they deliver the same result
whenever they are applied to the same arguments. I/O is achieved through an
abstract data type IO a of I/O actions. Manipulation of these actions is still
free of side effects, actions are only executed when they are returned from the
main function. Interactive programs are possible because later I/O actions may
depend on the results of earlier I/O actions.

31

Since all external influences to a Haskell program are mediated through I/O
actions, it is possible to replay a Haskell program by keeping a log of the results
of the first run of each I/O action. For this to work, the program must be denied
direct access to I/O by interposing another abstract data type, in our case CGI
a, that encapsulates the replay mechanism.

The replay mechanism maintains the log in the form of two lists, a recorded
list and a replay list. The replay list is examined for the results of operations
that have already been done. It is consumed during replay. The recorded list
keeps all previous results and is extended with new results, once the replay list is
depleted. To initiate a replay, both lists are initialized with the saved recorded
list from a former run.

Concretely, here is how the operations io and ask of Section 4.2 work. The
CGI action io ioAction first checks the replay list for a saved result. If the
result is available, it is removed from the replay list and passed to the next
CGI action (without executing ioAction). If the replay list is depleted, then
ioAction is executed, its result is appended to the recorded list, and also passed
to the next CGI action.

The CGI action ask document is slightly more complicated because its re-
sults are not immediately available. Instead, they must be extracted from the
next request received from the browser, in another execution of the same pro-
gram. Like io, ask first checks the replay list for a saved result. If the result is
available, it is removed from the replay list and passed to the next CGI action,
which is specified by document (details follow in Section 8.2). If the replay list
is depleted, then document is converted to an HTML form and passed to the
server as an HTTP response. At this point, the program terminates. However,
the returned HTML page has a hidden input field which contains the current
value of the recorded list, i.e., all responses to io and ask actions leading up
to that form. When the script receives the answer from the form, the request
from the browser contains

1. the last value of the recorded list and

2. the input parameters for the last form.

From these two items, the script constructs a new log by appending the input
parameters to the saved value of the recorded list. The resulting log is used to
initialize both logs, the replay list as well as the recorded list. Then the script
restarts from the first CGI action.

Figure 6 illustrates the mechanism by showing the state of the logs before
executing the current action and before executing the next action that depends
on the result answer of current 16. The case where the replay list contains the
answer works the same for io and for ask. In the second case, where the replay
list is depleted, ask does not reach the next (answer) state directly. Instead,
upon receipt of answer the whole program is replayed starting from the first
action on the log prms++[answer]:

16The infix operators : and ++ are the cons and append operations on lists.

32

action current next(answer)
replay list answer:rest rest answer from log;
recorded list prms prms current not executed
replay list [] [] answer from executing
recorded list prms prms++[answer] current action

Figure 6: The replay mechanism

action first . . . current next(answer)
replay list prms++[answer] . . . [answer] []
recorded list prms++[answer] . . . prms++[answer] prms++[answer]

To get the replay mechanism initialized, the first invocation of the program sets
both lists to the empty list.

8.1.1 Security

Storing the session state in the form sent back to the browser may have security
implications if it reveals internal server information. In addition, the session
state often contains sensible user input, like passwords. WASH/CGI addresses
both concerns by providing a one-time pad encryption for the session state.
This way, the required degree of security is entirely in the hands of the system
administrator, who has to prime the encryption with data from an appropriate
random source.

8.1.2 Limiting the Size of the Log

Another concern is that the size of the log grows without bounds during a
long interaction. However, quite often interactions can be structured so that
there is a main trunk of interaction, like returning to a main menu and starting
subinteractions from the menu. There are two ways of dealing with this case.

First, the programmer may start a subinteraction in a new browser window
by using the target=" blank" attribute for the submission button that acti-
vates the subinteraction. The subinteraction proceeds in the new window and
terminates by presenting a page without buttons. Then, the user can close the
window and is back at the main menu in the previous window. It is also possible
to deal with both windows in an interleaved fashion. The point of this structur-
ing is that the subinteractions never get incorporated in the main interaction
trunk. Consequently, the main log does not grow unless some action updates
the menu window.

Alternatively, the programmer may use the operator once to achieve a sim-
ilar effect without having to worry about opening new windows. The type of
once is

once :: (Read a, Show a) => CGI a -> CGI a

33

B C

B2

B4

B5

A

B1

B3

A

B5

B4

B2

B1

B3

C
once B once B

Figure 7: Spawning interactions vs. once

Its parameter is a CGI action that is once run to completion, involving any
number of nested io, ask, and once operations. When the action returns its
result, the log entries for the nested operations are replaced by a single log entry
for the result. When once is replayed later on, it simply grabs the result from
the log without passing control to the nested operations.

Figure 7 illustrates the difference between the two approaches. The left
picture shows the interaction tree resulting from spawning subinteractions from
a menu node B. Each node of the tree corresponds to an entry in the log. Hence,
at point C, the log has length 3. The right picture shows a similar interaction
using the once operator. The dashed boxes correspond to log entries that are
removed by the once operator after that part of the interaction is complete.
Hence, the log is temporarily extended (to length 4 at B3 and B5) but then
shrunk back again, so that the final log length at C is also 4.

8.2 Widgets

Earlier, in Section 5.3, we have seen that widgets are generated by functions of
the following type:

type HTMLField context a =
WithHTML INPUT CGI () -> WithHTML context CGI a

inputField :: (AdmitChildINPUT context, Reason a, Read a) =>
HTMLField context (InputField a INVALID)

To understand how inputField works, we have to look a little bit inside the
type WithHTML INPUT CGI (). This abstract type threads the current state
of the script throughout the whole construction of a Web form. The current
state of the script contains all the information typically available in CGI scripts,
as well as the replay and recorded lists. In addition, the ask form operation
determines if there is already an answer to form in the log and passes this answer
to the construction of form.

Hence, the widget operations work in two modes, depending on whether
the input from the form is present. The first time a widget constructor (e.g.,

34

inputField) is executed, the input is not yet present so that the constructor
just generates its HTML representation. If the input for the form is present,
then each widget constructor checks that the answer provides acceptable input
for it and stores the input in its handle (after converting it from a string to a
value of the expected type). This conversion may also fail, but this fact is only
recorded in the handle data structure.

To tell individual instances of the widgets apart, they are automatically
numbered and named. This naming is also managed using the state threaded
through by WithHTML context CGI ().

A submit button is slightly more complicated because it also specifies a
callback action, as evident from the type of its constructor:

submit :: (AdmitChildINPUT context, InputHandle h) =>
h INVALID -> (h VALID -> CGI ()) -> HTMLField context ()

Without input (before submission of the form), each use of submit handles
callback just generates XHTML like any other widget. If input to the form is
present, then each submit button checks if it has been clicked (by checking if
an input for its name is present). This check will be successful for at most one
button. The thus selected, lucky button then tries to validate all input handles
passed to it. If they are all valid, then the button’s constructor composes a
CGI action by applying callback to the validated input handles and stores
the resulting action in the CGI state. Later on, when the construction and
examination of the page is complete, the ask operation checks if an action has
been stored in the CGI state and will invoke it.

If some of the handles do not validate, the button’s constructor includes
JavaScript code in the XHTML page that puts error indicators on the erroneous
input fields. Since it does not store an action in the CGI state, the enclosing
ask will just display the XHTML page with the error indicators.

With this approach, a callback function never receives invalid data and it
is guaranteed that only those input fields required for a particular callback are
validated.

8.3 Persistence

The main stepping stone for handling state effectively in WASH/CGI is the
design of the type-safe interfaces shown in Section 6. Once the interfaces are
in place, the actual implementation is relatively straightforward. A handle to
either kind of state is represented by a pair of the name of the entity and a
version number.

Server-side state is a type-indexed mapping from version numbers to values.
Getting the value from a handle always returns the value corresponding to the
version number in the handle. Consequently, the result of a get operation need
not be stored in the log. Setting the value through a handle fails if the current
version number on the server does not match the version number of the handle.

Client-side state is similar, but the mapping is only defined for the current
version number. Hence, the results of all operations must be stored in the log.

35

A naive implementation might assign version numbers sequentially by just
incrementing the version number at each set or add operation. However, it
is safer to use random numbers as version numbers. To see this, consider the
a scenario where some house keeping operation removes the entire history of
server-side state. Using sequence numbers that start from 0 again, there might
be a pending transaction stored on some browser that still refers to an old se-
quence number before the house keeping took place. Continuing that transaction
will lead to inconsistencies. Hence, it is important that each version number is
used at most once. A good random number generator can guarantee that with
high probability [13].

8.4 Haskell Specifics

Internally, an XHTML document is represented by two (abstract) data types
ELEMENT_ and ATTR_. A document tree is built using the interface

element_ :: String -> [ATTR_] -> [ELEMENT_] -> ELEMENT_
attr_ :: String -> String -> ATTR_
add_ :: ELEMENT_ -> ELEMENT_ -> ELEMENT_
add_attr_ :: ELEMENT_ -> ATTR_ -> ELEMENT_

The functions element_ and attr_ are the obvious constructor functions. The
function add_ parent child adds a child element and the function add_attr_
parent attr adds an attribute to a parent element. However, this interface is
not accessible in a WASH/CGI program, it is only used to build the next level
of abstraction.

The datatype that encapsulates generation of XHTML, WithHTML c m a, is
a monad provided that m is a monad. That is, WithHTML c is a state monad
transformer [22]. The state manipulated by WithHTML c m is an HTML ele-
ment and the variable c is a phantom type variable that does not occur in the
constructors of the type:

newtype WithHTML c m a =
WithHTML (ELEMENT_ -> m (a, ELEMENT_))

The element passed as an argument is the currently open element, i.e., in terms
of the generated document it corresponds to the closest enclosing opening HTML
tag. Each construction function for an element, attribute, or text node adds the
node into this context.

The constructor for building a <title> element serves as an example.

title ma =
WithHTML (\enclosingElem ->
do (a, titleElem) <- runWithHTML ma (element_ "title" [] [])

return (a, add_ enclosingElem titleElem))

The parameter enclosingElem contains the enclosing element. runWithHTML
ma installs its argument, an empty <title> element, as the new enclosing ele-
ment and inserts subelements according to action ma. This action takes place in

36

io :: (Read a, Show a) => IO a -> CGI a
io ioAction =
CGI (\ cgistate ->
case inparm cgistate of
PAR_RESULT str : rest ->
case reads str of
(result, ""):_ ->
return (result, cgistate { inparm = rest })

_ ->
reportError "Result unreadable"

(text "Cannot read " ## text (show code)) cgistate
[] ->
do result <- ioAction

return (result,
cgistate { outparm = PAR_RESULT (show result) :

outparm cgistate })
_ ->
reportError "Out of sync" empty cgistate)

Figure 8: Implementation of io

the underlying monad, hence the result is a pair from the result a of running ma
and the transformed <title> element. To complete the constructor function,
the result a is paired with the enclosing element after adding the transformed
<title> element to it and then returned. For a user of a WithHTML c m monad,
the internal management of the element data is completely invisible.

The abstract datatype CGI a that encapsulates a CGI action is a monad.
More precisely, it is a state monad lifted over the IO monad:

newtype CGI a =
CGI (CGIState -> IO (a, CGIState))

The CGIState is a record type that contains the replay and recorded lists,
information derived from the CGI environment, information specific to the page
currently generated, the current encoder for the state token (see Section 8.1.1),
and data structures for dealing with cookies (see Section 6.2).

Figure 8 shows the code for the io operation (see Section 4). It serves as an
example to see the log machinery in action. CGIState is a record type with fields
inparm (for the replay list) and outparm (for the recorded list). The recorded list
is stored in reverse order to make appending new results at the end a constant-
time operation. Each element of the log can be an answer to an I/O operation
of the form PAR_RESULT str, where str is the value encoded as a string, or an
association list of CGI parameters (an answer to a Web form which is decoded
by ask). The case expression examines the replay list. If its first element is the
result of an I/O operation, then its string representation is converted back to a
data value using read and returned as the value of the computation. The thus

37

consumed answer is removed from the log as it is passed along. If the replay list
is empty, then the code executes the ioAction, returns its result and extends
the recorded list with the textual encoding of the result.17 If the replay list
starts with another kind of answer, then somebody has been tampering with
the state tokens in the Web form or there is a version conflict between the code
that has created the Web form and the presently running code. Either case is
captured and displayed as an error.

9 Assessment

Since the creation of WASH/CGI in 2001, a number of applications have been
developed with it. The applications range from demo programs of up to 50 lines
through mini-applications (generic time table software and a mini shop, both
in less than 200 lines) to applications like conference submission software (900
lines) and a mail reader (550 lines relying on a 900 line email processing library
and a 2000 line mail store management system). The library source is roughly
3700 lines of Haskell code.

We have successfully integrated the WASH/CGI library with a Web server
written in Haskell by Simon Marlow [24]. In this server, a WASH/CGI applica-
tion can run like a servlet in its own thread. The integration clearly indicates
that the ideas of WASH/CGI are not limited to CGI applications, but that they
are applicable to Web programming in general.

We have taken every effort to keep the design as simple and intuitive as
possible. One deliberate guideline was not to create a new language but to
adhere to the Haskell98 standard [15]. Although it is tempting to rely on one
of the many implemented extensions to the Haskell type system [34], there were
satisfactory solutions to the document validation problem (see Section 3.2),
the treatment of submission buttons with decision trees (see Section 5.7), and
a problem with the lifetime of input handles completely within the Haskell98
language.

The document sublanguage guarantees well-formedness of all generated doc-
uments, but only quasi validity as detailed in Section 3.2. This design is moti-
vated by the following considerations:

• Quasi validity guarantees validity for about 95% of the HTML elements.
Out of 89 elements, it is fully adequate for 68 (which just restrict children
to zero or more occurrences of certain elements) and mostly adequate for
an additional 16 elements (which restrict to zero or one occurrences or one
or many occurrences). Only the remaining 5 elements restrict the order
of the child elements (HMTL, HEAD, TABLE, FIELDSET, MAP).

• A checker for full validity (including attribute occurrences) can be imple-
mented in the Haskell type system [35]. However, programming in the

17This code relies on the assumption that read (show x) == x. This is recommended prac-
tice in the Haskell report [15] and is indeed the case for the builtin types and the automatically
derived instances of the Read and Show classes.

38

presence of this checker gets very awkward and limiting, as described in
that work.

• The checker for full validity requires some (well-known) extensions to the
Haskell type system.

How to support the Web browser’s back and clone buttons is a religious issue
among Web programmers. While some welcome its additional power and flexi-
bility and regard it as a new paradigm for structuring user interfaces [12], others
regard it as intrinsically adverse to the concept of an interactive transaction [3].
The implementation suggested in the present work admits the use of the back
button as well as cloning and bookmarking (see Section 4). This decision leaves
the choice of the underlying interaction model to the application programmer. If
Web-browser-style control makes sense for an application, then WASH/CGI can
support it. If the application requires a strictly sequential transaction model,
then that can also be enforced using client-side state (Section 6.2). However,
the WASH/CGI programming model is not tied to the implementation. An
alternative implementation that rules out the use of the back and clone buttons
would be more efficient and at the same time it would essentially remove all
restrictions currently placed on IO.

Another issue that is automatically addressed by our implementation of ses-
sion state (Section 4) is scalability. Since all state information is present in the
state token delivered to the browser, it does not matter which server processes
the next submission. Hence, WASH/CGI scripts can be easily run on a farm
of Web servers. The only caveat here lies in the accesses to server-side state,
which must be shared among these Web servers18.

10 Related Work

Meijer’s CGI library [25] implements a low-level facility for accessing the input
to a CGI script and for creating its output. While it supports a tree-based rep-
resentation of documents, it does not encapsulate its manipulation. In addition,
it still preserves the CGI-style script-centric programming style, it does have a
notion of session.

Hughes [18] has devised the powerful concept of arrows, a generalization of
monads. His motivating application is the design of a CGI library that imple-
ments sessions. Indeed, the functionality of his library was the major source
of inspiration for our work. Our work indicates that monads are sufficient to
implement sessions (Hughes also realized that [17]). Furthermore, WASH/CGI
extends the functionality offered by the arrow CGI-library with a novel repre-
sentation of HTML and typed compositional forms. Also, the callback-style of
programming advocated here is not encouraged by the arrow library.

Hanus’s library [14] for server-side scripting in the functional-logic language
Curry comes close to the functionality that we offer. In particular, its design

18The present implementation does not support this.

39

inspired our investigation of a callback-style programming model. While his
library uses logical variables to identify input fields in HTML forms, we are
able to make do with a purely functional approach. Our approach only relies
on the concept of a monad, which is fundamental for a real-world functional
programmer.

Further approaches to Web programming using functional languages are us-
ing the Scheme language [10, 30]. The main idea is to use a continuation to
take a snapshot of the state of the script after sending the form to the browser.
This continuation is then stored on the server and the form contains a key for
later retrieval of the continuation. Conceptually, this is similar to the log that
we are using. Technically, there are two important differences. First, we have
to reconstruct the current state from the log when the next user request arrives.
Using a continuation, this reconstruction is immediate. Second, our approach
relies only on CGI whereas the continuation approach implies that the script
runs inside the Web server and hence that the Web server is implemented in
Scheme, too.

A recent revision of the continuation-based approach overcomes the tight
coupling of scripts to the server. Graunke et al [9] present an approach to
transform arbitrary interactive programs into CGI scripts. The transformation
consists of three steps, a transformation to continuation-passing style, lambda
lifting, and defunctionalization. The resulting program consists of a number
of dispatch functions (arising from defunctionalization) and code pieces imple-
menting interaction fragments. Compared to our approach, they reconstruct
the state from a marshalled closure whereas we replay the interaction. Further-
more, they implement mutable state using cookies stored on the client side. It
is not clear whether such functionality is needed for WASH/CGI scripts since
the host language Haskell discourages the use of mutable state.

Bigwig [4] is a system for writing Web applications. It provides a number
of domain specific customizable languages for composing dynamic documents,
specifying interactions, accessing databases, etc. It compiles these languages
into a combination of standard Web technologies, like HTML, CGI, applets, and
JavaScript. Like our library, Bigwig provides a session abstraction. However,
the Bigwig notion is more restrictive in that sessions may neither be backtracked
nor forked. Each Bigwig session has a notion of a current state, which cannot be
subverted. Moreover, the implementation of sessions is different and relies on a
special runtime system that keeps one session thread alive for the entire duration
of the session [3]. Bigwig includes a sophisticated static analysis that guarantees
that all generated output is a valid HTML document. The same analysis also
finds types for forms. Since WASH/CGI relies on Haskell’s type system it only
approximates validity. A special type system for forms is not required since
(typed) field values are directly passed to (typed) callback-actions. Hence, all
necessary type checking is done by the Haskell compiler.

Bigwig has been further developed into JWIG [6]. JWIG is an extension of
Java with features of Bigwig, in particular the notion of sessions, the guarantee
about valid XHTML output, and the guarantee that fields demanded by the
program are present in the input submitted by the browser. JWIG adds a

40

number of new statements and a special XML data type to the Java language.
Beyond Bigwig, JWIG has an integrated notion of shared server-side state, but
relies on the Java primitives for concurrency control. It does not have a special
abstraction for server-side state that catches inconsistencies due to the (mis-) use
of browser features as explained in Section 6.1. It is implemented by translation
into Java. The translator performs extensive static program analysis to make
the above guarantees. Since the analysis only covers the JWIG classes, it uses
a number of conservative assumptions about library classes and the rest of the
application. In contrast, since WASH/CGI relies solely on Haskell typing, no
such conservative assumptions are required and all library and application code
can be used in a WASH script without restriction.

MAWL [20, 1] is a domain specific language for specifying form-based inter-
actions. It was the first language to offer a typing of forms against the code that
received its input from the form. It provides a subset of Bigwig’s functionality,
for example, the facilities for document templates are much more limited.

Guide [21] is a rule-based language for CGI programming. It supports a
simple notion of document templates, similar in style to that offered by MAWL.
It provides only rudimentary control structure: it sequentially processes a list of
predicates and takes the action (that is, it displays a HTML page) associated to
the first succeeding predicate. It supports the concept of a session, a limited form
of concurrency control, as well as session-wide and global variables. However,
it neither supports typed input, nor composition of input fields, nor facilities to
ensure that the variables used in a script match the variables defined in a form.

In previous work[33, 35], we have investigated the use of Haskell for generat-
ing valid HTML and XML documents, where the type system enforces adherence
to the DTD. That work has been simplified and integrated into WASH/CGI as
explained in Sec. 3.2.

The LAML system [26] is an approach to authoring XHTML documents
based on the Scheme programming language. LAML provides construction
functions for document nodes (called mirror functions), similar in style to our
construction functions. It performs dynamic checks at runtime to guarantee
that the generated output adheres to a DTD, but it cannot give static guaran-
tees. LAML relies on Scheme’s functional abstraction to provide parameterized
documents. WASH relies on Haskell’s functional abstraction but can give static
guarantees due to its reliance on the type system. Finally, while there are various
extensions for authoring documents that span multiple URLs, there is neither
a session concept nor a concept for accessing persistent state built into LAML.
Hence, it appears that LAML is primarily targeted for conveniently producing
static Web pages.

Java Server Pages [27] and Servlets [32] are popular approaches to imple-
menting Web services. They also provide a notion of session persistence and en-
capsulate its implementation. Unfortunately, they do not guarantee type safety
and they do not provide the advanced support for generating HTML and forms
as we do. More fundamentally, both approaches still support the page-centric or
script-centric approaches to Web programming, whereas WASH/CGI supports
a session-centric view of the application. Similar argumentation applies to other

41

frameworks like ASP and ASP.NET [16], PHP [28], Python Server Pages [29],
ColdFusion, and Zope.

11 Conclusion

WASH/CGI provides a high-level declarative approach to programming Web
services. It is based on a session-centric programming model that hides away
the details of the underlying protocols. This approach makes programming a
Web service similar to programming an HTML-based GUI application.

WASH/CGI provides extensive guarantees ranging from well-formedness and
quasi validity for all generated documents through type-safe input fields to type-
safe server-side and client-side state. These guarantees are intrinsic in using
WASH/CGI, no application code is required to achieve them. They are obtained
by consistent use of abstract data types, type-safe interfaces, and composition-
ality.

Due to the host language Haskell, each aspect of WASH/CGI can be ab-
stracted and parameterized. For example, a response page may be built from
any number of fragment where each fragment comes with its own functional-
ity. Again, the integration of these fragments does not require coding beyond
assembling the fragments into one response page. The high potential for pa-
rameterization is unique to WASH/CGI.

While the efficiency of the implementation of server-side state and of the
replay mechanism could certainly be improved by (e.g.) compiling WASH/CGI
or by abolishing the use of the back button and cloning in the browser, we feel
that its current state presents a good checkpoint. The fundamental ideas are
proven to work, the implementation is stable, and many convenience features
are integrated that alleviate the construction of Web services.

The WASH/CGI implementation is available for downloading at http://
www.informatik.uni-freiburg.de/~thiemann/WASH/.

References

[1] D. Atkinson, T. Ball, M. Benedikt, G. Bruns, K. Cox, P. Mataga, and
K. Rehor. Experience with a domain specific language for form-based ser-
vices. In Conference on Domain-Specific Languages, Santa Barbara, CA,
Oct. 1997. USENIX.

[2] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform resource iden-
tifiers (URI): Generic syntax. http://www.faqs.org/ftp/rfc/rfc2396.
txt, Aug. 1998.

[3] C. Brabrand, A. Møller, A. Sandholm, and M. I. Schwartzbach. A runtime
system for interactive web services. Journal of Computer Networks, 1999.

[4] C. Brabrand, A. Møller, and M. Schwartzbach. The <bigwig> Project.
ACM Transactions on Internet Technology, 2(2):79–114, 2002.

42

[5] CGI: Common gateway interface. http://www.w3.org/CGI/.

[6] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Extending java for
high-level Web service construction. toplas, 2003. To appear.

[7] D. E. Eastlake, 3rd and T. Goldstein. ECML v1.1: Field specifications for
E-commerce. http://www.faqs.org/rfcs/rfc3106.html, Apr. 2001.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol. http://www.faqs.org/
rfcs/rfc2616.html, June 1999.

[9] P. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Automati-
cally restructuring programs for the Web. In Proceedings of ASE-2001: The
16th IEEE International Conference on Automated Software Engineering,
San Diego, USA, Nov. 2001. IEEE CS Press.

[10] P. Graunke, S. Krishnamurthi, S. V. D. Hoeven, and M. Felleisen. Pro-
gramming the Web with high-level programming languages. In D. Sands,
editor, Proceedings of the 2001 European Symposium on Programming, Lec-
ture Notes in Computer Science, pages 122–136, Genova, Italy, Apr. 2001.
Springer-Verlag.

[11] P. T. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Modeling
Web interactions. In Proc. 12th European Symposium on Programming,
Lecture Notes in Computer Science, Warsaw, Poland, Apr. 2003. Springer-
Verlag.

[12] P. T. Graunke and S. Krishnamurthi. Advanced control flows for flexi-
ble graphical user interfaces: or, growing GUIs on trees or, bookmarking
GUIs. In Proceedings of the 24th International Conference on Software
Engineering (ICSE-02), pages 277–290, New York, May 19–25 2002. ACM
Press.

[13] P. Gutmann. Software generation of practically strong random numbers. In
Proceedings of the 7th USENIX Security Symposium, San Antonio, Texas,
USA, Jan. 1998. USENIX.

[14] M. Hanus. High-level server side Web scripting in Curry. In Practical
Aspects of Declarative Languages, Proceedings of the Third International
Workshop, PADL’01, Lecture Notes in Computer Science, Las Vegas, NV,
USA, 2001. Springer-Verlag.

[15] Haskell 98, a non-strict, purely functional language. http://www.haskell.
org/definition, Dec. 1998.

[16] A. Homer and D. Sussman. Professional ASP.NET 1.0. Wrox Press Inc, 2
edition, 2002.

[17] J. Hughes. Private communication, Sept. 2000.

43

[18] J. Hughes. Generalising monads to arrows. Science of Computer Program-
ming, 37:67–111, May 2000.

[19] D. M. Kristol. HTTP Cookies: Standard, privacy, and politics. ACM
Transactions on Internet Technology, 1(2):151–198, Nov. 2001.

[20] D. A. Ladd and J. C. Ramming. Programming the Web: An application-
oriented language for hypermedia service programming. pages 567–586.
World Wide Web Consortium, Dec. 1995.

[21] M. R. Levy. Web programming in Guide. Software—Practice & Experience,
28(15):1581–1603, Dec. 1998.

[22] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular inter-
preters. In Proceedings of the 1995 ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages, pages 333–343, San Francisco, CA, Jan.
1995. ACM Press.

[23] Luhn formula. http://www.webopedia.com/TERM/L/Luhn_formula.html,
Dec. 1999.

[24] S. Marlow. Developing a high-performance Web server in Concurrent
Haskell. Journal of Functional Programming, 12(4&5):359–374, July 2002.

[25] E. Meijer. Server-side web scripting with Haskell. Journal of Functional
Programming, 10(1):1–18, Jan. 2000.

[26] K. Nørmark. Programmatic WWW authoring using Scheme and LAML.
In Web Engineering Track of The Eleventh International World Wide Web
Conferene - WWW2002, pages 296–, Mar. 2002.

[27] E. Peligŕı-Llopart and L. Cable. Java Server Pages Specification. http:
//java.sun.com/products/jsp/index.html, 1999.

[28] Php: Hypertext processor. http://www.php.net/, Feb. 2003.

[29] Python server pages. http://www.ciobriefings.com/psp/, June 1999.

[30] C. Queinnec. The influence of browsers on evaluators or, continuations to
program Web servers. In Wadler [38], pages 23–33.

[31] D. Scott and R. Sharp. Abstracting application-level Web security. In Pro-
ceedings of 11th ACM International World Wide Web Conference, Hawaii,
USA, 2002.

[32] Sun Microsystems. Java Servlet Specification, Version 2.4. http://java.
sun.com/products/servlet/, Feb. 2003.

[33] P. Thiemann. Modeling HTML in Haskell. In Practical Aspects of
Declarative Languages, Proceedings of the Second International Workshop,
PADL’00, number 1753 in Lecture Notes in Computer Science, pages 263–
277, Boston, Massachusetts, USA, Jan. 2000.

44

[34] P. Thiemann. Programmable type systems for domain specific languages.
In M. Comini and M. Falaschi, editors, Selected Papers of Workshop on
Functional and Logic Programming, WFLP 2002, volume 76 of ENTCS,
Grado, Italy, 2002. Elsevier Science Publishers.

[35] P. Thiemann. A typed representation for HTML and XML in Haskell.
Journal of Functional Programming, 12(4-5):435–468, July 2002.

[36] P. Thiemann. WASH/CGI reference manual. http://www.informatik.
uni-freiburg.de/~thiemann/haskell/WASH, 2003. To appear.

[37] Markup validation service. http://validator.w3.org/, Dec. 2002.

[38] P. Wadler, editor. International Conference on Functional Programming,
Montreal, Canada, Sept. 2000. ACM Press, New York.

[39] Web authoring system in Haskell (WASH). http://www.informatik.
uni-freiburg.de/~thiemann/haskell/WASH, Mar. 2001.

[40] XHTML 1.0: The extensible hypertext markup language. http://www.
w3.org/TR/xhtml1, Jan. 2000.

45

