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What is this Talk About?

mapping

path planning

localization
SLAM

active 
localization

exploration

integrated 
approaches



What is “SLAM” ?

§ Estimate the pose and the map of a mobile 
robot at the same time

Courtesy of Dirk Haehnel

poses map observations & movements

[video]



Particle Filters

Who knows how a particle filter works

Explain Particle Filters Skip Explanation



Introduction to Particle Filters

What is a particle filter?

§ It is a Bayes filter

§ Particle filters are a way to efficiently represent 
non-Gaussian distribution

Basic principle

§ Set of state hypotheses (“particles”)

§ Survival-of-the-fittest



Sample-based Localization (sonar)

Courtesy of Dieter Fox
[video]



§ Set of weighted samples

Sample-based Posteriors

§ The samples represent the posterior

State hypothesis Importance weight



§ Particle sets can be used to approximate functions

Posterior Approximation

§ The more particles fall into an interval, the higher 
the probability of that interval

§ How to draw samples form a function/distribution?



§ Let us assume that f(x)<1 for all x
§ Sample x from a uniform distribution

§ Sample c from [0,1]

§ if f(x) > c keep the sample
otherwise reject the sample

Rejection Sampling
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§ We can even use a different distribution g to 
generate samples from f
§ By introducing an importance weight w, we can 

account for the “differences between g and f ”

§ w = f / g
§ f is called target

§ g is called
proposal

Importance Sampling Principle



§ Set of samples describes the posterior

§ Updates are based on actions and observations

Three sequential steps:

1. Sampling from the proposal distribution 
(Bayes filter: prediction step)

2. Compute the particle weight (importance sampling)
(Bayes filter: correction step)

3. Resampling 

From Sampling to a Particle Filter



§ For each motion ∆ do:
§ Sampling: Generate from each sample in 

a new sample according to the motion 
model

§ For each observation do:

§Weight the samples with the observation 
likelihood

§ Resampling

Monte-Carlo Localization



Sample-based Localization (sonar)

Courtesy of Dieter Fox
[video]



Grids Maps

§ Grid maps are a discretization of  the 

environment into free and occupied cells

§ Mapping with known robot poses is easy.



Mapping using Raw Odometry

§ Why is SLAM hard? Chicken and egg problem:

§ a map is needed to localize the robot and 

§ a pose estimate is needed to build a map

Courtesy of Dirk Haehnel[video]



§ Particle filters have successfully been applied 

to localization, can we use them to solve the 

SLAM problem?

§ Posterior over poses x and maps m

Observations:

§ The map depends on the poses of the robot 

during data acquisition

§ If the poses are known, mapping is easy

SLAM with Particle Filters

(localization) (SLAM) 



Rao-Blackwellization

Factorization first introduced by Murphy in 1999

poses map observations & movements



Rao-Blackwellization

SLAM posterior

Robot path posterior

Mapping with known poses

Factorization first introduced by Murphy in 1999

poses map observations & movements



Rao-Blackwellization

This is localization, use MCL

Use the pose estimate 
from the MCL and apply 

mapping with known poses



A Solution to the SLAM Problem

nUse a particle filter to represent 
potential trajectories of the robot

n Each particle carries its own map

n Each particle survives with a probability 
proportional to the likelihood of the 
observations relative to its own map

nWe have a joint posterior about the 
poses of the robot and the map

[Murphy, 99; Montemerlo et al., 03; Haehnel et al., 03; Eliazar and Parr, 03;  Grisetti et al., 05]



Example

map of particle 1 map of particle 3

map of particle 2

3 particles



A Graphical Model of Rao-
Blackwellized Mapping
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Problems in Practice

§ Each map is quite big in case of grid maps
§ Since each particle maintains its own map
§ Therefore, one needs to keep the number 

of particles small

§ Solution:
Compute better proposal distributions

§ Idea:
Improve the pose estimate before 
applying the particle filter



Pose Correction Using Scan Matching

Maximize the likelihood of the i-th pose 
relative to the (i-1)-th pose

robot motioncurrent measurement

map constructed so far



Motion Model for Scan Matching

Raw Odometry
Scan Matching

Courtesy of Dirk Haehnel



Mapping using Scan Matching

Courtesy of Dirk Haehnel

[video]



RBPF-SLAM with Improved 
Odometry

§ Scan-matching provides a locally 
consistent pose correction

§ Pre-correct short odometry sequences 
using scan-matching and use them as 
input to the Rao-Blackwellized PF

§ Fewer particles are needed, since the 
error in the input in smaller

[Haehnel et al., 2003]



RBPF-SLAM with Scan-Matching
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Graphical Model for Mapping with 
Improved Odometry

m

z

kx

1u'

0u
zk-1

...
1z ...

uk-1 ...
k+1z

uk z
u2k-1

2k-1...

x0

k

x2k

z2k

...

u'2u' n

...

xn·k

z
u u(n+1)·k-1n·k

n·k+1

...
(n+1)·k-1z...

n·kz

...

...



Comparison to Standard RBPF-SLAM

§ Same model for observations

§ Odometry instead of scan matching as input

§ Number of particles varying from 500 to 2.000

§ Typical result:

Courtesy of Dirk Haehnel



Conclusion (so far…)

n The presented approach is efficient

n It is easy to implement 

n Scan matching is used to transform sequences of 
laser measurements into odometry measurements

n Provides good results for most datasets



What’s Next?

n Further reduce the number of particles

n Improved proposals will lead to more 
accurate maps

n Use the properties of our sensor when 
drawing the next generation of particles



The Optimal Proposal Distribution

For lasers is extremely peaked 
and dominates the product.

[Doucet, 98]

We can safely approximate
by a constant:



Resulting Proposal Distribution

Approximate this equation by a Gaussian:

Sampled points around 
the maximum

maximum reported 
by a scan matcher

Gaussian 
approximation

Draw next 
generation of 
samples



Resulting Proposal Distribution

η is a normalizer Sampled around the scan-match maxima

Approximate this equation by a Gaussian:



Computing the Importance Weight

Sampled points around the 
maximum of the observation 
likelihood



Improved Proposal

End of a corridor:

Corridor:

Free space:



Resampling

n In case of suboptimal/bad proposal 
distributions resampling is necessary to 
achieve convergence

n Resampling is dangerous, since important 
samples might get lost
(particle depletion problem)

t-3 t-2 t-1 t



When to Resample?

n Key question: When should we resample?

n Resampling makes only sense if the 
samples have significantly different 
weights

t-3 t-2 t-1 t



Effective Number of Particles

nEmpirical measure of how well the goal distribution 
is approximated by samples 
drawn from the proposal

n Neff describes “the variance of the particle weights”

n Neff is maximal for equal weights. In this case, the 
distribution is close to the proposal



Resampling with Neff

n If our approximation is close to the 
proposal, no resampling is needed

n We only resample when Neff drops below a 
given threshold (N/2)

n See [Doucet, ’98; Arulampalam, ’01]



Typical Evolution of Neff

visiting new 
areas closing the 

first loop

second loop closure

visiting 
known areas



§ 15 particles

§ four times faster 
than real-time
P4, 2.8GHz

§ 5cm resolution 
during scan 
matching

§ 1cm resolution in 
final map

Intel Research Lab

[video]



Outdoor Campus Map

§ 30 particles

§ 250x250m2

§ 1.75 km 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map

§ 30 particles

§ 250x250m2

§ 1.088 miles 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map

[video]



MIT Killian Court

§ The “infinite-corridor-dataset” at MIT
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Problems of the Gaussian Proposal

n Gaussians are uni-model distributions

n In case of loop-closures, the likelihood 
function might be multi-modal



Is a Gaussian an Accurate 
Representation for the Proposal? 



Problems of the Gaussian Proposal

n Multi-modal likelihood function can cause 
filter divergence



n Sampling from the optimal proposal:
n Compute the full 3d histogram
n Sample from the histogram

How to Overcome this Limitation? 



How to Overcome this Limitation? 

n Approximate the likelihood in a better way!

n Sample from odometry first and the use 
this as the start point for scan matching

odometry

mode 1 mode 2

odometry with uncertainty



Final Approach  

n It work’s with nearly
zero overhead



Conclusion

n Rao-Blackwellized Particle Filters are means to 
represent a joint posterior about the poses of the 
robot and the map

n Utilizing accurate sensor observation leads to good 
proposals and highly efficient filters

n It is similar to scan-matching on a per-particle base 
with some extra noise

n The number of necessary particles and
re-sampling steps can seriously be reduced

n How to deal with non-Gaussian observation 
likelihood functions

n Highly accurate and large scale map



More Details

n M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to simultaneous localization and mapping, AAAI02
(The classic FastSLAM paper with landmarks)

n M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0: 
An improved particle filtering algorithm for simultaneous localization 
and mapping that provably converges, IJCAI03.
(FastSLAM 2.0 – improved proposal for FastSLAM)

n D. Haehnel, W. Burgard, D. Fox, and S. Thrun. An efcient FastSLAM 
algorithm for generating maps of large-scale cyclic environments 
from raw laser range measurements, IROS03
(FastSLAM on grid-maps using scan-matched input)

n A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous
localization and mapping without predetermined landmarks, IJCAI03 
(A representation to handle big particle sets)



More Details (Own Work)

n Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved 
Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, 
Transactions on Robotics, Volume 23, pages 34-46, 2007
(Informed proposal using laser observation, adaptive resampling)

n G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam 
with rao-blackwellized particle filters by adaptive proposals and 
selective resampling, ICRA’05
(Informed proposal using laser observation, adaptive resampling)

n Cyrill Stachniss, Grisetti Giorgio, Wolfram Burgard, and Nicholas 
Roy. Analyzing Gaussian Proposal Distributions for Mapping with 
Rao-Blackwellized Particle Filters, IROS07
(Gaussian assumption for computing the improved proposal)



From Theory to Practice

n Implementation available a open source 
project “GMapping” on 

www.OpenSLAM.org

n Written in C++

n Can be used as a black box library

Now: 1h Practical Course on GMapping

http://www.OpenSLAM.org

