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What is this Talk About?

SLAM
mapping
integrated
approaches
exploration

path planning

localization

active
localization




What is "SLAM" ?

= Estimate the pose and the map of a mobile
robot at the same time

p(z,m | z,u)

t ¢+ ¢

poses map observations & movements

Courtesy of Dirk Haehnel




Particle Filters

Who knows how a particle filter works

(7

Explain Particle Filters: Skip Explanation:




Introduction to Particle Filters

What is a particle filter?
= [t is a Bayes filter

= Particle filters are a way to efficiently represent
non-Gaussian distribution

Basic principle
= Set of state hypotheses (“particles”)

= Survival-of-the-fittest




mple-based Localization (sonar)

[video]
Courtesy of Dieter Fox




Sample-based Posteriors

® Set of weighted samples
S = {<s(i),w(i>> |1 = 1,...,N}

|

State hypothesis Importance weight

" The samples represent the posterior

N
p(x) = ) w0 (x)
i=1




Posterior Approximation

Particle sets can be used to approximate functions

f(x)

samples

f(x)

samples

probability / weight
probability / weight
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®" The more particles fall into an interval, the higher
the probability of that interval

" How to draw samples form a function/distribution?




Rejection Sampling

Let us assume that f(x)<1 for all x
Sample x from a uniform distribution

Sample ¢ from [0,1]

if f(X) > c keep the sample
otherwise reject the sample
f(x)
= samples
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Importance Sampling Principle

" We can even use a different distribution g to
generate samples from f

" By introducing an importance weight w, we can
account for the “differences between gand f ”

" w=f/g

_ proposal(x)
" f is called target target(x)
_ samples
" gis called
proposal

probability / weight
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From Sampling to a Particle Filter

" Set of samples describes the posterior
" Updates are based on actions and observations

Three sequential steps:

1. Sampling from the proposal distribution
(Bayes filter: prediction step)

2. Compute the particle weight (importance sampling)
(Bayes filter: correction step)

3. Resampling




Monte-Carlo Localization

= For each motion D do:

* Sampling: Generate from each sample in
a hew sample according to the motion

model MO ONRYN

= For each observation do:

" Weight the samples with the observation

likelihood | .
w' — p(z | m,z())

" Resampling




mple-based Localization (sonar)

[video]
Courtesy of Dieter Fox




Grids Maps

" Grid maps are a discretization of the
environment into free and occupied cells

" Mapping with known robot poses is easy.




Mapping using Raw Odometry

" Why is SLAM hard? Chicken and egg problem:
" 3 map is needed to localize the robot and
" a pose estimate is needed to build a map

[video] Courtesy of Dirk Haehnel




SLAM with Particle Filters

" Particle filters have successfully been applied
to localization, can we use them to solve the
SLAM problem?

" Posterior over poses X and maps m
plz | m,z,u) == p(x,m|z,u)
(localization) (SLAM)

Observations:

" The map depends on the poses of the robot
during data acquisition

" If the poses are known, mapping is easy




Rao-Blackwellization
poses map observations & movements

SN
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Factorization first introduced by Murphy in 1999




Rao-Blackwellization
poses map observations & movements

SN

p(x1:4,m | 21:4,U0:t—1) =
I p(wlzt | Zl:tauO:t—l) °P(m | 5'31:75,21:75)

SLAM posterior I

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999




Rao-Blackwellization

p(i’?l:tam | Zl:tauO:t—l) —
p(ﬂUlzt ‘ Zl:tauOIt—l) -p(m ‘ xlitazlit)




A Solution to the SLAM Problem

B Use a particle filter to represent
potential trajectories of the robot

B Each particle carries its own map

B Each particle survives with a probability
proportional to the likelihood of the
observations relative to its own map

B We have a joint posterior about the
poses of the robot and the map

[Murphy, 99; Montemerlo et al., 03; Haehnel et al., 03; Eliazar and Parr, 03; Grisetti et al., 05]







A Graphical Model of Rao-
Blackwellized Mapping
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Problems in Practice

= Each map is quite big in case of grid maps
= Since each particle maintains its own map

= Therefore, one needs to keep the number
of particles small

= Solution:
Compute better proposal distributions

» Idea:
Improve the pose estimate before
applying the particle filter




Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose
relative to the (i-1)-th pose

5k

T, = argagnaXp(Zt |z, my_1) - p(ae | @f_q,up—1)
t

current measurement robot motion

map constructed so far




Motion Model for Scan Matching
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Courtesy of Dirk Haehnel




Mapping using Scan Matching

[video]

Courtesy of Dirk Haehnel




RBPF-SLAM with Improved
Odometry

= Scan-matching provides a locally
consistent pose correction

= Pre-correct short odometry sequences
using scan-matching and use them as
input to the Rao-Blackwellized PF

= Fewer particles are needed, since the
error in the input in smaller

[Haehnel et al., 2003]




RBPF-SLAM with Scan-Matching

Map: Intel Research Lab Seattle

[video] Courtesy of Dirk Haehnel




Graphical Model for Mapping with
Improved Odometry
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Comparison to Standard RBPF-SLAM

Same model for observations

= Odometry instead of scan matching as input

= Number of particles varying from 500 to 2.000
= Typical result:

Courtesy of Dirk Haehnel




Conclusion (so far...)

m The presented approach is efficient
m It is easy to implement

m Scan matching is used to transform sequences of
laser measurements into odometry measurements

m Provides good results for most datasets




What's Next?

m Further reduce the number of particles

m Improved proposals will lead to more
accurate maps

m Use the properties of our sensor when
drawing the next generation of particles




The Optimal Proposal Distribution
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Resulting Proposal Distribution

p(z¢| g, mD)

p($t|$§?1, m(Z)a 2t Ut) a

fxtE{x|p(zt|x,m(’i))>e} p(zt|zt, m(i))dxt

Approximate this equation by a Gaussian:

maximum reported —
by a scan matcher

Gaussian
approximation

N

Draw next
co0@eo.. generation of

—~~— Sampled points around samples
the maximum




Resulting Proposal Distribution

p(z¢| g, mD)
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Computing the Importance Weight
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Improved Proposal

End of a corridor:

Corridor: -

Free space:




Resampling

m In case of suboptimal/bad proposal
distributions resampling is necessary to
achieve convergence

m Resampling is dangerous, since important
samples might get lost
(particle depletion problem)




When to Resample?

)\

@ @
@ @ ®
t-3 t-2 t-1 t

m Key question: When should we resample?

m Resampling makes only sense if the
samples have significantly different
weights




Effective Number of Particles

B Empirical measure of how well the goal distribution
is approximated by samples
drawn from the proposal

] Neﬁ describes “the variance of the particle weights”

m N is maximal for equal weights. In this case, the
distribution is close to the proposal




Resampling with N_,

m If our approximation is close to the
proposal, no resampling is needed

m We only resample when N4 drops below a
given threshold (N/2)

m See [Doucet, '98; Arulampalam, '01]




Typical Evolution of N_,

visiting new - i ——

areas closing the

first Ioop\

visiting
known areas

second loop closure




Intel Research Lab
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= 15 particles

= four times faster
than real-time
P4, 2.8GHz

= 5cm resolution
during scan
matching

= 1cm resolution in
final map

[video]




Outdoor Campus Map

[video]

30 particles
250x250m?

1.088 miles
(odometry)

20cm resolution
during scan
matching

30cm resolution
in final map




MIT Killian Court

» The “infinite-corridor-dataset” at MI
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Problems of the Gaussian Proposal

m Gaussians are uni-model distributions

m In case of loop-closures, the likelihood
function might be multi-modal

likelihood
0.02 r .

0.01
ﬂ =

18.5
18
1735
17
16.5

X




Is a Gaussian an Accurate
Representation for the Proposal?

Dataset Gauss | Non- Multi-
Gauss
1 mode modal
Intel Research Lab || 89.2% | 7.2%
FHW Museum 84.5% | 10.4%
Belgioioso 84.0% | 10.4%|| 5.6%
MIT CSAIL 78.1% | 15.9%l|| 6.0%
MIT Killian Court || 75.1% | 19.1%\ 5.8%
Freiburg Bldg. 79 || 74.0% | 19.4% \6 6%/




Problems of the Gaussian Proposal

m Multi-modal likelihood function can cause
filter divergence

likelihood
0.02

0.01

18.5




How to Overcome this Limitation?

m Sampling from the optimal proposal:
s Compute the full 3d histogram
m Sample from the histogram

Dataset N Execution time
optimal | Gausian proposal

MIT Killian Court | 80 155 h 112 min
Freiburg Bldg. 79 | 30 84 h 62 mMin
Intel Research Lab || 30 40 h 29 min
FHW Museum 30 38 h 27 min
Belgioioso 30 18 h 13 min
MIT CSAIL 30 10 h 7 min




How to Overcome this Limitation?

m Approximate the likelihood in a better way!

odometry odometry with uncertainty

m Sample from odometry first and the use
this as the start point for scan matching




Final Approach

m It work’s with nearly
zero overhead

likelihood
0.02 r N

0.01




Conclusion

m Rao-Blackwellized Particle Filters are means to
represent a joint posterior about the poses of the
robot and the map

m Utilizing accurate sensor observation leads to good
proposals and highly efficient filters

m It is similar to scan-matching on a per-particle base
with some extra noise

m The number of necessary particles and
re-sampling steps can seriously be reduced

m How to deal with non-Gaussian observation
ikelihood functions

m Highly accurate and large scale map




More Detaills

m M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to simultaneous localization and mapping, AAAIO2
(The classic FastSLAM paper with landmarks)

= M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges, IJCAIO3.

(FastSLAM 2.0 — improved proposal for FastSLAM)

m D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efcient FastSLAM
algorithm for generating maps of large-scale cyclic environments
from raw laser range measurements, IROS03
(FastSLAM on grid-maps using scan-matched input)

m A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous
localization and mapping without predetermined landmarks, 1IJCAIO3
(A representation to handle big particle sets)




More Details (Own Work)

m  Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved
Techniques for Grid Mapping with Rao-Blackwellized Particle Filters,
Transactions on Robotics, Volume 23, pages 34-46, 2007
(Informed proposal using laser observation, adaptive resampling)

m G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and
selective resampling, ICRA’05
(Informed proposal using laser observation, adaptive resampling)

m  Cyrill Stachniss, Grisetti Giorgio, Wolfram Burgard, and Nicholas
Roy. Analyzing Gaussian Proposal Distributions for Mapping with
Rao-Blackwellized Particle Filters, IROS07
(Gaussian assumption for computing the improved proposal)




From Theory to Practice

m Implementation available a open source
project “GMapping” on
www.OpenSLAM.org

m Written In C++

m Can be used as a black box library

Now: 1h Practical Course on GMapping



http://www.OpenSLAM.org

