Dutch AIBO Team at RoboCup 2006

Arnoud Visser!, Paul van Rossum?, Joost Westra?®,
Jiirgen Sturm', Dave van Soest!, and Mark de Greef!

L Universiteit van Amsterdam
2 Technische Universiteit Delft
3 Universiteit Utrecht

http://www.dutchaiboteam.nl/

Abstract. The Dutch AIBO Team is a multi-institute team which com-
petes in the 4-legged robot league of RoboCup since 2004. This team de-
scription paper briefly outlines the approach taken for the Passing and
Open Challenge of the RoboCup 2006.

1 Introduction

The Dutch AIBO Team is this year a small group of experienced students from
the Universities of Amsterdam, Delft and Utrecht. This group gets the support
of the Decis Lab, the Universities of Groningen, Twente and Eindhoven, as well
as Saxion University of Professional Education. Our unified efforts are intended
to foster our individual and joined research interests in collaborative autonomous
systems.

Because of the limited size of the team, the focus of our contribution this year
will be directed to the Technical Challenges. That the Dutch Aibo Team has a
good basis for the Soccer competition was demonstrated at the Dutch Open,
where the semi-finals were reached. The competition code has been developed
by the Dutch Aibo Team for the RoboCup in Osaka [1]. The team-strategy
can be characterized as a strong goalie and aggressive chasing in the center of
the field. With this strategy the Dutch Aibo Team received at the Dutch Open
overall less goals than the later champion. Yet, this year the progress in the
strategy will be minor, most of the current effort is directed to the perception
part of the robots. This is less visible during a competition, but can be seen in
the short calibration time and the ease of localization during the setup-phase.

As part of our research plan, the Universities of Groningen and Utrecht exper-
iment with another development environment which can be used for educational
purposes and research purposes outside the soccer competitions. The New Goal
challenge will be implemented in the Tekkotsu framework? [2] which may be a
stepping stone to a contribution in the RoboCup @ Home competition.

In the remainder of this document we briefly outline our approach for two
other Technical Challenges.

“http:/ /www.Tekkotsu.org

2 Passing Challenge

As demonstrated in the movie provided with our qualification material®, the
Passing Challenge was used as a benchmark to study the effect of cooperation
between the robots [3]. For this benchmark three robots should pass the ball to
each other. This sounds simple, but is in practice hard. On the field, both the
observations and the actions have only a limited chance on success. Improve-
ments can be made to enlarge the chance on success, but the decision process
has to be inherently robust to the unreliability of the real world. In other words,
this system is a Partial Observable Markov Decision Process (for an overview
see part IV of [4]). To estimate the probability inside the decision process, we
have constrained the experimental conditions as far as possible, until we had a
simple test with reproducible success rates. This simple test was scaled up step
by step towards the Passing Challenge as described in the rules, by eliminating
the constraints one at a time. The final step will be to include estimates of the
absolute location into the decision process.

Central in our cooperation study is the decision which robot will block and
grab the ball. A ball was kicked on a line precisely between two robots, as
depicted in figure 1. Because the ball is relatively light and the field is relatively
rough, the actual trajectory will not follow the line precisely in the middle of
the robots, but will deviate towards one of the robots. The two robots have
to decide who will attempt to grab the ball. When two robots make the same
decision, we will call this confusion. The decision to grab the ball can be based
on own observations (namely ball speed, position and direction of the movement
relative to robots local coordination system) or on information distributed via a
communication channel.

Fig. 1. Experimental setup to measure confusion

Experiments indicated that using extremely simple status messages to share
the intentions between the two robots reduced the confusion level. Although the

http://www.dutchaiboteam.nl/robocup/robocup2006/qualification/

observations were correct most of the time (90% success-rate), these observation
are repeated so many times that on a certain moment the robots make the same
decision. Depending on their own observations robots, the tests showed an av-
erage confusion level of 33%. When the two robots shared their intentions via
extremely simple status messages the confusion level dropped to 3%. The success
of the message driven behavior indicates that the two robots make their decision
to grab the ball at a different moment. If there is enough time difference, the
status message will be received by the second robot and an equivalent decision
can be prevented. It is interesting though to notice that this result is not triv-

ial due to the lack of message synchronization and reliable message transport
protocols.

wait for
ball

Fig. 2. Behavior design for the Passing Challenge

Based on this result a behavior was designed which allows to pass the ball
around, which makes use of the messages when communication channels are
available, and otherwise relies in its own observations. The experiments described
before concentrated on the success rate of the behaviors do-kick combined with

wait-for-ball (see figure 2). To pass around the behaviors where alternated with
two other behaviors:

find-partner In order to pass the ball to another teammate, the robot possess-
ing the ball first needs to turn around to face one of its teammates. This
means that it is not only necessary to detect whether a teammate is in the
field but also to have somewhat of an accurate estimation of the other team-
mate’s bearing. Locating other teammates by turning the robot‘s head to
scan the environment is not a good option, because the robot has no control
of the ball in the mean time. Instead the robot turns the body until the
robot comes to face the teammate.

wait-for-ball In order to receive the ball, the other robots have to keep a certain
distance from the ball if it is possessed. This is done to avoid the situation
where the robot grabbing the ball cannot perform a kick because it doesn‘t
detect or cannot reach other team players. The robots that do not possess the
ball will try to stay at a distance range of 70 cm to 110 cm. The maximum
threshold of 110 cm is determined by the distance that the teammates can
be perceived and recognized. By determining the minimum threshold of the
distance range, it was important to choose a distance not too close to give
the robots the time to block the ball.

By combining those four behaviors, the robots were able to play the ball
around. In terms of performance, the robots were able to play around while
keeping the ball inside the field (a mere 95% of the total game play). A video of
this performance is available at the team siteS.

For the competition in Bremen, the current behavior will be extended with
a behavior that will direct the robot in possession of the ball back to initial
position. To do this, a good absolute localization is needed. Although the per-
formance of our localization algorithm is adequate when the robot is not in
possession of the ball (accuracy of 6 cm) [1], this performance drops fast when
the robot is handling the ball.

Mantz reported in his thesis [5] that the localization performance can increase
considerable when the context of the behavior is taken into account (demon-
strated for the behaviors of the goalie). Depending on the context different pa-
rameters where used in the localization algorithm. The coming period a study
is performed if the same performance increase can be generated for field players
that are passing .

The Passing Challenge seems to be applicable for building behavior specific
localization algorithms, because in this Challenge there is a default location and
heading for the robots. Therefore it is makes sense to build behavior-specific
routines that only take one or two percepts as input.

Further, the behavior specific localization algorithms do not have to be lim-
ited to small modifications and parameter settings. Behavior specific localization
makes it also possible to include complete different localization methods from the
currently used Monte Carlo approach (such as SIFT-algorithms [6] or panoramic

Shttp://www.dutchaiboteam.nl/robocup/robocup2006/qualification /video

localization [7]) in specific circumstances, without making the general applicable
localization algorithm more and more complex.

3 Open Challenge

In the RoboCup symposium article [7] the Panoramic Localization algorithm
is described to get a reliable estimate of the current bearing of the robot. The
algorithm distinguishes the appearance of the surroundings in different direc-
tions by learning the frequency of the many random color-transitions above the
horizon. To be able to learn these color-transitions in natural environments, an
automated color clustering algorithm is needed. The details of this algorithm
were omitted in the article, but are described in this report. The power of this
automated color clustering algorithm was demonstrated during the Dutch Open.

At the competition in Bremen we will demonstrate that the algorithm cannot
only be used for a reliable estimate of the bearing, but also for a reliable estimate
of the current position. To do this, the frequency of color-transitions has to be
learned on multiple spots distributed on the field. Already with 5 learned spots
the robot can estimate its position with an accuracy of less than 25 cm, without
the use of any artificial landmark. The extension of the Panoramic Localization
algorithm to estimate the current position is described in the section after the
automated color clustering.

3.1 Automated Color Clustering

Autoshutter To be able to operate in natural environments with a wide variety
of lighting conditions, the camera of the Sony Aibo can adjust its hardware
settings for the shutter time, the camera gain and the white balance. While
our approach has no need for setting the white balance (as we find the most
important color by clustering anyway, whatever the white balance might be),
the camera gain and the shutter time influence greatly the quality of the images.
Too dark images contain noise in all three channels, while too bright images tend
to saturate and therefore loose information.

Choosing the right setting is always a compromise. On one hand, we want
the dynamic range of the brightness to be as big as possible. To a certain extend,
this can be reached by increasing the camera gain, but beyond that we have to
increase the shutter time. This, on the other hand, leads to more motion blur in
the images and therefore decreases the sharpness.

We experimentally determined that the dynamic range (measured as the
distance between the 15-percentile and the 85-percentile of the distribution of
the Y channel) of normal images taken under optimal light circumstances is
around 100. We now want to determine for each camera setting the dynamic
range (starting with slow shutter, high gain and ending with fast shutter, low
gain). We require that the dynamic range is at least 80, and of all remaining
valid camera settings we choose the one with the highest shutter speed and lowest
camera gain (in that order). As it takes a while until new camera settings get

active and the automatic white balance gets stable, we wait for 10 frames before
we estimate the dynamic range. Therefore, selecting the best camera settings
takes approximately 3 seconds to complete.

Color clustering on the field Now we would like to divide the color space
of the camera into 10 characteristic color classes of more or less equal size and
distribution. Therefore, the Aibo starts collecting colors by scanning its sur-
roundings. For the localization the Aibo selects colors above the horizon, but for
the Dutch Open we showed the result when the colors on the field are collected. If
we used all seen colors directly as input for a clustering algorithm, we would end
up being capable of discriminating between all shades of green, brown and grey,
but we would miss the rather rare but much more characteristic color clusters.
So, we use Monte Carlo filter to select characteristic colors. A coarse 3D color
space histogram is generated (consisting of 323 bins) to estimate the distribution
over the color space. We filter the color buffer again by randomly picking colors
using the point-wise inverse of the occurrence frequency as probability:

Y 1

Puse—co or—in—clusterin o) = 1
! fustering COr frequin(Y,Cb,Cr) (1)

We finally end up with (depending on the structure of the color space) approxi-
mately 2.000 colors hopefully characteristic and uniformly spread colors from the
environment. We feed them into a standard implementation of an Expectation-
Maximization algorithm (as described in [8]) in order to find the strongest 10
color clusters (assuming an underlying distribution of a mixture of Gaussians;
each one defined by its center, covariance matrix and weight). After 10 iterations
we assume the clusters to have emerged and stabilized, and we compute a 6bit
color class lookup table [9] for faster access.

FExpectation :

3 i0s sN(zips, Xs
Gns < P(s|zn) = %5((;;95/)) - ZﬂN(gf;/qus?) @)

Maximization :
N

3
@

3
w

T
=

3
Il

Mz"a
@

1
,LLs — Nr. AnsTn

s

3
Il
-

Xy —)T

Adns (xn - ,U/s) (mn — Us

Z
:‘H
M=

3
Il
-

As the color class evaluation of the 643 voxels is pretty time consuming (because
for each cube we need to compute the values of 10 Gaussian distributions), we
recursively fill the lookup table from big to small scale and thereby skip the
evaluation of presumably homogeneous regions. This means that whenever we
encounter that all 8 corners of a (sub-) cube have the same color class assignment,

then we assume this color class for the whole cube. Experimental comparisons
have shown no significant difference to a completely evaluated lookup table, but
the gain in computation time is enormous: by this approximation we could speed
up the evaluation process by factor 20. The result is an unsupervised learned
color-table of the 10 most characteristic color clusters in the 3D color space.

When applied to the pixels collected on the field (below the horizon), it
became clear that the characteristic colors on the soccer-field are in the normal
color space of the Aibo (luminance/chrominance system YCbCr) to close to each
other to be automatically clustered. Instead, we converted to another color space
(Hue, Saturation, Intensity system HSI). In this color space the pixels collected
on the field are nicely distributed, as shown in figure 3.

n-
E. 3 'I"

Fig. 3. The pixels collected from a training image (left) in respectively the HS en SI
color space

In the HSI color space the characteristic colors of the field could be automat-
ically clustered, as demonstrated in figure 4.

JEE' z i

o
i

&
]

=
..: };
¥

P TR T
1.:6-.;"
1

Fig. 4. The segmentation of the color for a training image (left) and two test images
on the soccer field

The left image showed the segmentation of the original image used to learn
the clusters. The middle and right image shows that the automatically learned
cluster can be applied to images not used in the training set. The middle im-
age shows one of the beacons, the right image shows the blue goal. Because
no background was visible in the left image, no clusters are available for the
background.

Color clustering off the surroundings To learn characteristic colors in the
background, the normal YCbCr is sufficient. Yet, the solid surfaces in the back-
ground have typically slowly transitioning colors, because the lighting conditions
are not as good as on the field, and shadows are quite common. For that reason
we apply an additional filter over the pixels before they are offered to the Monte
Carlo filter:

When scanning an image, we only store colors whose distance to the next
neighboring color (in vertical direction) exceeds a certain threshold value. The
metric we use is a Manhattan distance [10] modified in such a way that blue-green
and white-yellow transitions in the YCbCr color-space are amplified (which are
naturally hard to discriminate with on Aibo images). The threshold value is the
dynamic estimate of the 95-percentile of all measured color distances, therefore
assuming that approximately one of 20 pixels is situated on an edge. In this
way, only the (hopefully clearer) near-edge colors are used instead of the slowly
transitioning colors of solid surfaces (due to shadows etc).

Yi Y
Cby, Cb || = |1 = Ya|[+(|Cb1 — Cba|[+||Cr1 — Cr2||[+[[[Cb1 — Cba|| — [|Cr1 — Cr2|||
CT1 CT‘Q

(4)

Figure 5 shows exemplary the result of the automatic color clustering pro-
cess when only color-transitions above the horizon were taken into account for
clustering. The strongest 6 clusters contain different shades of the background
color (different shades of brown), while the remaining 4 contain (at least from
the point of view of a human observer) contain the interesting colors (blue, yel-
low, pink and dark blue). Note the green of the field is excluded because that
only colors above the horizon are taken into account; otherwise green would have
been the strongest cluster.

3.2 Position Estimation with Panoramic Localization

The algorithm described in [7] can be used to get a robust bearing estimate
together with a confidence value for a previously trained spot. As we finally
want to use this algorithm to obtain full localization we extended the approach
to support multiple training spots. The main idea is that the robot determines
to which amount its current position resembles with the previously learned spots
and then uses interpolation to estimate its exact position. As we think that this
approach could also be useful for the RoboCup @ home-league (where robot
localization in complex environments like kitchens and living rooms is required)

Fig. 5. Unsupervised color clustering.

it could become possible that we finally want to store a comprehensive panorama
model library containing dozens of previously trained spots (for an overview see
part IT of [4]).

However, due to the computation time of the feature space conversion and
panorama matching, per frame only a single training spot and its corresponding
panorama model can be selected. Therefore, we developed a grid-based Monte
Carlo filter that randomly selects one of the stored panorama models for image
matching.

min(0.05, con fidence;)
P(select = Spot;) = 5
(selec poti) > confidence;)

Every panorama model is associated with a gradually changed confidence
value representing a sliding average on the confidence values we get from the
per-image matching. To compute the final position estimate, we simply weight
each training spot with its corresponding confidence value:

con fidence;

= o — (6)
> confidence;

POSILLONopot = Z position;
K3
To prove the validity of this idea, we trained the robot on five spots on
regular 4-Legged field in our robolab. The first training spot was in the center of
the field, while the other four were located along the axes approximately 1.5m
away from the center. The training itself was performed fully autonomously
by the Aibo and took less than 10 minutes. After training was complete, the
Aibo walked back to the center of the field. We recorded the found position
and kidnapped the robot to an arbitrary position around the field and let it
walk back again. Figure 3.2 shows the result of this experiment. It can be seen
that the localization is not as accurate as traditional approaches, but can still
be useful for some applications (bearing in mind that no field or landmarks are
required). We recorded repeatedly a derivation to the upper right that we think
can explain by the fact that different learning spots don’t produce equally strong
confidence value; we believe to be able to correct for that by means of confidence
value normalization in the near future.

Characteristics

20.51cm
7140 91em

28 %cm
o=
22 90z

Fig. 6. The position estimation after learning the appearance of the surroundings on
5 spots (indicated with yellow arrows). The small dots indicate the distribution of
positions reached every time the robot tried to return to the central spot after been
placed randomly somewhere on the field.

4 Conclusion

We look forward to the RoboCup 2006 to demonstrate our ideas and learn from
our competitors. We hope that our effort to operate under a wide variety of
lighting conditions combined with the use of natural landmarks facilitates the
advancement of mobile robots - and thereby robotics research itself - into more
natural environments.

Acknowledgements

The Dutch AIBO Team is financially supported by DECIS Lab, University of
Amsterdam, Technical University of Delft, Saxion University of Professional Ed-
ucation, University of Groningen and University of Utrecht. We are grateful for
the contributions by all of our team members, working on RoboCup related re-
search and other research. Special thanks to Floris Mantz, Bayu Slamet, Isaac
Esteban, Areej Mahdi, Rutger Vlek, Gert Kootstra, Andrew Koster, Jeff Ouw-
erkerk, Rico Slagmolen and Niek Wijngaards.

References

10.

. Sturm, J., Visser, A., Wijngaards, N.: Dutch aibo team: Technical report robocup

2005. Technical report, Dutch Aibo Team (2005)

Touretzky, D., Tira-Thompson, E.: Tekkotsu: a sony aibo application development
framework. The Neuromorphic Engineer 1(2) (2004) 12

Mahdi, A., de Greef, M., van Soest, D., Esteban, I.: On joint actions for an aibo
team. Technical report, Universiteit van Amsterdam (2006)

Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Intelligent robotics and
autonomous agents. The MIT Press, Cambridge, MA (2005)

Mantz, F.: A behavior-based vision system on a legged robot. Master’s thesis,
Delft University of Technology (2005)

Lowe, D.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(2) (2004) 91-110

Sturm, J., van Rossum, P., Visser, A.: Panoramic localization in the 4-legged
league. In: Proc. 10th RoboCup International Symposium, Bremen (2006) To be
published in the Lecture Notes on Artificial Intelligence series, Springer Verlag,
Berlin.

Verbeek, J.: Mixture models for clustering and dimension reduction. PhD thesis,
Universiteit van Amsterdam (2004)

. Nisticé, W., Rofer, T.: Improving percept reliability in the sony four-legged league.

In: RoboCup 2005: Robot Soccer World Cup IX. Lecture Notes in Artificial Intel-
ligence, Springer (2006)

Sridharan, M., Stone, P.: Real-time vision on a mobile robot platform. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems. (2005)

