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Abstract—We present an algorithm for learning 3D object
models from partial object observations. The input to our
algorithm is a sequence of 3D laser range scans. Models learned
from the objects are represented as point clouds. Our approach
can deal with partial views and it can robustly learn accurate
models from complex scenes. It is based on an iterative match-
ing procedure which attempts to recursively merge similar
models. The alignment between models is determined using a
novel scan registration procedure based on range images. The
decision about which models to merge is performed by spectral
clustering of a similarity matrix whose entries represent the
consistency between different models.

Index Terms—object detection, model learning , range im-
ages

I. INTRODUCTION

An essential ability for a system which interacts with un-

structured environments is to learn models of the surrounding

objects. Whereas many researchers focused on the detection

of known object models in a 3D scene, relatively little work

has been done on the learning of those models.

In this paper, we present an approach for unsupervised

learning of object models from a set of 3D scans. One

special property of our algorithm is that it operates with

partial views because in 3D laser range scans typically only

a part of the object is visible. To get a complete model of

an object, the robot therefore either needs to travel around it

or needs to combine several views of identical objects in the

current scene. Our approach can be applied to a sequence of

3D scans not necessarily acquired in the same environment.

If multiple instances of an object are visible in a scene

from different perpsectives, our approach can construct a

model even from a single scan, by merging the different

individual views. Such a model contains all available struc-

trual information of an object. Figure 1 shows a motivating

example of our algorithm. Our approach proceeds in an

iterative fashion by recursively merging partial point clouds

representing partial views of the objects. Pairs of models are

aligned by means of a novel registration algorithm based

on range images. The similarity between different models

is evaluated by a scoring function specifically designed to

cope with incomplete views. The selection of the models to

be joined is calculated according to a spectral clustering of

the similarity matrix.

The remainder of this document is organized as follows.

We first discuss the related literature on object model learn-

ing from 3D scans. Subsequently, we present our approach.

Then, we show the effectiveness of the approach with real

world experiments.
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Fig. 1. In this figure, we show a motivating example of our approach. The
top image shows a 3D scan acquired with our mobile robot. The partial
views of objects extracted from the scan are shown in different colors. From
these partial views we compute a simlarity matrix, shown in the bottom left
part of the figure. Based on this similarity matrix we merge partial views
to obtain the complete models illustrated in the bottom right of the figure.

II. RELATED WORK

Whereas several researchers addressed the detection of

known objects in 3D data and a variety of effective solutions

have been developed, the problem of autonomously learning

such models from incomplete views is still an open research

issue.

In the context of 3D object detection, Gelfand et al. [3]

presented an approach for global registration based on inte-

gral volume descriptors, which are one-dimensional descrip-

tors whose values depend on the volume enclosed by the

local surface around a point. A branch-and-bound algorithm

based on distance matrix comparisons is used to select the

optimal correspondence set and align the two shapes. The

comparison is made efficient by reducing the set of features

based on the uniqueness of their descriptor. Johnson et al. [6]

proposed to use the so-called spin-images for object detec-

tion, which are 2D representations of the surface surrounding

a 3D point. Spin images have been often reported to be robust

features for matching 3D data. They propose to compute a

spin-image for every point in the model and every point in

the scene. Computing the spin images requires to calculate

the local surface normals. On point clouds these normals

are typically expensive to compute and highly sensitive to

the noise in the data. Correa et al. [10] proposed a variant

of spin-images (spherical spin images) that simplifies the



nearest neighbor search. They define equivalence classes

of spin-images by using the linear correlation coefficient.

Furthermore, they compress the descriptor to a smaller

dimension to speed up the comparison. Mian et al. [7] use

the tensor descriptors as alternative features. To compute

these tensor descriptors, they rely either on an accurate

estimate of the surface normals or on the mesh structure

of the data in general. Stiene et al. [11] present an object

detection approach based on contours extracted from range

images. Their features are based on a fast Eigen-CSS method

and a supervised learning algorithm. Triebel et al. [13] use

spin-images as features for an associative Markov network

(AMN). The parameters of this AMN are learned from

manually labeled training data. Subsequently they apply the

learned AMN to label regions of a scan based on their local

appearence. In a subsequent work [12] they use their AMN-

based classifier to complete partial scans. This is done by

partitioning the scan into contiguous regions having the same

labels. These regions are likely to represent an instance of

an object, which is then replaced by its model, to complete

a scan.

All these approaches focus on detecting instances of

objects belonging to known models in the environment. In

contrast to them Anguelov et al. [1] proposed a technique

for learning these object models from 2D grid patches. The

input to the algorithm is a set of small grid maps representing

complete views of objects in a non-static environment. These

grid maps are obtained by calculating differences between

sets of complete grid maps acquired at different points

in time. The approach seeks to compute complete models

of objects from these small grid-maps. In principle this

approach could be extended to operate on 3D data. However,

it requires the input grids to represent complete views of the

object to be learned.

If only partial views of objects are visible, the complexity

of the problem increases due to the difficulties in performing

data association. However, in many applications a full 3D

map of the environment in which all objects are completely

visible is not available. Therefore, the ability to operate with

partial views is highly desirable. In this paper we present

an approach to learn 3D object models from a sequence

of 3D laser range data. Our algorithm is able to learn a

complete model of an object also from a single scan if

multiple instances of the same object are simultaneously

visible.

III. LEARNING OBJECTS FROM 3D SCANS

In this section we describe the details of our approach to

learning 3D object models from a sequence of 3D scans.

Each model of an object is represented as a 3D point cloud.

We first give a general outline of the entire algorithm before

we discuss the details of the individual steps.

The overall procedure works as follows. Given a set of

scans we extract regions representing views of objects. These

regions are obtained by removing the background from the

scene, and by grouping neighboring points into partial object

views as described in Section III-A. To create a model, we

determine for each pair of views the transformation which

best aligns them by means of a novel technique based on

range images (see Section III-B). For each pair of object

views, we then evaluate the quality of the match by using

a score function specifically designed to operate with partial

views of objects (Section III-C). The output of this procedure

is a square consistency matrix having as many rows as the

current number of models. From this matrix, we determine

the current set of maximally consistent models and we join

them into a single one. To determine the models to be

merged, we apply an approach based on spectral clustering

discussed in Section III-D.

A. Generating the Partial Views from a 3D Scan

The input of our procedure is a set of 3D scans. From these

scans we extract a set of point clouds which represents the

visible parts of the objects. To this end, we need to remove

the points which belong to the background of the scene (i.e.,

walls, floor, etc.). This is done by fitting a set of planes in

the scene, and removing the supporting points.

To extract these planes we first compute the local normals

of the points. Subsequently we group the neighboring points

having similar normals into sets and compute the fitting plane

for each of those sets. We finally remove from the scan those

points which are assigned to the horizontal planes (floor) and

to the vertical ones (walls) having an area bigger than a given

threshold. In our experiments this threshold was set to (0.25

m2). To obtain the partial views from the remaining points

in the scans we group them by connecting the neighbors.

This procedure returns a set of small point clouds {Vi},

each of which represents a partial view of a candidate object,

observed from a position pi. Our approach seeks to obtain

complete models of objects by merging either partial views

or incomplete models. After the partial views have been

extracted, all the subsequent operations are performed on

models. A model M(k) is defined as a collection of point

clouds
{

V
(k)
i

}

. Let p
(k)
i be the viewpoint from which the

object view V
(k)
i has been acquired.

B. Fast Matching of Partial 3D Models Based on Range

Images

An essential step to determine whether two models can

be merged is to calculate the potential alignments between

them. In this section we present, a procedure to efficiently

compute the transformations which aligns two incomplete

models M(n) and M(m). To this end, we use an approach

based on range images extracted from the point clouds.

Range images are compact representations of 3D data. The

value of every pixel is the length of the segment which starts

from the observer, passes through the image pixel and ends

to the closest point in the scene.

Whereas a range image of the scene depends on a specific

viewpoint, arbitrary scenes can be represented by a collec-

tion of range images obtained by different viewpoints. An

example of these range images is shown in Figure 2. In

our current system, we apply the z-buffer algorithm [2] to



Fig. 2. Example of range images generated from a point cloud. The original
point cloud (left) and range images obtained from different viewpoints
(center and right). The darker a pixel of the range image is, the closer
to the viewpoint.

efficiently compute a range image from an unsorted list of

3D points.

Given a model M(k), we can compute its point cloud

as the union of the original point clouds
{

V
(k)
i

}

, translated

according to a transformation T
(k)
i as follows:

x̂
(k)
i,j = T

(k)
i x

(k)
i,j . (1)

Here, x̂
(k)
i,j is point of the model M(k), T

(k)
i is a the

transformation matrix which translates all the points of the

object views V
(k)
i in the reference frame of the model, and

x
(k)
i,j is the jth point of the ith object view in the model.

Our matching procedure works as follows. Let M(n)

and M(m) be two models. From each of the two point

clouds we sample a set of range images from different

viewpoints. In our experiments we selected 12 viewpoints

equally distributed around the model, starting from the orig-

inal observation position. From each image in the two sets

we select a set of interest points by means of an Harris corner

detector [4]. We then compute for each of these interest

points a set of features, which are small image patches

from the neighborhood of the interest point. To achieve a

certain degree of invariance w.r.t. to the distance between

the object and the robot, we shift the values of the image

patch according to the distance of the center of the patch.

In our implementation the size of those image patches was

always 6×6 pixels in the image and 30×30 cm in the world.

The descriptor vector of each feature contains the values of

the pixels in the patch.

We then determine a set of potential correspondences

between the features of the first model and the feature

of the second model. As a distance metric we use the

Euclidean distance between the feature descriptors. Since

each feature represents a 3D point, we can align the models

if we know three point correspondences [5]. To this end,

we use a variant of the GOODSAC algorithm [8], i.e., we

sequentially select triples of corresponding features based

on their descriptor distance. Each transformation is then

validated by re-projecting all the features of the first model

into the second according to the computed transformation.

The procedure terminates after a fixed number of trials

(200 in our implementation). It returns a list of candidate

transformations
{

T
(m,n)
i

}

which align the first model to the

second, sorted according to the quality of the match. Figure 3

illustrates a typical outcome of our matching procedure.

Since this procedure relies only on three point-

correspondences, it is more likely to find a solution in pres-

ence of a small overlap compared to traditional approaches

like ICP. The error of a solution T
(m,n)
i is typically affected

by a small error (10 cm and an orientation error of 2◦). This

accuracy is generally sufficient for applications in which one

has to detect objects in the scene, but not when one has to

learn a model. In the latter case, small errors in aligning the

models can easily lead to a global model whose accuracy

is not adequate for a subsequent detection of the objects in

scene.

For this reason, we refine the original transformation com-

puted in the previous step. More specifically, we compute a

new solution T̂
(m,n)
i by matching the point clouds of the

two models using T
(m,n)
i as initial guess. For the selection

of the correspondences for ICP we consider only those

correspondences that are compatible with the initial solution

T
(m,n)
i . Typically, the error affecting the new solution T̂

(m,n)
i

is below 3 cm and 0.5 degrees, which is sufficient for our

purposes.

Compared to the standard use of ICP on the two point

clouds, this two-step procedure can cope with partial views

and preserve the accuracy of a more dense matching strategy.

On the other hand, this technique tends to produce more

false positives since it uses a smaller fraction of the data

to determine the initial guesses {T
(m,n)
i }. For this reason,

we reject the false positives based on a scoring function

described in the next section.

C. Verification of a Match

The previous step returns a set of potential matches

between the two models. In this section, we discuss how to

evaluate the quality of the matches based on the generative

properties of the chosen object model and on the projective

properties of the range images.

Note that a pixel in a range image does not necessarily

represent a point in the space, but rather a surface whose area

grows with the distance. For this reason, if two surfaces are

overlapping along the z axis of the viewpoint, only the object

which is closer to the observer will be visible in the range

image. When we compute the score, we first merge the point

clouds according to the transformation before we generate a

set of range images of the merged model from the original

viewpoints. If the model is inconsistent, some surfaces of

the original views will be hidden by other surfaces. We can

detect this by comparing the generated range images with

the ones of the original views. Figure 4 illustrates this based

on a two-dimensional example.

We now explain in detail how to evaluate the score of a

match.

• Let T̂
(m,n)
i be the transformation between the models

M(n) and M(m) to be aligned.

• Let M(m+n) be the model obtained by merging the

points of M(m+n) according to the transformation

T̂
(m,n)
i .

• Let
{

p
(m)
j

}

be the viewpoints from which the partial

views
{

V
(m)
j

}

of the first model M(m) have been

observed.



Fig. 3. This figure shows the individual steps of our registration algorithm. Left: two partial models of a plant to register. Middle: Range images extracted
from those models. In the small box a typical 6× 6 feature descriptor is visible. Right: the two models aligned, from two different viewpoints. The points
of the original models are shown with different colors.

p
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Fig. 4. Key idea of our scoring function. The top row shows two models
M(1) and M(2) and a combined model M(1+2) resulting from a wrong
alignment. The bottom row shows the range images obtained from the
models M(1) from its viewpoint p

(1), and from the model M(2) from
its viewpoint p

(2). The range image extracted from the combined model

M(1+2) from the viewpoint p
(1) is different from the range image of

M(1). The points marked by a (red) cross are hidden. Accordingly, this
match will receive a low score.

• For each viewpoint in
{

p
(m)
j

}

we generate a range

image of M(m+n) and we compare it with the range

image of M(m) from the same viewpoint p
(m)
j . In our

implementation we compute this score as the difference

between the two images normalized by the number of

pixels of which are visible in the image of the original

model. Let γm
j be this value.

The outcome of this procedure is a set of quantities
{

γm
j

}

, one for each viewpoint
{

p
(m)
j

}

, corresponding

to the quality of the individual viewpoint.

• We repeat the previous step with the other model M(n)i

to obtain the quantities
{

γm
j

}

.

• the result of the score function the average of the quality

terms γ.

To increase the robustness we repeat the above procedure

for different resolutions (1◦ and 0.3◦ per pixel). Figure 5

shows two range images generated from the same viewpoint

for both the merged model and for one of the originating

models.

The matching procedure described in Section III-B returns

multiple solutions for each pair of models. For each of

these solutions we compute the score as described above.

However for the next clustering step we only consider for

each pair of models the transformation with the highest score.

The result of the scoring step is then represented by an

M ×M similarity matrix A, where M is the current number

Fig. 5. Two range images generated for evaluating the score of the match.
The first row shows two of the original models from two viewpoints. The
second row shows the range images extracted from the models at the original
viewpoints. The last row shows the model constructed by merging the two
original ones and two range images extracted from the combined model at
the original viewpoints. These range images will then be compared with the
original ones.

of models in the system. Each entry amn of the matrix is

computed as amn = 1− γmn where γmn is the score of the

best transformation between the models M(m) and M(n).

Figure 6 shows an example of such a similarity matrix.

D. Merging the Models

The next step of our algorithm is designed to decide which

of the current models should be joined. Here, we want to

find a set of columns in the similarity matrix which are

maximally consistent. To this end we use the single cluster

graph partitioning algorithm proposed by Olson et al. [9].

The idea is to find an indicator vector v whose components

are either 0 or 1 which maximizes the pairwise consistency

λ(v) of a set of models:

λ(v) =
v

T Av

vT v
(2)

The components of v which contain a 1 represent the models

that will be merged. Olson has shown that this problem

can be solved by computing a discrete approximation of

the first eigenvector of A [9]. In our current implementation

we adopt this approach, with the exception that we do not

use the power method for computing the first eigenvector



of A because in our application A is not required to have

a dominant eigenvalue (i.e., only one cluster of consistent

matches).

The result of this procedure is an indicator vector that tells

us which models to join. When we join a set of models, we

eliminate them from the rows and the columns corresponding

to the joined models. We then recompute the entries of the

matrix which are changed by this operation. This is achieved

by repeating the steps discussed in sections III-B and III-

C until no further merges are possible. Note that once the

similarity matrix A is computed, the spectral clustering does

not require to specify any parameter. However, to increase the

robustness of the clustering we set all entries of the matrix

to zero which are below a given threshold (0.7).

E. Summary of the approach

In sum, our approach proceeds as follows. Given a set of

3D scans, we remove the background and extract contiguous

regions of points from the scenes. Subsequently, we start

to merge models until no further merges are possible (low

values of the score function). The merging operation starts

with a set of models which consist in a collection of aligned

3D point clouds and a collection of viewpoints. For each

pair of models we compute the potential alignments between

them. We then assign to each potential alignment a score. The

higher the score of a transformation between two models,

the better the match. The scores of all pairs are then used

to construct a similarity matrix. Given this similarity matrix

we then identify the set of maximally consistent models by

determining the dominant eigenvector. We then merge the

models which are consistent into a single one and recompute

the scores and the transformations between the merged model

and all the previous models which have not been merged.

IV. EXPERIMENTS

In this section we present two experiments for validating

our approach. The data have been acquired with a SICK-

LMS laser range finder mounted on a pan/tilt unit. The

maximum resolution of the range images extracted from the

scans was 0.3◦ per pixel. The first experiment shows the ef-

fectiveness of the approach in complex indoor scenarios. The

second experiment shows how the accuracy of the learned

models increases with the number of training examples.

A. Learning Objects from a Sequence of Scans

In this section we present an extensive experiment which

shows the ability of our approach to deal with several views

in complex and cluttered environments. We acquired 7 scans

in an office environment. From these scans our algorithm

extracted the 18 partial views shown in Figure 6 (top). In

the remainder of this section we will refer to these views as

M(1) · · ·M(18), according to the labels in Figure 6. These

views represent parts of the following objects: two kinds of

chair, a rubbish bin, a plant, a pioneer robot, and a monitor.

Initially, all the views are assigned to individual models. The

corresponding similarity matrix is illustrated in Figure 6. Ac-

cording to this matrix, the models M(1) . . .M(6) are highly
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Fig. 6. Partial views that have been extracted from the scans and are
the input for the learning procedure (top) and the initial similarity matrix.
The elements of this matrix correspond to the score of the best alignment
between the models at the corresponding row and column (bottom).

similar. The same holds for the models M(7) . . .M(9). The

state of our algorithm after a few iterations is shown in

Figure 7. It recovered a full model of the rubbish bin by

merging the similar models M(7) . . .M(9), and it started to

construct the model of the plant by merging M(2) and M(6).

The algorithm stops when there are no similar models

left. This experiment took about 18 minutes on a 1.7 Ghz.

Pentium 4 processor. In this example, this is the situation

shown in Figure 8. As a result, our algorithm learned 7

models: two kinds of chair, a rubbish bin, a plant, a pioneer

robot, and two parts of a monitor. These two parts have

not been merged due to their limited overlaps. However, as

soon as more views of this object will become available, a

complete model is likely to be learned. This is demonstrated

in the following experiment.

B. Effects of the Number of Samples on the Learning Pro-

cedure

In this experiment, we measured the performances of our

approach as a function of the number of views per object. We

considered 4 objects: a rubbish bin, a monitor, a plant, and a

chair. We then constructed a set of partial views of increasing

size and ran our algorithm on this data. After each run a new
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Fig. 7. Intermediate result generated by our algorithm: actual models (top)
and corresponding similarity matrix (bottom).
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Fig. 8. Models learned by our algorithm (top) and final similarity matrix
(bottom).

set of exemplar clusters is constructed from the previous one

by adding one view for each object.

In Figure 9 we show the outcome of this experiment. Each

curve represents the fraction of the number of views of an

object which are correctly identified as belonging to the same

object and aligned properly. In general, the more views of

an object are available, the better the result.

V. CONCLUSIONS

In this paper we presented an algorithm to unsupervised

learning of object classes from three-dimensional range

scans. Our algorithm has been designed to work with partial

views and is able to combine several views of the same
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Fig. 9. Behavior of our algorithm as a function of the number of training
examples. Each curve represents the fraction of views of a specific object
which were correctly merged into a single consistent model.

object from multiple scans. It can also combine partial views

of identical objects extracted from one single scan. The

approach has been implemented and tested on real data

acquired with a laser range scanner mounted on a pan/tilt

unit. The experiments demonstrate that our algorithm reliably

identifies the individual object classes which then could be

used for an efficient object identification approach.
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