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Abstract. Gaussian processes are a powerful non-parametric framework
for solving various regression problems. In this paper, we address the task
of learning a Gaussian process model of non-stationary system dynam-
ics in an online fashion. We propose an extension to previous models
that can appropriately handle outdated training samples by decreasing
their influence onto the predictive distribution. The resulting model es-
timates for each sample of the training set an individual noise level and
thereby produces a mean shift towards more reliable observations. As a
result, our model improves the prediction accuracy in the context of non-
stationary function approximation and can furthermore detect outliers
based on the resulting noise level. Our approach is easy to implement and
is based upon standard Gaussian process techniques. We demonstrate in
a real-world application that our algorithm, in which it learns the system
dynamics of a miniature blimp, benefits from individual noise levels and
outperforms standard methods.

1 Introduction

Accurately modeling the characteristics of a system is fundamental in a wide
range of research and application fields, and it becomes more important as the
systems grow more complex and less constrained. A common modeling approach
is to use probabilities to represent the dependencies between the system’s vari-
ables and apply machine learning techniques to learn the parameters of the
model from collected data. Consider for example the task of learning the system
dynamics of a small blimp. The majority of existing approaches assume station-
ary systems and weight equally all the training data. The flight characteristics
of the blimp, however, are affected by many unconsidered factors that change
over time. A common approach to deal with non-stationary systems is to assign
higher weights to newer training samples.

In this paper we present a probabilistic regression framework that can accu-
rately describe a system even when its characteristics change over time. More
concretely, we extend the Gaussian process (GP) framework to be able to han-
dle training samples with different weights. GPs are a state-of-the-art non-
parametric Bayesian regression framework that has been successfully applied
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Fig. 1. Different observation noise assumptions in the data lead to different GP models.
From left to right: standard approach assuming uniform noise levels, heteroscedastic GP
model assuming input-dependent noise levels, and our approach assuming unrestricted
noise levels where the green framed samples (the smaller circles) are assigned with
higher weights

for solving various regression problems. One limitation of standard GPs, how-
ever, is that the noise in the training data is assumed to be uniform over the
whole input domain (homoscedasticity). This assumption is not always valid and
different approaches have been recently proposed to deal with varying noise in
the data. The main idea behind these approaches is to assume that the noise
can be described by a function of the input domain (heteroscedasticity) so that
adjacent data is supposed to have similar noise. However, both of these ap-
proaches effectively regard all training data as having the same weight. In this
paper, we present a general extension of these GP approaches. Our model is
able to deal with individual, uncorrelated observation noise levels for each sin-
gle training sample and thereby is able to weight the samples individually. This
flexibility allows us to apply our framework, for example, to an online learning
scenario where the underlying function being approximated may change during
data collection.

Figure 1 illustrates how different assumptions about the observation noise
in the data lead to different predictive distribution of GP models. In the figure,
the predicted mean, the 95% confidence interval, and the training samples are
shown. The size of the circle around each point corresponds to its estimated
noise; the bigger the radius, the larger the noise. The left plot corresponds to
the most restrictive, standard GP model where the noise is assumed to be con-
stant. In the plot in the middle, the noise is assumed to depend on the input
domain. This corresponds to the more flexible heteroscedastic GP models. This
model, however, still has limited flexibility since it does not allow us to deal with
unrestricted noise levels. The approach presented in this paper is able to weight
the training samples individually by assigning different noise levels. The right
plot in Fig. 1 corresponds to a GP learned using our approach. Assuming the
red framed samples are outdated information and assigned with lower weights
than the green framed our model selects the noise levels correspondingly. Note
that our model as well assigns smaller noise levels to the red framed samples on
the right side as there is no newer information available. Finally, the predictive
mean function is shifted towards the higher weighted samples and the predictive
variance reproduces the distribution of the training samples.
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The main contribution of this paper is a novel GP framework that estimates
individual, uncorrelated noise levels based on weights assigned to the training
samples. Considering unrestricted noise levels allows us to increase the prediction
accuracy compared to previous approaches as we can assign higher noise levels
to inaccurate observations, so that their influence onto the regression is reduced.

This paper is organized as follows. After reviewing related work in Section 2
we give a short introduction of GP regression in Section 3. Afterward, in Sec-
tion 4, we introduce our approach of estimating unrestricted noise levels. Finally,
in Section 5 we provide several experiments demonstrating the advantages of our
method, followed by a conclusion.

2 Related Work

Gaussian process regression has been intensively studied in the past and ap-
plied in a wide range of research areas such as statistics and machine learning.
A general introduction to GPs and a survey of the enormous approaches of
the literature is given in the book of Rasmussen and Kuss [1]. In the most GP
frameworks a uniform noise distribution throughout the domain is assumed.
In contrast to this, a heteroscedastic noise prediction has as well been inten-
sively studied. For instance, the approaches of Goldberg et al. [2] and Kerst-
ing et al. [3] deal with input-dependent noise rates. Both use two separate GPs
to model the data. One predicts the mean as a regular GP does, whereas the
other is used to model the prediction uncertainty. In contrast to our approach,
they predict input-dependent noise levels. We extend their approach and ad-
ditionally estimate for each single training samples an individual noise value.
Heteroscedasticity has as well been applied in other regression models. For ex-
ample, Scholkopf et al. [4] integrated a known variance function into a SVM
based algorithm and Bishop and Quazaz [5] investigated input-dependent noise
assumptions for parametric models such as neuronal networks.

GPs have been also successfully applied to different learning tasks. Due to
the limited space, we simply refer to some approaches which are closely related
to the experiments performed in this paper. Ko et al. [6] presented an approach
to improve a motion model of a blimp derived from aeronautic principles by
using a GP to model the residual. Furthermore, Rottmann et al. [7] and Deisen-
roth et al. [8] learned control policies of a completely unknown system in a GP
framework. In these approaches stationary underlying functions were assumed.
However, in real applications this is normally not the case and estimating an in-
dividual noise level for each observation can significantly improve the prediction
accuracy.

Additionally, further regression techniques have been successfully applied to
approximate non-stationary functions. D’Souza et al. [9] used Locally Weighted
Projection Regression to learn the inverse kinematics of a humanoid robot. The
authors include a forgetting factor in their model to improve the influence of
newer observations. In contrast to their approach, we obtain an observation
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noise estimate of each single training sample which, for instance, can be used to
remove outdated observations from the data set.

3 Gaussian Process Regression

Gaussian processes (GPs) are a powerful non-parametric framework for regres-
sion and provide a general tool to solve various machine learning problems [1].
In the context of regression, we are given a training set D = {(x;,y;)}¥; of N,
d-dimensional states x; and target values y;. We aim to learn a GP to model the
dependency y; = f(x;) + ¢; for the unknown underlying function f(x) and, in
case of a homoscedastic noise assumption, independent and identically, normally
distributed noise terms ¢; ~ N(0,02).

A GP is fully specified by its mean m(x) and covariance function k(z;, ;).
Typical choices are a zero mean function and a parametrized covariance function.
In this work, we apply k(xz;, x;) = J]% exp (—3(x; — x;)TA™ (z; — x;)), where
a? is the signal variance and A = diag(¢y,...,¢;) is the diagonal matrix of the
length-scale parameters.

Given a set of training samples D for the unknown function and the hyper-
parameters = (A,0%,07) a predictive distribution P(f* | *,D, ) for a new
input location * is again a Gaussian with

fi = m@*) + k(@) (K + R) " (y — m(2)) (1a)
[32 = k(@" @) — k(e.2")" (K + R) " k(z,a"). (1b)

Here, K € RV*¥ is the covariance matrix for the training points with K;; =
k(z;,z;) and R = 021 is the observation noise.

4 GP Model with Individual Noise Levels

In general, GP regression can be seen as a generalization of weighted nearest
neighbor regression and thus can be applied directly to model non-stationary
underlying functions. As more and more accurate observations become available
the predictive mean function is shifted towards the more densely located training
samples. However, assigning lower weights to outdated samples improve the ap-
proximation accuracy regarding the actual underlying function. For this purpose,
we assign a weighting value w(z;),7 = 1,..., N to each single training sample x;.
In case of GPs the weight of a sample and thus the importance on the predictive
distribution can be regulated by adapting the observation noise correspondingly.
Therefore, given the weights the presented GP framework estimates individual
noise levels for each training samples to obtain the most likely prediction of
the training samples. Obviously, the prediction accuracy of the actual underly-
ing function highly depends on the progress of the weight values. However, in
practical applications such values can easily be established and, even without
having knowledge about the optimal values, raising the weights of only a few
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samples result in a significant improvement of the approximation. Considering
an online learning task the influence of subsequent observations can be boosted
by monotonic increasing values over time. D’Souza et al. [9], for instance, apply
a constant forgetting factor. Throughout our experiments we set

0.1 ifi<N-A )
w(x;) = ) ,i=1,...,N, (2)
1.0 otherwise

where N is the total number of training samples and the parameter A specifies
how many of the more recent observations are assumed to have higher impor-
tance. Although we are only using a simple step function to define the weights,
our GP framework is not restricted to any fixed distribution of these values.
To implement individual noise levels the noise matrix R of the GP model

is replaced by the diagonal matrix Rp = diag(c?,...,03,) of the individual
noise levels for each training point zi,...,zy. In general, as the global noise
rate o2 is simply split into individual levels o7, ..., 0% the GP model remains

unaffected and the additional parameters can be added to the set of hyper-
parameters 8. Given that, the noise levels can be estimated in the same fashion
as the other hyper-parameters. We employed leave-one-out cross-validation to
adapt the hyper-parameters. An overview about different cross-validation ap-
proaches in the context of GPs is given by Sundararajan and Keerthi [10]. In
general, one seeks to find hyper-parameters that minimize the average loss of all
training samples given a predefined optimization criterion. Possible criteria are
the negative marginal data likelihood (GPP), the predictive mean squared error
(GPE), and the standard mean squared error (CV). The weightings w(x;) can
easily be integrated into cross-validation by adding the value of each training
sample as an additional factor to the corresponding loss term. This procedure is
also know as importance weighted cross-validation, originally introduced in [11].

From (1a) and (1b) we see, that for arbitrary scaling of the covariance func-
tion the predictive mean remains unaffected whereas the predictive variance
depends on the scaling. Initial experiments showed that the GPP and GPE cri-
terion scales the covariance function to be zero as this minimizes the average
loss of all training points. The predictive mean remains unchanged whereas the
predictive variance is successively decreased. Therefore, we employed the CV
criterion, which is given as

CV(60) = = > wlai) (v~ 1) )

i=1

Here, ;i denotes the predicted mean value of P (fi* | ;, D) 0), D is obtained
from D by removing the ith sample, and wy = Ef\il w(x;) is the normalization
term of the importance values.

Using the CV criterion to optimize the hyper-parameters, we obtain indi-
vidual, uncorrelated noise levels and a mean prediction — we will refer to it as
ff V' — which is optimal with respect to the squared error. However, an ade-
quate variance prediction of the training samples is not obtained. This is based
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on the fact that the CV criterion simply takes the predictive mean into account.
To achieve this, we employ, in a final step, the obtained mean function as a fixed
mean function m(x) = ff V' of a second GP. The predicted mean of the first GP
becomes a latent variable for the second one, so the predictive distribution can be
written as P (f* | #*,D,0) = [ P (f* | w*,D,O,ffv)-P (fgv | *,D, ) dffv.
Given the mean fuc V' the first term is Gaussian with mean and variance as de-
fined by (1a) and (1b), and m(x) = f5. To simplify the integral, we approx-
imate the expectation of the second term by the most likely predictive mean
f'gv ~ argmaxgey P (fucv \ w*,D,O). This is a good approximation as most
of the probability mass of P ( fE Viz*, D, 0) is concentrated around the mean
which minimizes the mean squared error to the training samples.

To adjust the hyper-parameters of the second GP — and to define the final
predictive distribution — all we need to do is to apply a state-of-the-art GP
approach. The individual noise levels have already been estimated in the first
GP, they do not have to be considered in the covariance function of the second
GP. Therefore, depending on the noise assumption of the training samples, one
can choose a homoscedastic or heteroscedastic GP model. The final predictive
variance of our model is defined by the second GP only whereas the individual
noise levels 0%, ..., 0% are taken into account in the predictive mean. Still, the
hyper-parameters of the second model must be optimized with respect to the
weights w(x;). Therefore, we employ leave-one-out cross-validation based on the
GPP criterion with included weights instead of the original technique of the
chosen model.

5 Experimental Results

The goal of the experiments is to demonstrate that the approach above outper-
forms standard GP regression models given a non-stationary underlying func-
tion. We consider the task to learn the system dynamics of a miniature indoor
blimp [12]. The system is based on a commercial 1.8 m blimp envelope and is
steered by three motors. To gather the training data the blimp was flown in a sim-
ulation, where the visited states as well as the controls were recorded. To obtain
a realistic movement of the system a normal distributed noise term was added
to the control commands to simulate outer influence like gust of wind. The sys-
tem dynamics of the blimp were derived based on standard physical aeronautic
principles [13] and the parameters were optimized according to some trajecto-
ries flown with the real blimp. To evaluate the predictive accuracy, we used 500
randomly sampled points and determined the mean squared error (RMS) of the
predictive mean of the corresponding GP model relative to the ground truth
prediction calculated by the simulator.

The dynamics obtained from a series of states indexed by time can be written
as s(t+1) = s(t) + h(s(t),a(t)), where s € S and a € A are states and actions,
respectively, t is the time index, and h the function which describes the system
dynamics given state s and action a. Using a GP model to learn the dynamics
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Table 1. Prediction accuracy of the system dynamics of the blimp using a standard
GP model and our approach with a homoscedastic variance assumption of the data

model X(mm) X(mm/s) Z(mm) Z(xntx)/s) P (deg) Sb(deg/s)
StdGP 53.7 40.7 128.4 18.4 3.3 1.2
LWPR 43.4 33.9 27.9 9.1 3.7 1.1

InGP, A =200 51.1 35.4 30.4 10.1 3.3 1.3
InGP, A =300 42.7 38.4 27.5 10.1 3.6 1.3
InGP, A =400 44.3 33.7 26.2 8.8 3.3 1.2

optimal prediction  50.4 32.1 12.5 7.1 3.0 1.3

the input space consists of the state space S and the actions A and the targets
represent the difference between two consecutive states s(t + 1) — s(t). Then,
we learn for each dimension S. of the state space S = (51, ...,S5s|) a Gaussian
process GP. : S x A — S.. Throughout our experiments, we used a fixed time
interval At = 1s between two consecutive states.

We furthermore carried out multiple experiments on benchmark data sets
to evaluate the accuracy of our predictive model given a stationary underlying
function. Throughout the experimental section, we use three different GP mod-
els: a standard GP model (StdGP) of [1], a heteroscedastic GP model (HetGP)
of [3], and our GP model with individual, uncorrelated noise levels (InGP). As
mentioned in Section 4, our approach can be combined with a homoscedastic
as well as a heteroscedastic variance assumption for the data. In the individual
experiments we always specify which specific version of our model was applied.
We implemented our approach in Matlab using the GP toolbox of [1].

5.1 Learning the System Dynamics

In the first experiment, we analyzed if the integration of individual noise levels
for each single training sample yields an improvement of the prediction accuracy.
We learned the system dynamics of the blimp using our approach assuming a
homoscedastic variance of the data and a standard GP model. To evaluate the
performance we carried out several test runs. In each run, we collected 800
observations and calculated the RMS of the final prediction. To simulate a non-
stationary behavior, we manually modified the characteristics of the blimp during
each run. More precisely, after 320s we increased the mass of the system to
simulate a loss of buoyancy.

We additionally evaluated different distributions of the weights (2) by adjust-
ing the parameter A, that specifies how many of the more recent observations
have higher importance. Table 1 summarizes the results for different values of A.
For each dimension of the state vector we plot the residual. The state vector of
the blimp contains the forward direction X, the vertical direction Z, and the
heading ¢ as well as the corresponding velocities e , VA , and ¢. As can be seen
from Table 1, the vertical direction is mostly affected by modifying the mass.
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Also, as expected, increasing A raises the importance of more reliable obser-
vations (which are the more recent ones in this experiment). Consequently, we
obtain a better prediction accuracy. Note that this already happens for values
of A that are substantially smaller than the optimal one, which would be 480.
For comparison, we trained a standard GP model based on stationary dynamics.
The accuracy of this model, which corresponds to the optimum, is given in the
bottom of Table 1. Furthermore, we applied the Locally Weighted Projection
Regression (LWPR) algorithm [9] to the data set and obtained equivalent re-
sults compared to our approach with A = 400. LWPR is a powerful method to
learn non-stationary functions. In contrast to their approach, however, we ob-
tain for each input value a Gaussian distribution over the output values. Thus,
the prediction variance reproduce the distribution of the trained samples. Fur-
ther outputs of our model are individual, uncorrelated noise levels which are
estimated based on the location and the weights of the training samples. These
levels are a meaningful rating for the training samples. The higher the noise
level the less informative is the target to reproduce the underlying function. We
analyze this additional information in the following experiment.

5.2 Identifying Outliers

This experiment is designed to illustrate the advantage of having an individual
noise estimate for each observation. A useful property of our approach is that
it automatically increases this level if a point is not reflecting the underlying
function. Depending on the estimated noise value, we can determine whether
the corresponding point should be removed from the training set. The goal of
this experiment is to show that this way of identifying and removing outliers can
significantly improve the prediction accuracy.

To perform this experiment, we learned the dynamics of the blimp online and
manually modified the behavior of the blimp after 50 s by increasing the mass. As
soon as 10 new observations were received, we add them to the existing training
set. To increase the importance of the subsequent observations, we used (2) with
A = 10. Then, according to the estimated noise levels o%,...,0% we labeled
observations with a value exceeding a given threshold v as an outlier and removed
it from the data set. Throughout this experiment, we used the standard deviation

of the noise levels: v = ¢- Ef\il o?. After that, we learned a standard GP model
on the remaining points.

Figure 2 shows the learning rate of the vertical direction Z averaged over
multiple runs. Regarding the prediction accuracy, the learning progress based
on removing outliers is significantly improvement (p = 0.05) compared to the
standard GP model which uses the complete data set. Additionally, we evaluated
our InGP model with rejected outliers for the second GP and this model performs
like the standard GP model with removed outliers. This may be based on the fact
that we only took the predictive mean function into account. To have a baseline,
we additionally trained a GP model based only on observations that correspond
to the currently correct model. The prediction of this model can be regarded as



Learning Non-stationary System Dynamics Online using Gaussian Processes 9

400 e ———
StdGP with removed outliers
350 StdGP

i icti Table 2. Prediction accuracies of the sys-
optimal prediction e

300 ¢ 1 tem dynamics using different thresholds £
g 250 1 to identify outliers
> 200
2 150 -
F model RMS (mm)
100
5% StdGP 83.6 + 5.6

L

b removing outliers, £ = 1.5 224 £ 12.2
00 120 140 160 180 200 removing outliers, £ = 2.0 18.7 + 12.1
time removing outliers, £ =2.5 204 £ 12.4

removing outliers, £ = 3.0 21.6 + 12.3

optimal prediction 5.7 £ 2.7

s
e

20 40 60 80 1

Fig. 2. Prediction accuracies plotted over
time using £ = 2.0

optimal. In a second experiment, we evaluated final prediction accuracies after
200s for different values of . The results are shown in Table 2. As can be seen,
the improvement is robust against variations of £. In our experiment, keeping
95% of the points on average lead to the best behavior.

5.3 Benchmark Test

We also evaluated the performance of our approach based on different data sets
frequently used in the literature. We trained our GP model with a homoscedastic
as well as a heteroscedastic noise assumption of the data and compared the pre-
diction accuracy to the corresponding state-of-the-art approaches. We assigned
uniform weights to our model as the underlying function of each data set is sta-
tionary. For each data set, we performed 20 independent runs. In each run, we
separated the data into 90% for training and 10% for testing and calculated the
negative log predictive density NLPD = & SN —logP(y; | ®;,D,9). Table 3
shows typical results for two synthetic data sets A and B; and a data set of a sim-
ulated motor-cycle crash C, which are introduced in detail in [2], [14], and [15],
respectively. As can be seen, our model with individual noise levels achieves an
equivalent prediction accuracy compared to the alternative approaches.

6 Conclusions

In this paper we presented a novel approach to increase the accuracy of the pre-
dicted Gaussian process model based on a non-stationary underlying function.
Using individual, uncorrelated noise levels the uncertainty of outdated observa-
tion is increased. Our approach is an extension of previous models and easy to
implement. In several experiments, in which we learned the system dynamics
of a miniature blimp robot, we show that the prediction accuracy is improved
significantly. Furthermore, we showed that our approach, when applied to data
sets coming from stationary underlying functions, performs as good as standard
Gaussian process models.
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Table 3. Evaluation of GP models with different noise assumptions
homoscedastic noise heteroscedastic noise
data set StdGP InGP HetGP InGP
A 1.506 4+ 0.263 1.491 + 0.255 1.455 4+ 0.317 1.445 £ 0.276
B 1.834 4+ 0.245 1.827 £+ 0.262 1.496 + 0.279 1.512 £+ 0.269
C 4.528 + 0.189 4.515 £ 0.233 4.315 4+ 0.474 4.277 £ 0.530
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