ECMR 2007 Tutorial

Learning Grid Maps with Rao-Blackwellized Particle Filters

Giorgio Grisetti and Cyrill Stachniss

University of Freiburg, Germany

Special thanks to Dirk Haehnel

What is this Talk About?

What is "SLAM"?

 Estimate the pose and the map of a mobile robot at the same time

$$p(x, m \mid z, u)$$

poses map observations & movements

Particle Filters

Who knows how a particle filter works

?

Explain Particle Filters

Skip Explanation

Introduction to Particle Filters

What is a particle filter?

- It is a Bayes filter
- Particle filters are a way to efficiently represent non-Gaussian distribution

Basic principle

- Set of state hypotheses ("particles")
- Survival-of-the-fittest

Sample-based Localization (sonar)

[video]
Courtesy of Dieter Fox

Sample-based Posteriors

Set of weighted samples

$$S = \left\{ \left\langle s^{(i)}, w^{(i)} \right\rangle \mid i = 1, \dots, N \right\}$$

The samples represent the posterior

State hypothesis Importance weight

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s(i)}(x)$$

Posterior Approximation

Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples form a function/distribution?

Rejection Sampling

- Let us assume that f(x) < 1 for all x
- Sample x from a uniform distribution
- Sample *c* from [0,1]
- if f(x) > c otherwise

keep the sample e reject the sample

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- $\mathbf{w} = f/g$
- f is called target
- g is called proposal

From Sampling to a Particle Filter

- Set of samples describes the posterior
- Updates are based on actions and observations

Three sequential steps:

- 1. Sampling from the proposal distribution (Bayes filter: prediction step)
- 2. Compute the particle weight (importance sampling) (Bayes filter: correction step)
- 3. Resampling

Monte-Carlo Localization

- For each motion ∆ do:
 - Sampling: Generate from each sample in a new sample according to the motion model $x^{(i)} \leftarrow x^{(i)} + \Delta'$
- For each observation do:
 - Weight the samples with the observation likelihood
 (i)

$$w^{(i)} \leftarrow p(z \mid m, x^{(i)})$$

Resampling

Sample-based Localization (sonar)

[video]
Courtesy of Dieter Fox

Grids Maps

- Grid maps are a discretization of the environment into free and occupied cells
- Mapping with known robot poses is easy.

Mapping using Raw Odometry

- Why is SLAM hard? Chicken and egg problem:
 - a map is needed to localize the robot and
 - a pose estimate is needed to build a map

Courtesy of Dirk Haehnel

SLAM with Particle Filters

- Particle filters have successfully been applied to localization, can we use them to solve the SLAM problem?
- Posterior over poses x and maps m

$$p(x \mid m, z, u) \implies p(x, m \mid z, u)$$
 (SLAM)

Observations:

- The map depends on the poses of the robot during data acquisition
- If the poses are known, mapping is easy

Rao-Blackwellization

poses map observations & movements $p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t})$

Factorization first introduced by Murphy in 1999

Rao-Blackwellization

$$p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) =$$

$$p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t})$$

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999

Rao-Blackwellization

$$p(x_{1:t}, m \mid z_{1:t}, u_{0:t-1}) =$$

$$p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(m \mid x_{1:t}, z_{1:t})$$

This is localization, use MCL

Use the pose estimate from the MCL and apply mapping with known poses

A Solution to the SLAM Problem

- Use a particle filter to represent potential trajectories of the robot
- **Each particle** carries its **own map**
- Each particle survives with a probability proportional to the likelihood of the observations relative to its own map
- We have a joint posterior about the poses of the robot and the map

Example

map of particle 1

map of particle 3

map of particle 2

A Graphical Model of Rao-Blackwellized Mapping

Problems in Practice

- Each map is quite big in case of grid maps
- Since each particle maintains its own map
- Therefore, one needs to keep the number of particles small

Solution:

Compute better proposal distributions

• Idea:

Improve the pose estimate **before** applying the particle filter

Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose relative to the (i-1)-th pose

$$x_t^* = \underset{x_t}{\operatorname{argmax}} p(z_t \mid x_t, m_{t-1}) \cdot p(x_t \mid x_{t-1}^*, u_{t-1})$$

map constructed so far

Motion Model for Scan Matching

Mapping using Scan Matching

[video] Courtesy of Dirk Haehnel

RBPF-SLAM with Improved Odometry

- Scan-matching provides a locally consistent pose correction
- Pre-correct short odometry sequences using scan-matching and use them as input to the Rao-Blackwellized PF
- Fewer particles are needed, since the error in the input in smaller

[Haehnel et al., 2003]

RBPF-SLAM with Scan-Matching

Map: Intel Research Lab Seattle

[video] Courtesy of Dirk Haehnel

Graphical Model for Mapping with Improved Odometry

Comparison to Standard RBPF-SLAM

- Same model for observations
- Odometry instead of scan matching as input
- Number of particles varying from 500 to 2.000
- Typical result:

Conclusion (so far...)

- The presented approach is efficient
- It is easy to implement
- Scan matching is used to transform sequences of laser measurements into odometry measurements
- Provides good results for most datasets

What's Next?

- Further reduce the number of particles
- Improved proposals will lead to more accurate maps
- Use the properties of our sensor when drawing the next generation of particles

The Optimal Proposal Distribution

$$p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) = \frac{p(z_t|x_t, m^{(i)})p(x_t|x_{t-1}^{(i)}, u_t)}{\int p(z_t|x_t, m^{(i)})p(x_t|x_{t-1}^{(i)}, u_t)dx_t}$$
[Doucet, 98]

For lasers $p(z_t|x_t, m^{(i)})$ is extremely peaked and dominates the product.

We can safely approximate $p(x_t|x_{t-1}^{(i)}, u_t)$ by a constant:

$$p(x_t|x_{t-1}^{(i)}, u_t) \mid_{x_t:p(z_t|x_t, m^{(i)}) > \epsilon} = c$$

Resulting Proposal Distribution

$$p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \simeq \frac{p(z_t|x_t, m^{(i)})}{\int_{x_t \in \{x|p(z_t|x, m^{(i)}) > \epsilon\}} p(z_t|x_t, m^{(i)}) dx_t}$$

Approximate this equation by a Gaussian:

Resulting Proposal Distribution

$$p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \simeq \frac{p(z_t|x_t, m^{(i)})}{\int_{x_t \in \{x|p(z_t|x, m^{(i)}) > \epsilon\}} p(z_t|x_t, m^{(i)}) dx_t}$$

Approximate this equation by a Gaussian:

$$p(x_t|x_{t-1}^{(i)}, m^{(i)}, z_t, u_t) \simeq \mathcal{N}(\mu^{(i)}, \Sigma^{(i)})$$

$$\mu^{(i)} = \frac{1}{\eta} \sum_{j=1}^{K} x_j p(z_t | x_j, m^{(i)})$$

$$\Sigma^{(i)} = \frac{1}{\eta} \sum_{j=1}^{K} (x_j - \mu^{(i)})(x_j - \mu^{(i)})^T p(z_t | x_j, m^{(i)})$$

h is a normalizer Sampled around the scan-match maxima

Computing the Importance Weight

Sampled points around the maximum of the observation likelihood

Improved Proposal

End of a corridor:

Corridor:

Free space:

Resampling

- In case of suboptimal/bad proposal distributions resampling is necessary to achieve convergence
- Resampling is dangerous, since important samples might get lost (particle depletion problem)

When to Resample?

- Key question: When should we resample?
- Resampling makes only sense if the samples have significantly different weights

Effective Number of Particles

$$N_{eff} = \frac{1}{\sum_{i} \left(w_t^{(i)}\right)^2}$$

- Empirical measure of how well the goal distribution is approximated by samples drawn from the proposal
- $lacksquare N_{\it eff}$ describes "the variance of the particle weights"
- $lackbox{$\blacksquare$} N_{\it eff}$ is maximal for equal weights. In this case, the distribution is close to the proposal

Resampling with N_{eff}

If our approximation is close to the proposal, no resampling is needed

■ We only resample when N_{eff} drops below a given threshold (N/2)

See [Doucet, '98; Arulampalam, '01]

Intel Research Lab

15 particles

- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

[video]

Outdoor Campus Map

- 30 particles
- 250x250m²
- 1.088 miles (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map

[video]

MIT Killian Court

• The "infinite-corridor-dataset" at MIT

Court MIT Killian

Killian LΙΣ

Dataset courtesy of Mike Bosse and John Leonard

Problems of the Gaussian Proposal

- Gaussians are uni-model distributions
- In case of loop-closures, the likelihood function might be multi-modal

Is a Gaussian an Accurate Representation for the Proposal?

Dataset	Gauss	Non-	Multi-
		Gauss	
		1 mode	modal
Intel Research Lab	89.2%	7.2%	3.6%
FHW Museum	84.5%	10.4%	5.1%
Belgioioso	84.0%	10.4%	5.6%
MIT CSAIL	78.1%	15.9%	6.0%
MIT Killian Court	75.1%	19.1%	5.8%
Freiburg Bldg. 79	74.0%	19.4%	6.6%/

Problems of the Gaussian Proposal

Multi-modal likelihood function can cause filter divergence

How to Overcome this Limitation?

- Sampling from the optimal proposal:
 - Compute the full 3d histogram
 - Sample from the histogram

Dataset	N	Execution time		
		optimal	Gausian proposal	
MIT Killian Court	80	155 h	112 min	
Freiburg Bldg. 79	30	84 h	62 min	
Intel Research Lab	30	40 h	29 min	
FHW Museum	30	38 h	27 min	
Belgioioso	30	18 h	13 min	
MIT CSAIL	30	10 h	7 min	

How to Overcome this Limitation?

Approximate the likelihood in a better way!

Sample from odometry first and the use this as the start point for scan matching

Final Approach

It work's with nearly zero overhead

Conclusion

- Rao-Blackwellized Particle Filters are means to represent a joint posterior about the poses of the robot and the map
- Utilizing accurate sensor observation leads to good proposals and highly efficient filters
- It is similar to scan-matching on a per-particle base with some extra noise
- The number of necessary particles and re-sampling steps can seriously be reduced
- How to deal with non-Gaussian observation likelihood functions
- Highly accurate and large scale map

More Details

- M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to simultaneous localization and mapping, AAAI02 (The classic FastSLAM paper with landmarks)
- M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges, IJCAI03. (FastSLAM 2.0 – improved proposal for FastSLAM)
- D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efcient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements, IROS03 (FastSLAM on grid-maps using scan-matched input)
- A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous localization and mapping without predetermined landmarks, IJCAI03 (A representation to handle big particle sets)

More Details (Own Work)

- Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, Transactions on Robotics, Volume 23, pages 34-46, 2007 (Informed proposal using laser observation, adaptive resampling)
- G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling, ICRA'05 (Informed proposal using laser observation, adaptive resampling)
- Cyrill Stachniss, Grisetti Giorgio, Wolfram Burgard, and Nicholas Roy. Analyzing Gaussian Proposal Distributions for Mapping with Rao-Blackwellized Particle Filters, IROS07 (Gaussian assumption for computing the improved proposal)

From Theory to Practice

Implementation available a open source project "GMapping" on

www.OpenSLAM.org

- Written in C++
- Can be used as a black box library

Now: 1h Practical Course on GMapping