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Abstract— In this paper, we present a novel approach for
identifying objects using touch sensors installed in the finger
tips of a manipulation robot. Our approach operates on
low-resolution intensity images that are obtained when the
robot grasps an object. We apply a bag-of-words approach
for object identification. By means of unsupervised clustering
on training data, our approach learns a vocabulary from
tactile observations which is used to generate a histogram
codebook. The histogram codebook models distributions over
the vocabulary and is the core identification mechanism. As
the objects are larger than the sensor, the robot typically needs
multiple grasp actions at different positions to uniquely identify
an object. To reduce the number of required grasp actions,
we apply a decision-theoretic framework that minimizes the
entropy of the probabilistic belief about the type of the object.
In our experiments carried out with various industrial and
household objects, we demonstrate that our approach is able
to discriminate between a large set of objects. We furthermore
show that using our approach, a robot is able to distinguish
visually similar objects that have different elasticity properties
by using only the information from the touch sensor.

I. INTRODUCTION

Touch is one of the five traditional senses that were

already described by Aristotele. Humans use and rely on

the sensor information from the skin while manipulating

objects for a variety of sub-tasks, such as object localization,

identification, and grip estimation. Additionally, there are

many everyday objects that appear visually similar but can be

easily distinguished using tactile sensing such as ripe versus

unripe fruits. Also blind people heavily rely on their touch

sense, using it to read and manipulate objects.

Accordingly, it seems very desirable to also have robots

equipped with tactile sensors. Over the past years, several

promising approaches have been developed on the tech-

nological or sensor side. Artificial skins that measure or-

thogonal pressure at comparably high spatial and temporal

resolutions are typically composed of elastic, conductive, or

resistive polymers, which change their electrical properties

depending on the applied pressure. They can, in principle,

be manufactured to cover larger parts of a robot at relatively

low cost. Several research groups reported [9], [10], [11] to

have successfully wrapped substantial parts of the surface of

their robots using such sensors, for example, to ease human-

machine interaction or to improve the robustness of object

manipulation tasks.

In this paper, we show how a robotic manipulator can

identify various industrial and household objects purely

All authors are with the University of Freiburg, Department of Computer
Science, D-79110 Freiburg, Germany
{schneida, sturm, stachnis, reisert, hans.burkhardt,
burgard}@informatik.uni-freiburg.de

Fig. 1: Left: A manipulation robot with touch-sensitive

finger tips learns to distinguish a large set of objects (here:

a coffee mug) solely by using its touch sense. In the image,

both the cup and (at the bottom end) the two fingers of

the robot’s gripper are visible. Right: Tactile images of the

sensor array in the left and the right finger. The robot is

perceiving the handle of the cup.

from the observations of its touch-sensitive fingers. Given

low-resolution intensity images recorded with the artificial

skin, we apply k-means as unsupervised clustering on the

training dataset to create a vocabulary for our bag-of-features

classifier. Based on the vocabulary, we learn a codebook his-

togram. This histogram is a distribution over the occurrence

of cluster centroids in the observed dataset. The robot is

then able to use these distributions for robustly recogniz-

ing a large set of different objects requiring only a small

number of grasp actions carried out at different positions.

We also present an approach based on a decision-theoretic

framework to minimize the number of required grasp actions.

In particular, our approach efficiently estimates the expected

information gain of potential future grasp actions based on

the observations made during training. Experiments carried

out with a large set of different objects demonstrate that our

approach is able to reliably discriminate between objects.

It is even possible to differentiate objects that are visually

similar.

II. RELATED WORK

Tactile sensors [12], [19] are commonly defined as “a

device that can measure a given property of an object or

contact event through physical contact between sensor and

object” that is able to sense one or more of the following

modalities: pressure, normal and sheer forces, torques, slip,

vibrations, or temperature. Important properties of a sensor

are its spatial and temporal resolution, noise, hysteresis,

creep, and aging. Different mechatronic principles have been

explored in the past, such as pressure-sensitive conduc-



tive polymers [20], piezo-resistive sensors [7], piezo-electric

vibration sensors [13], and capacitive sensors which can

additionally measure the sheer forces [4] or temperature [3].

Tactile sensors have been used in the past to explore the

3D shape of objects [2]. Others have used tactile sensors to

detect ridges and bumps in the material [14] by sliding the

robotic finger over an object. Sensors based on piezo-electric

vibration have been used to determine the hardness/softness

of probed (biological) objects [15]. Force-sensitive fingers

have been used to control the robot’s position [6], i.e.,

to continuously keep the finger in physical contact while

moving the object. It has also been shown that tactile

sensors can be used to estimate the 3D pose of objects with

known shapes [16]. Notably, little information is recovered

from the tactile sensor in this work, resulting in multi-

modal distributions due to ambiguities during the first grasps,

which is a problem we are also dealing with in our work.

A work relatively close to ours is that of Russel et. al.,

who used tactile sensors for object classification [17]. Their

approach extracts geometric features like point, line, or area

contacts and integrates them time to classify the objects into

generic classes such as boxes, spheres, cylinders etc. Later,

Russel [18] showed that a similar approach can also be used

for object classification using an 8-whisker tactile sensor on

a robotic gripper. In contrast to their work, our method is

not restricted to pre-defined geometric shapes. Rather, our

method is able to recognize typical real-world objects with

arbitrary shapes.

III. TOUCH SENSOR OBSERVATIONS

A. Sensor principle

The robot used for gathering the data and carrying out the

experiments is a RWI B21r robot equipped with a 7-DOF

manipulator. The robot’s end-effector is a 1-DOF gripper

consisting of two fingers which both are equipped with a

Weiss Robotics sensor DSA 9205 for gathering tactile im-

ages [20]. Each tactile sensor array contains 84 sensor cells

arranged in 6 columns and 14 rows with a size of 24 mm by

51 mm. The maximum scanning rate for the sensor is 240 fps.

Each sensor cell measures the conductivity of an elastic

rubber foam above it. When a force is applied to the rubber

foam, the binding polymer gets compressed thus lowering

the electrical resistance of the material. The calibration of

the sensor array turned out to be difficult in consequence of

the sensor principle. For example, due to memory effects of

the rubber foam, we took a reference measurement before

the experiments were started (with no pressure on all cells).

Furthermore, we normalized all measurements to the sensor’s

maximum response, such that we obtained for each finger a

measurement Z ∈ [0, 1]6×14.

B. Notation

In the remainder of this paper, we use the following

notation for a single touch observation z as

z =< Zleft, Zright, h, w >,

Fig. 2: Experimental setup. The robot grasps an object o
at different positions. Each tactile observation zi is then

stored together with the object label in the database D =
{< z1, o1 >, . . . , < zN , oN >}.

where Zleft, Zright ∈ [0, 1]6×14 are the observations of the

sensor matrix of the left and right finger, while h ∈ R refers

to the current height of the gripper and w ∈ R refers to the

current opening width of the fingers.

C. Data Acquisition

To acquire the training data, we present a set of n different

objects denoted by O = {1, . . . , n} to the robot, including

industrial objects like metal cuboids or cylinders and house-

hold objects like a cup, a toy, and a bottle. The robot grasps

each object m times at different heights. This results in a

set of N = nm observations D = {< zi, oi >}Ni=1. From

this set, we sample training sets Dtraining for our experiments,

including the true object labels, and a disjoint test sets Dtest

without the object labels for evaluation.

D. Distance Metric for Tactile Observations

Two images R,S (here R,S ∈ [0, 1]6×14) can be com-

pared by computing the Euclidean distance pixel by pixel:

d(R,S) =
∑

x

∑

y

|rxy − sxy|. (1)

To allow for small translations of the object in the robot’s

fingers, we do not discount vertical shifts, i.e.,

dist(R,S) = min
τ=1,...,k

(d(R, shift(S, τ)). (2)

From there, we can define a distance function for the

difference between observations z1, z2 as

dist(z1, z2) = α
(

dist(Z left
1 , Z left

2 ) + dist(Z right
1 , Z right

2 )
)

+ (1− α)|w1 − w2|, (3)

where α ∈ [0, 1] is a weighting factor determining the

influence of differences in touch and finger distance. In order

to circumvent scaling issues between both distance measures,

we normalized both of them to have unit variance on our

training dataset.

IV. THE BAG-OF-FEATURES APPROACH

As the finger of the robot is much smaller than all of

our objects, the tactile observations the robot perceives of

these objects are generally only partial views. To perform the

classification based on these local image patches, we apply

a variant of the so-called bag-of-features approaches [21],



Fig. 3: Application of the bag-of-features approach with 3

objects described using 5 features. The objects are: bottle,

beer glass, and coffee mug. The features in the vocabulary

are thick, medium, thin vertical, thin horizontal, and thin

diagonal feature. The robot grasps each object multiple

times at different positions, indicated by the highlighted

rectangles. This results in a characteristic histogram per

object, containing the occurrence frequency of each feature

in the object.

[5], [1] which have been successfully applied in the area of

computer vision. Bag-of-features techniques are appealing

because of both, their simplicity and power. The key idea of

the bag-of-features approach is to describe the observations

with a common vocabulary of features. For tactile perception,

the vocabulary might include features such as “straight”,

“round”, and “thin” observations. Given that the feature

vocabulary is rich enough, the resulting feature histograms

are well suited for object classification. For this purpose,

a so-called codebook needs to be learned that contains the

feature histograms of the trained objects. Figure 3 graphi-

cally illustrates the process of the codebook generation over

objects given a vocabulary.

A. Unsupervised Creation of the Tactile Vocabulary

In practice, the appropriate vocabulary strongly depends

on the objects that the robot is supposed to grasp so that pre-

defined vocabularies will not suffice in general. Therefore,

our approach is to learn a set of characteristic features

automatically from the observed training data. To achieve

this, our approach applies the k-means clustering algorithm

directly on the observed training data z ∈ Dtraining. This re-

sults in k cluster centers (or centroids) c1, . . . , ck, computed

according to Alg. 1. The centroids are the individual words

of our vocabulary. During k-means clustering, we use the

distance function as defined in Eq. 3, thereby allowing the

tactile images to have small vertical displacements by Eq. 2.

In the remainder of this paper, we consider the set of

clusters/centroids as the vocabulary that we use to describe

the tactile observations.

B. Codebook Generation

As already mentioned above, the vocabulary described

in the previous section is used to generate a codebook. A

codebook entry h
o for an object o describes the distribution

over centroids calculated from the training data. Each h
o is

a histogram with k bins, h
o ∈ R

k. The overall set of such

histograms for the codebook is denoted by H .

To build up a codebook, we initialize h
o = 0 and update

each bin ho
i of h

o according to the observations z of object o

Initialize ci, i = 1, . . . , k to k random zt ∈ D
repeat

forall zt ∈ D do

bt
i ←

{

1 if dist(zt, ci) = minj dist(zt, zj)
0 otherwise

end

forall ci, i = 1, . . . , k do

ci ←
∑

t bt
iz

t/
∑

t bt
i

end
until ci converge ;

Algorithm 1: The k-means clustering algorithm is used to

generate a vocabulary for the bag-of-features approach.

in Dtraining by

ho
i ← ho

i + exp(−dist(ci, z)/l), (4)

where l is the length scale parameter in the observation dis-

tance space. After processing all observations, the individual

h
o must be normalized.

The key idea of the codebook is to have a compact

representation of the objects that allows us to efficiently

compute the likelihood that a new observation (in Dtest) is

generated by touching a specific object o. In the next section,

we explain how to compute this likelihood.

C. Observation Model

To compute the distribution over potential object classes

based on an observation, we proceed as follows. By applying

Bayes rule, we can write

p(o | z) = ηp(z | o)p(o), (5)

where η is a normalizing constant ensuring that the left-

hand side sums up to one over all o. The term p(o) is the

prior over the objects. In practice, this can be estimated from

the training data or alternatively assumed to be uniformly

distributed.

To compute the observation model p(z | o), we generate a

histogram h
z of a single observation z according to Eq. 4. As

a result, we have two distributions over feature occurrences,

and thus, we can express p(z | o) by computing the similarity

between the feature histogram of current observation and the

histogram stored in the codebook.

In the literature, there exist multiple ways for computing

the similarity between histograms. Among the popular mea-

sures for comparing histograms [8] are the histogram inter-

section, the χ2 distance, and the Kullback Leibler divergence

(KLD). In our experiments, the histogram intersection turned

out to yield the best results. This is probably due to the fact

that the χ2 distance and the KLD are heavily influenced by

features with low support – an effect that can be observed

frequently in our dataset. Thus, the observation model, which

is based on the histogram intersection, is given by

p(z | o) ∝
k

∑

i=1

min(hz
i ,h

o
i ). (6)



Fig. 4: Various objects used for the experiments. Top row: Visual image of each object Bottom row: Tactile images of

left and right finger of each object From left to right: cuboid, triangle, t-object, handle, cylinder, door key, large cup,

small cup, goofy, tiger, figure, mobile, bottle, kaleidoscope, tennis ball, and soft ball.

Fig. 5: Vocabulary c1, . . . , ck created using unsupervised clustering from the training data with k = 50 clusters. For

visualization purposes, only the centroid corresponding to the tactile image of the left finger is depicted.

V. SELECTING OBSERVATION ACTIONS

To identify an object, the robot has to carry out multiple

grasping actions at different height levels. Intuitively, it

seems that an uninformed grasping strategy is not optimal.

For example, a large number of grasps might be needed

to distinguish kitchen utensils that have similar shafts. We

therefore propose an informed technique based on concepts

from information theory. Our approach seeks to determine

the action which will provide the highest expected informa-

tion gain, that is, the highest reduction of uncertainty in the

posterior about potential object identity. Here, the expected

information gain is the expected change of entropy in the

posterior p(o) of the identity o of a grasped object. The

entropy is defined as

H(p(o)) =

∫

o

p(o) log p(o) do. (7)

Let a1:t be the actions carried out until the current time

step t and let z1:t be the corresponding observations. The

robot then has to select the action at+1 that provides the

highest expected reduction in entropy. Let â be an action

under consideration and ẑ be the corresponding observation

that is obtained when carrying out â.

Then, the information gain is given by

I(ẑ, â) = H(p(o | z1:t))−H(o | z1:t, ẑ)). (8)

In general, we do not know which measurements the robot

will obtain while executing action â. Therefore, we have to

integrate over all possible measurements ẑ to compute the

expected information gain

E[I(â)] =

∫

ẑ

p(ẑ | â, z1:t)I(ẑ, â) dẑ. (9)

Unfortunately, reasoning about all potential observations is

intractable for real world applications since the number of

potential measurements grows exponentially in the dimen-

sion of the measurement space. A practical approximation,

however, is to sum over observations stored in the training

set instead of integrating over the whole observation space:

E[I(â)] ≈
∑

ẑ∈Dtraining

p(ẑ | â, z1:t)I(ẑ, â) dẑ (10)

Depending on the size of the training database, this sum

might still be expensive to compute. To further reduce the

complexity, one can easily down-sample the training set.

This approach allows us to approximate the posterior

efficiently since we can directly utilize the discrete posterior

about the identity of an object. The approximations substan-

tially reduce the number of potential observations that have

to be estimated by simulation compared to the number of

possible measurements the sensor can generate. The ability

to carry out such computations efficiently is an important

prerequisite for informed action selection.

After having computed the expected information gain for

each action under consideration, we select the action at+1

with the highest expected utility

at+1 = argmax
â

E[I(â)]. (11)

Every time the robot has to make the decision of where

to grasp next, it uses Eq. 11 to determine the action at+1

with the highest expected information gain and executes it.

As soon as no action provides an expected reduction of

uncertainty or the robot reached a given level of certainty,

the identification task is completed.

In addition to the expected reduction of the entropy, one

typically has to consider a second quantity when selecting

the next action. This quantity is the actual cost of carrying

out an action, which needs to be traded off with the expected

information gain. In our setting, however, the cost measured



k 10 20 30 40 50

% correct 58.2% 72.8% 71.7% 84.4% 83.0%

TABLE I: Parameter study on the number of clusters k.

α 0.00 0.25 0.50 0.75 1.00

% correct 66.9% 84.3% 81.0% 78.3% 76.0%

TABLE II: Parameter study on the weight α between (nor-

malized) image distance and (normalized) gripper distance.

in terms of time needed to carry out an action can be

assumed to be identical for all actions since the movements

of the manipulator are carried out quickly without major

differences in the time. Thus, we ignore the time needed by

the manipulator for changing the height. Considering such a

cost, however, can be done in a straightforward manner by

adding a cost term to Eq. 11.

VI. EXPERIMENTAL RESULTS

A. Raw Data from the Touch Sensor

For testing our approach, we recorded tactile data for 16

different objects as shown in Fig. 4. The first 5 objects are

industrial parts with a relatively similar shape (like a metal

cube, a cylinder, and a triangle), while the latter 13 objects

were household objects such as cups, toys, and bottles. We

created a database of tactile observations by grasping each

object on a pre-defined path (from bottom to top). Some

objects were included twice in the dataset, both under 0◦,

and 90◦ rotation. We obtained a set of |D| = 830 tactile

observations for 21 object labels. All experiments were then

carried out on this dataset using randomized, 2-fold cross

validation, resulting in two disjoint sets Dtraining ⊂ D and

Dtest ⊂ D of |Dtraining| = |Dtest| = 415 samples for each run.

B. Vocabulary Creation

Before each run of our experiments, a vocabulary was

created from the training data Dtraining by running the k-

means algorithm. An example of the resulting centroids is

given in Fig. 5. We tried different choices for k empirically,

and found by evaluating the resulting recognition rates that

k = 50 was a reasonable choice for the number of clusters

(see Tab. I). Alternatively, one could try to find k automati-

cally, for example, by using the Bayes information criterion

(BIC). Further, we studied the influence of the weighting

factor α in the distance metric of Eq. 3 (see Tab. II). For all

subsequent experiments, we chose α = 0.5 such that both

the tactile images and the finger distance were considered

being equally important.

C. Recognition Rates

For measuring the recognition rate, we chose an object o
at random, and selected T = 10 random grasp observations

z1:T of that object from Dtest. Starting from a uniform prior

p(o) over all object classes, we computed the posterior p(o |
z1:T ) according to Eq. 5 and Eq. 6. From this posterior, we

then selected the maximum-a-posteriori (MAP) object class

ô = argmax
o

p(o | z1:T ) (12)
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Fig. 6: Comparison of the uninformed and the informed

grasping strategy depending on the number of grasp actions.

Left: household and industrial objects (full dataset). Right:

industrial objects only.

and compared it to the true object class o. In this way, we

obtained a recognition rate of 84.6% over all 21 objects.

In particular, we found that the household objects among

each other were hardly ever confused (96.2%), in contrast

to the industry objects (58.0%), that look very similar.

The confusion matrices of these experiments are depicted

in Fig. 7.

In our dataset, we also have a tennis ball and a soft ball,

two objects that appear visually almost completely similar. In

our experiments, we measured that these two objects could

be separated from each other very well, with a recognition

rate of 93.8%.

D. Active perception

We also measured whether objects can be recognized with

fewer grasps when the robot selects the grasping height

based on the expected information gain. We evaluated the

recognition rates after each test grasp in 10 independent

runs using both the uninformed and the informed grasping

strategy. The results are summarized in Fig. 6. On our full

dataset (household and industrial objects), using the infor-

mation gain strategy performs on average 5.0% better than

random grasping. In particular, one would expect that a better

grasping strategy improves the recognition rates on the more

difficult dataset of industrial objects. Indeed, we measured

a performance gain of 18.9% of the informed strategy over

the random one, raising the average recognition rate from

58.0% to 67.5%. In both experiments, a paired t-test showed

significantly improved recognition rates when choosing the

position that maximizes the expected information gain.

VII. CONCLUSION

In this paper, we presented a novel approach for object

recognition using tactile observations obtained from the

touch-sensitive fingers of a manipulation robot. Our work

belongs to the class of bag-of-features techniques and main-

tains a probabilistic belief about the object that is currently

grasped. We create a feature vocabulary for the tactile

observations using k-means clustering. To recognize objects,

we learn distributions over the feature vocabulary and use

this to create a codebook. Furthermore, we implemented a

decision-theoretic approach to active grasping that considers

the expected information gain of future actions which signif-

icantly improved the recognition performance. We validated



(a) (b) (c) (d)

Fig. 7: Confusion matrices of object recognition after 500 object recognition trials with 10 test grasps each on different

subsets of objects. (a) household & industrial objects, recognition rate: 84.6% (b) household objects only, recognition rate:

96.2% (c) industrial objects only, recognition rate: 58.0% (d) tennis ball vs. soft ball, recognition rate: 93.8%

our approach in experiments with a large range of real-world

objects and obtained highly accurate recognition results.

Despite the encouraging results there are several warrants

for future research. Instead of using the entire tactile images,

we want to explore the possibility of using local features that

are invariant to translations and orientations of the object.

Additionally, we want to look at estimating the pose of

the gripped object which could be beneficial during object

manipulation. Also, we want to look at the time profiles of

the tactile observations, for example to recognize whether

and how objects are deformable.
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