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Abstract— Recently, Rao-Blackwellized particle filters have
been introduced as an effective means to solve the simultames
localization and mapping problem. This approach uses a paitle
filter in which each particle carries an individual map of the
environment. Accordingly, a key question is how to reduce th
number of particles. In this paper, we present adaptive techiques
for reducing this number in a Rao-Blackwellized particle filter
for learning grid maps. We propose an approach to compute
an accurate proposal distribution taking into account not aly
the movement of the robot but also the most recent observatio
This drastically decreases the uncertainty about the robds pose
in the prediction step of the filter. Furthermore, we presentan
approach to selectively carry out resampling operations with
seriously reduces the problem of particle depletion. Expeémental
results carried out with real mobile robots in large-scale hdoor
as well as in outdoor environments illustrate the advantage of
our methods over previous approaches.

Index Terms— SLAM, Rao-Blackwellized particle filter, adap-
tive resampling, motion-model, improved proposal

I. INTRODUCTION

« An adaptive resampling technique which maintains a
reasonable variety of particles and in this way enables
the algorithm to learn an accurate map while reducing
the risk of particle depletion.

The proposal distribution is computed by evaluating the-lik
lihood around a particle-dependent most likely pose obthin
by a scan-matching procedure combined with odometry in-
formation. In this way, the most recent sensor observason i
taken into account for creating the next generation of pladi
This allows us to estimate the state of the robot according to
a more informed (and thus more accurate) model than the
one obtained based only on the odometry information. The
use of this refined model has two effects. The map is more
accurate since the current observation is incorporatedtive
individual mapsafter considering its effect on the pose of
the robot. This significantly reduces the estimation erir s
that less particles are required to represent the postaitiar
second approach, the adaptive resampling strategy, alisws
to perform a resampling step only when needed and in this

Building maps is one of the fundamental tasks of mobilg,y keeping a reasonable particle diversity. This resulta i
robots. In the literature, the mobile robot mapping problem significantly reduced risk of particle depletion.
often referred to as th&imultaneous localization and mapping rne work presented in this paper is an extension of our

(SLA_M) problem[4, 6, 9, 15, 16, 26, 29, 32, 39]. 'F 'S previous work [14] as it further optimizes the proposal dis-
considered to be a complex problem, because for localizatigiytion to even more accurately draw the next generation
a robot needs a consistent map and for acquiring a map,@yarticles, Furthermore, we added a complexity analysis,
robot requires a good estimate of its location. This Mutugf.ma| gescription of the used techniques, and provide more
dependency between the pose a_nd the map estimates mﬂléefﬁiled experiments in this paper. Our approach has been
the SLAM problem hard and requires searching for a solutiQigated by a set of systematic experiments in large-scale

in a high-dimensional space. , indoor and outdoor environments. In all experiments, our
Murphy, Doucet, and colleagues [6, 32] introduced Ragysrqach generated highly accurate metric maps. Additiona

BIacIsweIhzed particle _flltgrs as an effe_ctwe means to eOI\f_he number of the required particles is one order of mageitud
the simultaneous localization and mapping problem. Theymay, - than with previous approaches

prob_lem of the Rgo-BIackweIIized approaches .is their COM- Thig paper is organized as follows. After explaining how a
p'ex't}’ measured in terms of the number of p.art|cle-s requ'r??ao-BIackwellized filter can be used in general to solve the
to build an accurate map. Therefore_, redu_cmg this quantigf s problem, we describe our approach in Section IIl. We
is one of the major challenges for this family of algorithmsy,q, provide implementation details in Section IV. Experi-

Additionally, the_ resamplmg ste_zp can potentially ehntma_\ ments carried out on real robots are presented in Section VI.
the correct particle. This effect is also known as the plmt'CFinaIIy Section VI discusses related approaches

depletion problem or as particle impoverishment [44].

In this work, we present two approaches to substantially
increase the performance of Rao-Blackwellized partictersl
applied to solve the SLAM problem with grid maps:

« A proposal distribution that considers the accuracy of the According to Murphy [32], the key idea of the Rao-

robot’s sensors and allows us to draw particles in a highBlackwellized particle filter for SLAM is to estimate the i
accurate manner. posteriorp(z1.¢, m | z1.¢,u1.+—1) about the mapn and the

II. MAPPING WITH RAO-BLACKWELLIZED PARTICLE
FILTERS



trajectoryz1.; = x1,...,x; of the robot. This estimation is increases over time, this procedure would lead to an oblious
performed given the observations.; = z1,...,2 and the inefficient algorithm. According to Doucet al.[7], we obtain
odometry measurements.; 1 = ui,...,u;—1 obtained by a recursive formulation to compute the importance weights b
the mobile robot. The Rao-Blackwellized particle filter forestricting the proposat to fulfill the following assumption
SLAM makes use of the following factorization
W(xlzt | Z1:t,U1:t71) = W(It |x1:t71721:tau1:t71)

p(z1,m | 21, ur—1) = (@1t | 21ty utiz). (3)

. ) . . d—1). 1
plm | @re; 210) - pl@re | 210, viie-1) @ Based on Eq. (2) and (3), the weights are computed as

This factorization allows us to first estimate only the tcégey )

of the robot and then to compute the map given that trajectory , (i)  _ P(%t | Z1:0, Ur:e—1) (4)

Since the map strongly depends on the pose estimate of ﬁ(a;gf)t | 21:6, U1:6—1)

the robot, this approach offers an efficient computatioris Th

technique is often referred to as Rao-Blackwellization. = _ :
Typically, Eq. (1) can be calculated efficiently since thepo W(CCEZ) | ng%_l,?:u, Uii—1)

)

WP(Zt | 15272’1:1571)1)(17,@ | x@l,uhl)

terior over map®(m | x1.+, z1.+) can be computed analytically (x(i | 2 )
. . . . " . P\ Ty | A1it—1, UL:it—2
using “mapping with known poses” [31] sinca.; and z;, ‘ O] (5)
are known. m(@y o1 | 21-1, w1a—2)
To estimate the posterign(xy.+ | z1.¢,u1.+—1) Over the po- wl®
tential trajectories, one can apply a particle filter. Eaaltiple 0 t’(z) @ |G
represents a potential trajectory of the robot. Furtheanan plze | myZy oy )p(ay” | 22y w-1) w'? ©6)
CW—-1-

individual map is associated with each sample. The maps are

built from the observations and the trajectory represebted . o
the corresponding particle. Heren = 1/p(z¢ | z1.4—1,u14—1) iS @ normalization factor

One of the most common particle filtering algorithms i€sulting from Bayes’ rule that is equal for all particles.
the sampling importance resampling (SIR) filter. A Rao- Mos_t of the existing particle filter applications r_ely on t_he
Blackwellized SIR filter for mapping incrementally process "€cursive structure of Eq. (6). Whereas the generic algorit
the sensor observations and the odometry readings as tRR§cifies a framework that can be used for learning maps, it
are available. It updates the set of samples that repreents/®@ves open how the proposal distribution should be condpute
posterior about the map and the trajectory of the vehicle. TRNd when the resampling step should be carried out. Through-
process can be summarized by the following four steps: ©ut the remainder of this paper, we _des_crlbe a technlque_that

1) Sampling The next generation of particle{s:ti)} is ob- computes an accurate proposal distribution and that acdypti

tained from the generatiofmgi)l} by sampling from the performs resampling.
proposal distributionr. Often, a probabilistic odometry
motion model is used as the proposal distribution.

2) Importance WeightingAn individual importance weight
wt@ is assigned to each particle according to the impor- In the literature, several methods for computing improved
tance sampling principle proposal distributions and for reducing the risk of paticl

) depletion have been proposed [7, 30, 35]. Our approachesppli
() _ p(aiy | Zl:taul:t—l). ) two concepts that have previously been identified as key
w(xgli | Z1:4, U1:t—1) pre-requisites for efficient particle filter implementaiso(see
The weights account for the fact that the proposal distPoucetet al. [7]), namely the computation of an improved
bution is in general not equal to the target distributiof™Posal distribution and an adaptive resampling tecteiqu

of successor states.
3) ResamplingParticles are drawn with replacement proA. On the Improved Proposal Distribution

portional to their importance weight. This step is nec- as described in Section II, one needs to draw samples from
essary since only a finite number of particles is used ¥proposal distributionr in the prediction step in order to ob-
approximate a continuous distribution. Furthermore, resin the next generation of particles. Intuitively, thetbethe
sampling allows us to apply a particle filter in situationg oposal distribution approximates the target distrinutithe

in which the target distribution differs from the proposalpetter is the performance of the filter. For instance, if weewe
After resampling, all the particles have the same weighipe to directly draw samples from the target distributitbre,

4) Map Estimation For each particle, the correspondingmportance weights would become equal for all particles and
map estimatey(m® | z\"), z1,) is computed based onthe resampling step would no longer be needed. Unfortupatel
the trajectoryz!’, of that sample and the history ofin the context of SLAM a closed form of this posterior is not
observations; ;. available in general.

The implementation of this schema requires to evaluateAs a result, typical particle filter applications [3, 29] use

the weights of the trajectories from scratch whenever a neéle odometry motion model as the proposal distributionsThi
observation is available. Since the length of the trajgctomotion model has the advantage that it is easy to compute for

(2 | Iﬁ)tfl, Z1it, Ut:t—1)

I1l. RBPFWITH IMPROVED PROPOSALS ANDADAPTIVE
RESAMPLING




of the weights turns into
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Fig. 1. The two components of the motion model. Within thesrival (%) = W /p(zt | 2p(a | 2,2, u—1) dz’. (13)
the product of both functions is dominated by the obsermalikelihood in . . . .
case an accurate sensor is used. When modeling a mobile robot equipped with an accurate

sensor like, e.g., a laser range finder, it is convenient & us
such an improved proposal since the accuracy of the laser
most types of robots. Furthermore, the importance weightenge finder leads to extremely peaked likelihood functions
are then computed according to the observation mp@sl| In the context of landmark-based SLAM, Montemertd
m, ;). This becomes clear by replacingin Eqg. (6) by the al. [26] presented a Rao-Blackwellized particle filter thatsuse

motion modelp(z; | x¢—1,us—1) a Gaussian approximation of the improved proposal. This
‘ ‘ Gaussian is computed for each particle using a Kalman filter

@ 6 e mz(si)l,xgl))p( @ | a:t 1,ut 1) . that estimates the pose of the robot. This approach can He use

W = W () when the map is represented by a set of features and if the

p(af? [ ), uy) . )
@ ) - error affecting the feature detection is assumed to be Gauss

X Wiy - (Zt|mt )1a17§1 ). (8) In this work, we transfer the idea of computing an improved
proposal to the situation in which dense grid maps are used
This proposal distribution, however, is suboptimal espici instead of landmark-based representations.
when the sensor information sgnificantly more precisthan

the motion estimate of the robot based on the odometBy, Efficient Computation of the Improved Proposal
which is typically the case if a robot equipped with a laser When modeling the environment with grid maps, a closed
range finder (e.g., with a SICK LMS). Figure 1 illustratesorm approximation of an informed proposal is not directly
a situation in which the meaningful area of the observaticivailable due to the unpredictable shape of the observation
likelihood is substantially smaller than the meaningfidaanf [ikelihood function.
the motion model. When using the odometry model as theln theory, an approximated form of the informed proposal
proposal distribution in such a case, the importance weiglian be obtained using trelaptedparticle filter [35]. In this
of the individual samples can differ significantly from eacframework, the proposal for each particle is constructed by
other since only a fraction of the drawn samples cover thwmputing a sampled estimate of the optimal proposal given
regions of state space that have a high likelihood under timeEq. (9). In the SLAM context, one would first have to
observation model (area(”) in Figure 1). As a result, one sample a set of potential posesof the robot from the motion
needs a comparably high number of samples to suﬁicienﬂyode|p(xt | Igijl,ut—l)- In a second step, these samples
cover the regions with high observation likelihood. need to be weighed by the observation likelihood to obtain
A common approach — especially in localization — is to usen approximation of the optimal proposal. However, if the
a smoothed likelihood function, which avoids that paricleobservation likelihood is peaked the number of pose samples
close to the meaningful area get a too low importance weight; that has to be sampled from the motion model is high,
However, this approach discards useful information ga&ithersince a dense sampling is needed for sufficiently capturing
by the sensor and, at least to our experience, often leadste typically small areas of high likelihood. This resultsa
less accurate maps in the SLAM context. similar problem than using the motion model as the proposal:
To overcome this problem, one can consider the most recanigh number of samples is needed to sufficiently cover the
sensor observation, when generating the next generation ofmeaningful region of the distribution.
samples. By integrating; into the proposal one can focus One of our observations is that in the majority of cases
the sampling on the meaningful regions of the observatithe target distribution has only a limited number of maxima

likelihood. According to Doucet [5], the distribution and it mostly has only a single one. This allows us to sample
positionsz; covering only the area surrounding these maxima.
p(ay | my )1, ;Cg )1, Zp,Up1) = Ignoring the less meaningful regions of the distributionesaa

significant amount of computational resources since itirequ
: : (9) less samples. In the prewous version of this work [14], we
p(ze | mP 2D uey) approximatedp(z; | z\”,,u._1) by a constant within the
interval L(Y) (see also Figure 1) given by

Pz | mt—)lvxt)p(xt | It—lvutfl)

is the optimal proposal distribution with respect to thaamace @ @
of the particle weights. Using that proposal, the compaiati L = {I ‘ p(ze | my_y, ) > 6}- (14)



= w90 (19)

. M‘E* . Note that(®) is the same normalization factor that is used in
’ the computation of the Gaussian approximation of the pralpos
in Eq. (17).

C. Discussion about the Improved Proposal

a b C
@ ® “ The computations presented in this section enable us to
Fig. 2. Particle distributions typically observed duringping. In an open determine th? pgrar_n(_eters of a Gaussian propos_al disobuti
corridor, the particles distribute along the corridor (a)a dead end corridor, for each particle individually. The proposal takes into@aut
Lhe uncertainty iTiC?trglallt;nkeal:n?(i)mscﬂcsoiagts t(t?g n?ggthrgggﬁzfrigggo ?]btvécih”:: the most recent odometry reading and laser observatiorewhil
sZr?”lar;JIis;\eg \t/\rlfe ﬁ)égt gen)(leration of particles. In contrast &b, tthe raw odometry at th? _Same time allowing us effICIGI‘?t sampling. The r‘?sg"t!”
motion model leads less peaked posteriors (c). densities have a much lower uncertainty compared to Situgti
in which the odometry motion model is used. To illustrates thi
fact, Figure 2 depicts typical particle distributions dbea
In our current approach, we consider both components, twi¢h our approach. In case of a straight featureless carrido
observation likelihood and the motion model within thathe samples are typically spread along the main direction of
interval _L(i). We locally approximate the posterigriz; | the corridor as depicted in Figure 2 (a). Figure 2 (b) illat#s
mg?l,xg?l,zt,ut_l) around the maximum of the likelihoodthe robot reaching the end of such a corridor. As can be seen,
function reported by a scan registration procedure. the uncertainty in the direction of the corridor decreasebal
To efficiently draw the next generation of samples, wsamples are centered around a single point. In contrasatp th
compute a Gaussian approximatidvi based on that data. Figure 2 (c) shows the resulting distribution when sampling
The main differences to previous approaches is that we fifedbm the raw motion model.
use a scan-matcher to determine the meaningful area ofAs explained above, we use a scan-matcher to determine
the observation likelihood function. We then sample in thaihe mode of the meaningful area of the observation likekhoo
meaningful area and evaluate the sampled points basedf@mction. In this way, we focus the sampling on the important
the target distribution. For each particlethe parameterﬁgz) regions. Most existing scan-matching algorithms maxintizee
and Ef) are determined individually folX sampled points observation likelihood given a map and an initial guess ef th
{z;} in the interval L(Y). We furthermore take into accountrobot's pose. When the likelihood function is multi-modal,
the odometry information when computing the mgdf and which can occur when, e.g., closing a loop, the scan-matcher
the variancez(?). We estimate the Gaussian parameters asreturns for each particle the maximum which is closest to the
K initial guess. In general, it can happen that additionalimax
ﬂgi) — 1} . Zx plz | Y 2)) in the likelihood function are missed since only a single mod
n(l) . J t—1>") . X X
=1 is reported. However, since we perform frequent filter upslat
(| 2@ wi1) (15) (_aft_er each movement df.5m or a rotation of25f’) and
ST limit the search area of the scan-matcher, we consider ltleat t
1 ip(zt | mf_)l, z;) distribution has only a single mode when sampling data point
j=1

=9 =

n(®) . to compute the Gaussian proposal. Note that in situatikesali

. loop closure, the filter is still able to keep multiple hypesies
p(; | Igz—)lvutfl) because the initial guess for the starting position of transc
(xj — Mgi))(%‘ — ugi))T (16) matcher when reentering a loop is different for each particl

Nevertheless, there are situations in which the filter cah — a
least in theory — become overly confident. This might happen
in extremely cluttered environments and when the odometry
is highly affected by noise. A solution to this problem is to
) , o track the multiple modes of the scan-matcher and repeat the
In this way, we obtain a closed form approximation of the,hjing process separately for each node. However, in our

optimal proposal which enables us to efficiently obtain thg, o iments carried out using real robots we never encrahte
next generation of particles. Using this proposal distidn such a situation

the‘welghts cgn be CompgtEd ?S During filtering, it can happen that the scan-matching
wﬁ” = wt(i)l -p(zt | mfjl,xfjl,ut,l) (18) process fails because of poor observations or a too small
» - » overlapping area between the current scan and the preyiousl
(@) . (2 | (%) N p(a | (2) ) d . )
Wiy = [ PQECI My, &) P [ Ty, Ue—1) AT computed map. In this case, the raw motion model of the
K robot which is illustrated in Figure 2 (c) is used as a proposa
~ w§1_>1 . Zp(zt | mi?l,wj) p(x; | xf_)l, up_1) Note_ that such situations occur rarely in real datasetsatsee
= Section VI-E).

with the normalization factor

K
N = 3w mi ) e | ). @)
i=1



D. Adaptive Resampling target distributionp(z; | mf_)l,a:j)p(:z:j | xil_)l,ut,l) in

A further aspect that has a major influence on the per- the sampled positions;. During this phase, also the
formance of a particle filter is the resampling step. During  Weighting factor)”) is computed according to Eq. (17).
resampling, particles with a low importance weight) are ~ 4) The new poser(” of the particlez is drawn from the
typically replaced by samples with a high weight. On the one ~ Gaussian approximatio' (4", (") of the improved
hand, resampling is necessary since only a finite number of ~proposal distribution.
particles are used to approximate the target distributm.  5) Update of the importance weights.
the other hand, the resampling step can remove good sample® The mapm(®) of particlei is updated according to the
from the filter which can lead to particle impoverishment.  drawn poser!” and the observation;.
Accordingly, it is important to find a criterion for decidingAfter computing the next generation of samples, a resamplin

when to perform the resampling step. Liu [23] introduced thstep is carried out depending on the valueNof;.
so-called effective sample size to estimate how well theszr

particle set represents the target posterior. In this wak, IV. | MPLEMENTATION ISSUES
compute this quantity according to the formulation of Dduce . . . . . . .
et al. [7] as This section provides additional information about imple-

1 mentation details used in our current system. These issees a

W’ (20)  pot required for the understanding of the general approath b

=1 complete the precise description of our mapping system. In
wherew® refers to the normalized weight of particle the following, we briefly explain the used scan-matching ap-

The intuition behindV.g is as follows. If the samples wereproach, the observation model, and how to pointwise evaluat
drawn from the target distribution, their importance weggh the motion model.
would be equal to each other due to the importance samplingOur approach applies a scan-matching technique on a per
principle. The worse the approximation of the target distrparticle basis. In general, an arbitrary scan-matchinigrtiegie
bution, the higher is the variance of the importance weighgan be used. In our implementation, we use the scan-matcher
Since N can be regarded as a measure of the dispersiofasco” which is part of the Carnegie Mellon Robot Naviga-
of the importance weights, it is a useful measure to evaludten Toolkit (CARMEN) [27, 36]. This scan-matcher aims to
how well the particle set approximates the target posteriind the most likely pose by matching the current observation
Our algorithm follows the approach proposed by Doueet against the map constructed so far
al. [7] to determine whether or not the resampling step should ()
be carried out. We resample each tidvgg drops below the
threshold of N/2 where N is the number of particles. In ") o _ _
extensive experiments, we found that this approach dedistic wherez;* is the initial guess. The scan-matching technique
reduces the risk of replacing good particles, because fR@forms a gradient descent search on the likelihood foncti

number of resampling operations is reduced and they are offythe current observation given the grid map. Note that in ou
performed when needed. mapping approach, the scan-matcher is only used for finding

the local maximum of the observation likelihood function.

. In practice, any scan-matching technique which is able to

E. Algorithm P y . 9 g ;
compute the best alignment between a reference mﬁj)l

The overall process is summarized in Algorithm 1. Eacgnd the current scam; given an initial guess:;t() can be
time a new measurement tuple;;_1,2;) is available, the

proposal is computed for each particle individually anchisrt
used to update that particle. This results in the followitegs:

Ncﬂ' =

= argmax p(x | mgi_)l, zt,xi(l)), (21)

used.

In order to solve Eqg. (21), one applies Bayes’ rule and
seeks for the pose with the highest observation likelihood
1) An initial guessz;” = z{”; @ u;_y for the robot's p(z, | m,z). To compute the likelihood of an observation,

pose represented by the parti¢lés obtained from the we use the so called “beam endpoint model” [40]. In this

previous poser.”; of that particle and the odometrymodel, the individual beams within a scan are considered
measurements;_; collected since the last filter updateto be independent. Furthermore, the likelihood of a beam is

Here, the operatol corresponds to the standard poseomputed based on the distance between the endpoint of the

compounding operator [24]. beam and the closest obstacle from that point. To achieve a
2) A scan-matching algorithm is executed based on the m@gt computation, one typically uses a convolved local grid

mj)1 starting from the initial guesst . The search map.

performed by the scan-matcher is bounded to a limited Additionally, the construction of our proposal requires to

region aroundz|”. If the scan-matching reports a fail- evaluatep(z, | m\",,2;)p(z; | =\”,,u;_1) at the sampled

ure, the pose and the weights are computed accordingo@ints z;;. We compute the first component according to the

the motion model (and the steps 3 and 4 are ignoredpreviously mentioned “beam endpoint model”. To evaluate th
3) A set of sampllng points is selected in an intervaecond term, several closed form solutions for the motien es

around the posa:§ reported scan-matcher. Based otimate are available. The different approaches mainhediff

this points, the mean and the covariance matrix ¢fie way the kinematics of the robot are modeled. In our ctirren

the proposal are computed by pointwise evaluating tf@plementation, we compute(z; | x,—1, u;—1) according to



Algorithm 1 Improved RBPF for Map Learning

Require:
Si—1, the sample set of the previous time step
2, the most recent laser scan
u;—1, the most recent odometry measurement
Ensure:
S;, the new sample set

St:{} _
for all st 168,5 1 do

@ @) (1)

(%)
< Tyl Wiy, m

21 >=8

/I scan- matching
/( ) (4)

=20 Dug—1

xtl) = argmax, p(z | m; )1, Zt, Ty l))

if xt = failure then
( ) (

/l sample around the mode
for k=1,...,K do

ap ~ x| oy — 20 < A}
end for

/I compute Gaussian proposal

1Y = (0,0,0)T
n(%) =0
forall z; € {z1,...,2x} do

(1) (@)

=+ xip(z | My )1,%) p(z: | _wi?l,ut-l)
n” = 0O +p(z | m?ya5) e | o) ue)

en()j for o
s /n(i)
t(z)
for aII zj € {x,...,xx} do

E() E(z) (x_ _ /L(i))(Ij _ M(‘i))T.
Pl | miZy, ;) - play oy )
end for
{0 = (00
/I sample new pose
7 ~ N, 24

/I update importance weights
U’gz) = w;@l : 77(1)
end if
/1 uEdate map
1ntegrateScan(m§l) D ;vgl) , 2t)
// update sample set
S = StU{<;vt ,w,g),mt >}
end for

Neff = ﬁ
Doy (89)
if Nog < T then
8¢ = resample(S;)
end if

the Gaussian approximation of the odometry motion model
described in [41]. We obtain this approximation throughlday
expansion in an EKF-style procedure. In general, there are
more sophisticated techniques estimating the motion of the
robot. However, we use that model to estimate a movement
between two filter updates which is performed after the robot
traveled around.5 m. In this case, this approximation works
well and we did not observed a significant difference between
the EKF-like model and the in general more accurate sample-
based velocity motion model [41].

V. COMPLEXITY

This section discusses the complexity of the presented
approach to learn grid maps with a Rao-Blackwellized plartic
filter. Since our approach uses a sample set to represent the
posterior about maps and poses, the numieof samples
is the central quantity. To compute the proposal distrdnyti
our approach samples around the most likely position regort
by the scan-matcher. This sampling is done for each particle
a constant number of timedk() and there is no dependency
between the particles when computing the proposal. Further
more, the most recent observatiop used to compute.(?)
andX() covers only an area of the map (bounded by the
odometry error and the maximum range of the sensor), so the
complexity depends only on the numh®r of particles. The
same holds for the update of the individual maps associated
to each of the particles.

During the resampling step, the information associated to a
particle needs to be copied. In the worst caSe; 1 samples
are replaced by a single particle. In our current systenh eac
particle stores and maintains its own grid map. To duplicate
a particle, we therefore have to copy the whole map. As a
result, a resampling action introduces a worst case coritplex
of O(NM), where M is the size of the corresponding grid
map. However, using the adaptive resampling techniqueg, onl
very few resampling steps are required during mapping.

To decide whether or not a resampling is needed, the
effective sample size (see Eq. (20)) needs to be taken into
account. Again, the computation of the quantity introduaes
complexity of O(N).

As a result, if no resampling operation is required, the
overall complexity for integrating a single observatiopédeds
only linearly on the number of particles. If a resampling is
required, the additional factav/ which represents the size of
the map is introduced and leads to a complexityOdfV M ).

The complexity of each individual operation is depicted in
Table I.

Note that the complexity of the resampling step can be
reduced by using a more intelligent map representation as
done in DP-SLAM [9]. It can be shown, that in this case the
complexity of a resampling step is reduced20AN? log N),
where A is the area covered by the sensor. However, building
an improved map representation is not the aim of this paper.
We actually see our approach as orthogonal to DP-SLAM
because both techniques can be combined. Furthermore, in
our experiments using real world data sets, we figured out
the resampling steps are not the dominant part and they occur
rarely due to the adaptive resampling strategy.



TABLE |
COMPLEXITY OF THE DIFFERENT OPERATIONS FOR INTEGRATING ONE
OBSERVATION.

Operation Complexity
Computation of the proposal distribution O(N)
Update of the grid map O(N)
Computation of the weights O(N)

Test if resampling is required O(N)
Resampling O(NM)

Fig. 5. The Freiburg Campus. The robot first runs around the external
perimeter in order to close the outer loop. Afterwards, thternal parts of
Fig. 3. Different types of robot used to acquire real robotadased for the campus are visited. The overall trajectory has a len§th.75 km and
mapping (ActivMedia Pioneer 2 AT, Pioneer 2 DX-8, and an i®oB21r).  covers an area of approximate350m by 250 m. The depicted map was
generated using 30 particles.

VI. EXPERIMENTS

The approach described above has been implemented éhd\/lappmg Results
tested using real robots and datasets gathered with reatiscob The datasets discussed here have been recorded at the Intel
Our mapping approach runs online on several platforms likesearch Lab in Seattle, at the campus of the University of
ActivMedia Pioneer2 AT, Pioneer 2 DX-8, and iRobot B21Freiburg, and at the Killian Court at MIT. The maps of these
robots equipped with a SICK LMS and PLS laser rangenvironments are depicted in Figures 4, 5, and 6.
finders (see Figure 3). The experiments have been carried a) Intel Research LabThe Intel Research Lab is de-
out in a variety of environments and showed the effectivgicted in the left image of Figure 4 and has a size28fn
ness of our approach in indoor and outdoor settings. Mds¢ 28 m. The dataset has been recorded with a Pioneer I
of the maps generated by our approach can be magnifiethot equipped with a SICK sensor. To successfully correct
up to a resolution ofl ¢m, without observing considerablethis dataset, our algorithm needed only 15 particles. As can
inconsistencies. Even in big real world datasets coverimg be seen in the right image of Figure 4, the quality of the final
area of approximatel250m by 250m, our approach never map is so high that the map can be magnified up ten of
required more than 80 particles to build accurate maps. desolution without showing any significant errors.
the reminder of this section, we discuss the behavior of the ) Freiburg Campus: The second dataset has been
filter in different datasets. Furthermore, we give a quatiti¢ recorded outdoors at the Freiburg campus. Our system needed
analysis of the performance of the presented approachl\Higbnly 30 particles to produce a good quality map such as the
accurate grid maps have been generated with our approggle shown in Figure 5. Note that this environment partly
from several datasets. These maps, raw data files, andv@fates the assumptions that the environment is planar. Ad
efficient implementation of our mapping system are avadlabiitionally, there were objects like bushes and grass as well
on the web [38]. as moving objects like cars and people. Despite the regultin
spurious measurements, our algorithm was able to genarate a
L. accurate map.
- i ¢) MIT Killian Court: The third experiment was per-
/ ‘ formed with a dataset acquired at the MIT Killian cdurt
A" I and the resulting map is depicted in Figure 6. This dataset is
~ . f extremely challenging since it contains several neste@gdpo
- | which can cause a Rao-Blackwellized particle filter to faikd
‘ to particle depletion. Using this dataset, the selectisame
pling procedure turned out to be important. A consistent and
R T topologically correct map can be generated with 60 pasicle
[ | However, the resulting maps sometimes show artificial doubl
— i walls. By employing 80 patrticles it is possible to achievghhi
cquality maps.

Fig. 4. The Intel Research Lab.The robot starts in the upper part of th
circular corridor, and runs several times around the lo@forie entering the
rooms. The left image depicts the resulting map generatéidl 16 particles.  INote that there exist two different versions of that datasetthe web.
The rlght image shows a cut-out withem grld resolution to illustrate the One has a pre_corrected Odometry and the other one has nots®¥dethe
accuracy of the map in the loop closure point. raw version without pre-corrected odometry information.
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Fig. 8. The graph plots the evolution of thé.¢ function over time during
an experiment in the environment shown in the top image. wetB the
robot closes the small loop. At time C and D resampling astiare carried
after the robots closes the big loop.

algorithm in the environments considered here. The plaig/sh
the percentage of correctly generated maps, dependingeon th
number of particles used. The question if a map is consistent
Fig. 6. The MIT Killian Court. The robot starts from the point labeled NOt has been evaluated by visual inspection in a blind fashio

and then traverses the first loop labeledit then moves through the loops (the inspectors were not the authors). As a measure of sjcces
labeledc, d and moves back to the place labele@nd the loop labeled. It we used the topological correctness.

the visits the two big loops labelefl and g. The environment has a size of
250 m by 215 m and the robot traveled.9 km. The depicted map has been

enerated with 80 particles. The rectangles show magndficatof several . .
garts of the map. P 9 9 C. Effects of Improved Proposals and Adaptive Resampling

The increased performance of our approach is due to
the interplay of two factors, namely the improved proposal
distribution, which allows us to generate samples with an

- _ high likelihood, and the adaptive resampling controlled by
Pmpgjf'ag;gfcuﬁ'o” 'n;e' Ms'g Fre'ztz)“rg monitoring N.g. For proposals that do not consider the whole
approach of [16] 20 | 200 200 input history, it has been proven thatg can only decrease

(stochastically) over time [7]. Only after a resampling @pe
tion, Ng recovers its maximum value. It is important to notice
B. Quantitative Results that the behavior ofV.¢ depends on the proposal: the worse

In order to measure the improvement in terms of the numbtg're proposal, the fasteVeg dr.ops. .
We found that the evolution ofV.g using our proposal

of particles, we compared the performance of our systengusin. "~ "~ . . .
thep informed propogal distribstion to the approacyh d(r)rr?e istribution shows three different behaviors dependinglen

Hahnelet al.[16]. Table Il summarizes the number of particleié‘format'on obtained from the robot's sensars. Figure @sill

TABLE Il
THE NUMBER OF PARTICLES NEEDED BY OUR ALGORITHM COMPARED TO
THE APPROACH OFHAHNEL et al.[16].

needed by a RBPF for providing a topologically correct ma ates the evolution ofNeg during an experlmel_'lt. Whenever
in at least 60% of all applications of our algorithm. e robot moves through unknown terrai,g typically drops

It turns out that in all of the cases, the number of particl 4owly. This is because the proposal distribution becomes

required by our approach was approximately one order 5S peaked and the Iikelihoods of observations often rdiffe

magnitude smaller than the one required by the other approa%'ghtly' The second behavior can b_e observed when_the robot
Moreover, the resulting maps are better due to our improvgboves throggh a known area. In this case, each particle keeps
sampling process that takes the last reading into account. ocalized within its own map due to the improved proposal

Figure 7 summarizes results about the success ratio of gﬂﬁt”bu'[_'on and the weights are more or less equal. This
results in a more or less constant behaviorNgf;. Finally,

when closing a loop, some particles are correctly alignet wi

ST ' KX B el Lab ] their map while others are not. The correct particles have a
£ 8ot 7 Freiburg Campus-——- : high weight, while the wrong ones have a low weight. Thus
c ; F T MIT - . . . .
w 60r >< ;o MIT-2 ~me ] the variance of the importance weights increases Apg
8 ol % X ] substantially drops.
@ o X ¥ ‘ ‘ Accordingly, the threshold criterion applied d¥.g typi-

10 100 . 1000 cally forces a resampling action when the robot is closing a

number of particles loop. In all other cases, the resampling is avoided and & thi

Fig. 7. Success rate of our algorithm in different environteedepending way the filter kegps a Va”_ety of samples in the Partlde set.
on the number of particles. Each success rate was determsieg 20 runs. AS a result, the risk of particle depletion problem is seslgu
For the experiment MIT-2 we disabled the adaptive resargplin reduced. To analyze this, we performed an experiment in



Fig. 10. The effect of considering the odometry in the corapo of the

proposal on the particle cloud. The left image depicts théigba distribution

if only the laser range finder data is used. By taking into antthe odometry
when computing the proposal distribution, the particleslmadrawn in a more
accurate manner. As can be seen in the right image, thelpastiud is more
i focused, because it additionally incorporates the odgmeformation.

D. The Influence of the Odometry on the Proposal

This experiment is designed to show the advantage of the
proposal distribution, which takes into account the odome-
try information to draw particles. In most cases, the purely
laser-based proposal like the one presented in our previous
approach [14] is well-suited to predict the motion of the
particles. However, in a few situations the knowledge about
- the odometry information can be important to focus the
proposal distribution. This is the case if only very poottfeas
—— i are available in the laser data that was used to compute
g S 3 Ij ,i the parameters of the Gaussian proposal approximation. For

e o o e example, an open free space without any obstacles or a long

[ | ij f_,_%m_ﬁ _Tf_lfj 74 featureless corridor can lead to high variances in the coatpu
u*’*ﬁ : £ B proposal that is only based on laser range finder data. Figure
R 3 e illustrates this effect based on simulated laser data.

In a further experiment, we simulated a short-range laser

e scanner (like, e.g., the Hokuyo URG scanner). Due to the
L )  p ‘eeLE.L Ji[—% maximum range of 4m, the robot was unable to see the

i f?f;ﬂ"ﬂ =T YT end of the corridor in most cases. This results in an high

Il e T orie oS .

Sy S~ =R - SO - SN pose uncertainty in the direction of the corridor. We reeakrd
several trajectories in this environment and used them to

& 8 /J * \ Ve learn maps with and without considering the odometry when
! ; /\//‘ — 5 T computing the proposal distribution. In this experimehg t
(J s - o T “ approach considering the odometry succeede)i¥ of all

;f cases to learn a topologically correct map. In contrast &b, th
i ( *__our previous approach which does not take into account the
P AT r N j " F odometry succeeded only i% of all cases. This experiment
- - indicates the importance of the improved proposal distidiou
Figure 11 depicts typical maps obtained with the different
Fig. 9. Maps from the ACES building at University of Texase #ith floor proposal distributions during this experiment. The leftpma
gzﬁgieng'i%fg't' tahtethjnliflg';’s?t';'g’f (;frgﬁfg.ngm”' the Belgiw building, and contains alignment errors caused by the high pose uncytain
in the direction of the corridor. In contrast to that, a rotiat
also takes into account the odometry was able to maintain the

which we compared the success rate of our algorithm to tHzTect pose hypotheses. A typical example is depicteden th
of a particle filter which resamples at every step. As Figurefght image. _ _ _

illustrates, our approach more often converged to the corre Note that by increasing the number of particles, both ap-
solution (MIT curve) for the MIT dataset compared to th@roaches are able to map the environment correctiy0ivo

particle filter with the same number of particles and a fixe®f all cases, but since each particle carries its own map, it
resampling strategy (MIT-2 curve). is of utmost importance to keep the number of particles as
low as possible. Therefore, this improved proposal is a mean
) o . to limit the number of particles during mapping with Rao-
To give a more detallgd impression abou_t the accuracy gfckwellized particle filters.
our new mapping technique, Figure 9 depicts maps learned
from well known and freely available [18] real robot dataset o ) ) _
recorded at the University of Texas, at the University di- Situations in Which the Scan-Matcher Fails
Washington, at Belgioioso, and at the University of Frefour As reported in Section lll, it can happen that the scan-
Each map was built using 30 particles to represent the postematcher is unable to find a good pose estimate based on

about maps and poses. the laser range data. In this case, we sample from the raw
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TABLE Il
77?,;:;;,?,2,,::”777 7:?( f‘;;:r—:———ffﬁ’r-’”"T—i:;:ix\ AVERAGE EXECUTION TIME USING A STANDARDPC.

/ ‘ / \ Operation Average Execution Time
/ Computation of the proposal distriby- 1910 ms
[ alignmen / tion, 'the Welgh?s, gnd the_ map update
\ errors Test if resampling is required 41 ms

Resampling 244 ms

e l B — VII. RELATED WORK

Mapping techniques for mobile robots can be roughly clas-

Fig. 11. Different mapping results for the same data setimédausing Slfl(_ed a.Ccordmr? t_O the map repre;sentatlon and the “.”dg.”y'rr‘]
the proposal distribution which ignores the odometry (lefage) and which estimation tec_ nique. One popular map _representatlonels t
considers the odometry when drawing the next generatioradfctes (right occupancy grid [31]. Whereas such grid-based approaches
image). are computationally expensive and typically require a huge

amount of memory, they are able to represent arbitrary tdjec
odometry model to obtain the next generation of particles. Feature-based representations are attractive becauseiof t
most tested indoor dataset, however, such a situation neg@mpactness. However, they rely on predefined featurecextra
occurred at all. In the MIT dataset, this effect was observéers, which assumes that some structures in the envirosment
once due to a person walking directly in front of the robdre known in advance.

while the robot was moving though a corridor that mainly The estimation algorithms can be roughly classified ac-
consists of glass panes. cording to their underlying basic principle. The most pop-

In outdoor datasets, such a situation can occur if the rod8§gr @pproaches are extended Kalman filters (EKFs), maxi-
moves through large open spaces because in this case the A& likelihood techniques, sparse extended informaticer$
range finder mainly reports maximum range readings. WhiigE!Fs), smoothing techniques, and Rao-Blackwellizedi-par
mapping the Freiburg campus, the scan-matcher also rebor%e filters. The effectlvenesfs of the EKF approaches comes
such an error at one point. In this particular situation,riteot rom the fact that they estimate a fully correlated posterio
entered the parking area (in the upper part of the map, C(anayer_landmark maps and r(_)bot poses [21, 37]. Their weakness
Figure 5). On that day, all cars were removed from the parkifi§S In the strong assumptions that have to be made on both
area due to construction work. As a result, no cars or otHB robot motion model and the sensor noise. Moreover, the
objects caused reflections of the laser beams and most pirfggimarks are assumed to be uniquely identifiable. Thess exi
of the scan consisted of maximum range readings. In su@ghniques [33] to deal with unknown data association in the
a situation, the odometry information provides the besiepoSLAM context, however, if these assumptions are violatesl, t

estimate and this information is used by our mapping systéfiier is likely to diverge [12]. Similar observations haveen
to predict the motion of the vehicle. reported by Julieet al. [20] as well as by Uhlmann [43]. The

unscented Kalman filter described in [20] is one way of better
dealing with the non-linearities in the motion model of the
vehicle.
F. Runtime Analysis A popular maximum likelihood algorithm computes the
most likely map given the history of sensor readings by
In this last experiment, we analyze the memory and coroenstructing a network of relations that represents théapa
putational resources needed by our mapping system. We usedstraints between the poses of the robot [8, 13, 15, 24].
a standard PC with a 2.8 GHz processor. We recorded tBatmanret al.[15] proposed an effective way for constructing
average memory usage and execution time using the defawith a network and for detecting loop closures, while rugnin
parameters that allows our algorithm to learn correct maps fan incremental maximum likelihood algorithm. When a loop
nearly all real world datasets provided to us. In this sgitinclosure is detected, a global optimization on the network of
30 particles are used to represent the posterior about maps &gldtion is performed. Recently, Hahreti al. [17], proposed
poses and a new observation, consisting of a full laser raraye approach which is able to track several map hypotheses
scan, is integrated whenever the robot moved more @tiam  using an association tree. However, the necessary expansio
or rotated more thaf5°. The Intel Research Lab dataset (seef this tree can prevent the approach from being feasible for
Figure 4) contains odometry and laser range readings whigal-time operation.
have been recorded ovés min. Our implementation required Thrun et al. [42] proposed a method to correct the poses
150 MB of memory to store all the data using a maps with af robots based on the inverse of the covariance matrix. The
size of approx40m by 40 m and a grid resolution 05 cm. advantage of the sparse extended information filters (SEIFs
The overall time to correct the log file using our software was that they make use of the approximative sparsity of the
less tharB0 min. This means that the time to record a log filenformation matrix and in this way can perform predictions
is aroundl.5 times longer than the time to correct the log fileand updates in constant time. Eustiteal. [10] presented a
Table Ill depicts the average execution time for the indraild technique to make use of exactly sparse information matrice
operations. in a delayed-state framework. Paskin [34] presented aisalut
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to the SLAM problem using thin junction trees. In this waypoor laser features for localization are available, ouraagh

he is able to reduce the complexity compared to the EKierforms better than our previous one.

approaches since thinned junction trees provide a lines-t The computation of the proposal distribution is done in

filtering operation. a similar way as in FastSLAM-2 presented by Montemerlo
Folkessenet al. [11] proposed an effective approach foet al. [26]. In contrast to FastSLAM-2, our approach does

dealing with symmetries and invariants that can be found imot rely on predefined landmarks and uses raw laser range

landmark based representation. This is achieved by represéinder data to acquire accurate grid maps. Particle filteirggus

ing each feature in a low dimensional space (measuremenbposal distributions that take into account the mostnece

subspace) and in the metric space. The measurement subsphservation are also called look-ahead particle filtersra\éz-

captures an invariant of the landmark, while the metric epabenéndezt al.[30] proposed such a method to more reliably

represents the dense information about the feature. A mgppéstimate the state of a dynamic system where accurate sensor

between the measurement subspace and the metric spaeeavailable.

is dynamically evaluated and refined as new observationsThe advantage of our approach is twofold. Firstly, our algo-

are acquired. Such a mapping can take into account spatitiim draws the particles in a more effective way. Secontily,

constraints between different features. This allows thb@s highly accurate proposal distribution allows us to utiline

to consider these relations for updating the map estimate. effective sample size as a robust indicator to decide whethe
Very recently, Dellaert proposed a smoothing method called not a resampling has to be carried out. This further resluce

square root smoothing and mapping [2]. It has several atte risk of particle depletion.

vantages compared to EKF since it better covers the non-

linearities and is faster to compute. In contrast to SEIFs, i VIII. CONCLUSIONS

furthermore provides an exactly sparse factorization & th | this paper, we presented an improved approach to learn-

information matrix. ing grid maps with Rao-Blackwellized particle filters. Our

In a Wo_rk by Murphy, _Doucet, and colleagues [6’_ 32], Raoeipproach computes a highly accurate proposal distribution
Blackwellized particle filters (RBPF) have been introducefqeq on the observation likelihood of the most recent senso
as an effective means to solve the SLAM problem. EaGhormation, the odometry, and a scan-matching process. Th
particle in a RBPF represents a possible robot trajectofyos ys to draw particles in a more accurate manner which
and a map. The framework has been subsequently extendgdl, gl reduces the number of required samples. Addition
by Montemerlo et al. [28, 29] for approaching the_ SI-A'\/'ally, we apply a selective resampling strategy based on the
problem with landmark maps. To learn accurate grid MaRgtective sample size. This approach reduces the number of
RBPFs have been used by Eliazar and Parr [9] and Hahgghecessary resampling actions in the particle filter ang th
et al. [16]. Whereas the first work describes an efficient maﬁjbstantially reduces the risk of particle depletion.

representation, the second presents an improved motioelmod o, approach has been implemented and evaluated on data

that reduces the number of required particles. Based on i, ired with different mobile robots equipped with laser
approach of Hahnest al, Howard presented an approach 19,nq6 scanners. Tests performed with our algorithm inriffe
learn grid maps with multiple robots [19]. The focus of thigy e scale environments have demonstrated its robussames
work lies in how to merge the information obtained by thg,, ability of generating high quality maps. In these experi

individual robots and not in how to compute better proposments, the number of particles needed by our approach often

distributions. _ _ _ was one order of magnitude smaller compared to previous
Bosseet al.[1] describe a generic framework for SLAM in approaches.

large-scale environments. They use a graph structure af loc
maps with relative coordinate frames and always reprebent t
uncertainty with respect to a local frame. In this way, they i i
are able to reduce the complexity of the overall problem. This work has partly been supported by the Marie Curie
In this context, Modayilet al. [25] presented a techniqueProgram under contractnum_berHPMT—CT—2001—00251,by the
which combines metrical SLAM with topological SLAM. TheGerman Research Foundation (DFG) under contract number
topology is utilized to solve the loop-closing problem, wées SFB/TR-8 (A3), and by the EC under contract number FP6-
metric information is used to build up local structures. &im 004250-CoSy, FP6-IST-027140-BACS, and FP6-2005-IST-5-
ideas have been realized by Lisienal. [22], which introduce MUFly. The authors would like to acknowledge Mike Bosse
a hierarchical map in the context of SLAM. anq John Leonarq for providing us the dataset of the MIT
The work described in this paper is an improvement of tHdllian Court, Patrick Beeson for the ACES dataset, and Dirk

algorithm proposed by Hahneit al. [16]. Instead of using Hahnel for the Intel Research Lab, the Belgioioso, and the

a fixed proposal distribution, our algorithm computes an im>€9-Hall dataset.

proved proposal distribution on a per-particle basis onfishe
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