A Probabilistic Sonar Sensor Model for Robust Localization
of a Small-size Blimp in Indoor Environments using a Particle Flter

Jorg Maller Axel Rottmann Leonhard M. Reindl Wolfram Burgard

Abstract—In recent years, autonomous miniature airships
have gained increased interest in the robotics community. This
is due to their ability to move safely and hover for extended
periods of time. The major constraints of miniature airships
come from their limited payload which introduces substantial
constraints on their perceptional capabilities. In this paper,
we consider the problem of localizing a miniature blimp with
lightweight ultrasound sensors. Since the opening angle of
the sound cone emitted by a sonar sensor depends on the
diameter of the membrane, small-size sonar devices introduce
the problem of high uncertainty about which object has been
perceived. We present a novel sensor model for ultrasound
sensors with large opening angles that allows an autonomous
blimp to robustly localize itself in a known environment using
Monte Carlo localization. As we demonstrate in experiments o ) o
with a real blimp, our novel sensor model outperforms a Fl_g. 1. The r_obotlc_bllmp [20] used throughout this paperslequipped
popular sensor model that has in the past been shown to work With 4 small, lightweight Devantech SRF10 sonar sensors.
reliably on wheeled platforms.

However, a crucial aspect is the design of the so-called
. INTRODUCTION probabilistic observation model(z | 2, m) which defines
Recently, autonomous blimp robots have become a growhe likelihood of a measurementgiven the poser of the
ing research field because such robots can safely navigaghicle in the environment:. This sensor model needs to
in their environment and fulfill a variety of tasks. Thisbe specified properly to provide accurate state estimas an
includes environmental monitoring, surveillance, andcfea to avoid the divergence of the filter. In this context, the
and rescue. Many applications, however, require that thginiature Devantech SRF10 ultrasound sensors our blimp
airships are able to reliably localize themselves or tocbuilis equipped with pose a challenging problem. Their wide
accurate maps of the environment. For example, in resc@@ening angle introduces a high uncertainty which needs to
scenarios the exact knowledge of the position of the vehicle correctly modeled by the sensor model.
allows to provide precise estimates about the position of We present a novel sensor model for ultrasound sensors
victims. At the same time, the airships need to be smallésizavith wide opening angles that has several desirable fea-
to be deployable in a wide range of applications includingures compared to previously developed models. It better
indoor settings. The smaller a blimp gets, however, theeflects the physical properties of ultrasound sensors tand i
higher the constraints become on the weight and size of tiig especially suited to deal with the wide opening angles
sensors the robot can carry and at the same time on thk small-scale ultrasound sensors. We evaluate our model
computational capabilities of the platform. Although #er on a miniature blimp system in an indoor navigation task.
are lightweight cameras, the corresponding feature eidrac In practical experiments we demonstrate that our model
algorithms typically are computationally too expensiveoo outperforms an alternative and popular sonar sensor model.
executed on the resource-limited CPU of a blimp. Therefore, This paper is organized as follows. After discussing relate
alternative sensor technologies such as ultrasound sensewrk in the following section, we briefly describe Monte
appear to be an appropriate sensor for solving the locadizat Carlo Localization in Section Ill. We will then discuss
task. probabilistic sensor models and introduce our approach in
In this paper, we consider the problem of localizing &ection IV. Finally, in Section V, we will evaluate our senso
small-size blimp in indoor environments. Our blimp [20],model and compare it to alternative models.
which is depicted in Fig. 1, has an effective payload of
100 grams and is equipped with four ultrasound sensors as
well as an IMU for navigation. Particle filter techniques @av  In the past, several authors have considered autonomous
been proven to be a robust means for robot localization [6kerial blimps. For example, Kantat al. [12], Hada et
al. [10], and Hygounencet al. [11] developed airships
This work has partly been supported by the DFG within the Rete \yith several kilograms of payload and utilized them for
Training Group 1103 and by the European Commission under BP6-I . . . Ly
surveillance, data collection, or rescue mission cootiina

34120-muFly. All authors are members of the Faculty of Engingeait the ) i
University of Freiburg, Germany tasks. The relatively high payload of these systems allows
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the blimp to carry more powerful sensors and also faciktatedoes not rely on the assumption that the environment caensist
more extensive on-board computations. of certain types of geometric objects. Rather, it can be
Additionally, there has been work on navigation withapplied to arbitrary indoor environments. Additionallyetie
small-scale blimps that utilize cameras for localization oapproaches assume relatively accurate odometry, which is
even SLAM. Whereas cameras provide rich informationtypically not available in the context of aerial blimps.
the processing of the images typically cannot be carried
out on the embedded computers installed on such miniature
airships [1], [14], [23]. Kirchner and Furukawa [13] presen Throughout this paper, we consider the problem of esti-
a localization system for indoor UAVs, which utilizes anmating the pose of a robot relative to a given map using
infrared emitter on the vehicle and three external infrared particle filter. The key idea of this approach is to maintain
sensors to localize the robot via triangulation. Whereas thi probability densityp(z; | 21+, u1.+) of the poser; of the
approach does not have high computational demands, r@bot at timet given all observations;.; and control inputs
requires external devices that perceive the infrared fgna v1.: Up to timet. This probability is calculated recursively
Before laser scanners became available for installatiofsing the Bayesian filtering scheme
on mobile robots, ultrasound sensors were popular sensor
for estimating the distance to objects in the environmert"”
of a robot. Typically, robots were equipped with arrays of . [ p(z, | ug, 2, 1) p(zi1 | 21:6-1, ur—1) dze—q . (1)
Polaroid ultrasound sensors which had, compared to the
sensors installed on our blimp, a relatively small openinglere, n is a normalizer that ensures thatz; | 2., u1.¢)
angle. In the literature, several approaches for modelieg t sums up to 1 over alk;. The termp(x; | us, ;1) is the
behavior of such ultrasound sensors can be found. motion model and(z; | z;) the sensor model, respectively.
Some approaches utilize ray-casting operations to estimat For the implementation of the described filtering scheme,
the distance to be measured according to a given map. Onex use a sample based approach which is commonly known
the first such approaches to model ultrasound sensors in the Monte Carlo localization [6]. Monte Carlo localization
context of localization and mapping is the pioneering works a variant of particle filtering [7] where a set of
by Moravec and Elfes [18], [19]. The sensor model approaclveighted particles represents the current belief. Eadlicpar
described there is somewhat similar to ours. However, it ha®rresponds to a possible robot pose and has an assigned
originally been designed for two-dimensional occupandy gr weightw;. The belief update from (1) is performed according
maps only and also does not specifically model the intensity the following three alternating steps:

decrease of the sound cone while it propagates. A corre-1) |n theprediction stepwe draw for each particle a new
sponding model has been utilized by Burgatdal. [4] and particle according to the motion modelz; | ug, z,—1)
has been shown to allow a mobile robot to robustly localize  given the action,.

itself using Markov Localization, a grid-based variant of 2y |n thecorrection stepwe integrate a new observation
recursive Bayes filters. Thrun [26] proposed an approach to = by assigning a new weights; to each particle
occupancy grid mapping that considers multiple objects in according to the sensor modgflz; | z:).

the sound cone. However, this approach utilizes a simplified 3) In theresampling stepwe draw a new generation of
sensor model. Foet al. [8] presented a sensor model for particles fromM (with replacement) such that each

range measurements that has been designed especially for sample inM is selected with a probability that is
robots operating in dynamic environments. It also does not  proportional to its weight.

explicitly model the intensity changes on the surface of the
sound cone. IV. PROBABILISTIC MODELS FORSONAR SENSORS

Additionally, several authors have presented so-called The probabilistic sensor modelz | z) plays a crucial
endpoint or correlation models which are more efficienfole in the correction step of the particle filter and its
but ignore the area intercepted by the sound cones [1Jsoper design is essential for accurate state estimate®io a
[25]. Schroeteret al. [21] directly learn the likelihood the divergence of the filter. It defines the likelihood of a
function from data collected with a mobile robot, whichmeasurement given the stater of the system including the
is an approach similar to the one described by Thetin information about the environment. In case of sonar sensors
al. [27]. Compared to these approaches, our technique seekg measurement consist of a single distance. In the
to physically model the sensor and explicitly takes intdollowing, we first briefly discuss a popular sensor model. We
account the potential reflections of objects. will then introduce our novel sensor model which explicitly

Physical models have also been considered by Leonafigbdels the characteristics of small-size sonar sensofs wit
and Durrant-Whyte [16]. Their approach assumes certajarge opening angles.
types of geometric objects such as planes, cylinders, chrne ]
and edges in the context of a landmark-based SLAM algd): The Ray-casting Model
rithm. Tardoset al. [24] utilize a similar approach to extract Thrunet al.[27] and Chosett al.[5] describe an approach
lines and corners to robustly build large-scale maps based to model the measurement likelihood for sonar or laser range
ultrasound data. Compared to these techniques, our approdinders, which in the past has successfully been applied to
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Fig. 2. The intensity pattern of the Devantech SRF10 minégasonar
sensor compared to the one of the popular Polaroid 6500 seusits are r’
decibel normalized to the maximum intensity. [
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robustly localize wheeled platforms equipped with staddar
Polaroid ultrasound sensors with an opening angle of 13
degrees [9]. Their approach models | d(z)) based on the
distanced(z) to the closest object along the acoustical oFig. 3. Two examples for sonar measurements using differentifarafibn

. . . T factors g1 < g2 < g3). The sensor is mounted on a wheeled platform above
optical axis of the _Sensor' TQ de_termme this Ilkellhoo_ahyth the laser range finder. The upper pictures show the experaeatting
perform a ray-casting operation in the map to deterrdi?g  with different sized objects in the field of view of the senste laser and
and calculate(z | d(z)) based on a mixture of four different sonar measurements are shown in the corresponding lowergsictunits
distributions to capture the noise and error charactesisti are meters.
of range sensors. The major component of this model is
a Gaussian\V (d(z),0?) that characterizes the distribution
of measurements in situations in which the closest object
along the acoustical or optical axis of the sensor is dedecte
Additionally, this model includes an exponential disttibn
e~ * to properly model measurements reflected by objects
not CODta!neq in the map. Furthermore, it utilizes a unlI_:'g. 4. The spherical coordinate system used for modelings#resor
form distribution to model random measurements causegkhavior. An object is seen by the sensor in distancazimuth angles,
for example, by sensor failures. Finally, maximum rangend zenith anglé. In this way, the dihedral angl@ is covered.
measurements are modeled using a constant probability.
These four different distributions are mixed in a weightedince the received signal typically is much weaker than
average to model(z | d(x)). While this model allows for a the transmitted signal, it gets amplified by a predefined
highly accurate localization given typical ultrasoundsms amplification factor. If this amplified signal exceeds a fixed
or laser range finders, it yields suboptimal results for smathreshold, the measurement procedure is stopped and the
sonar sensors having a large opening angle. The reasordistancer = “2! is calculated based on the time of flight
that for wide opening angles it is no longer sufficient toAt and the velocity of sound.
calculate the measurement likelihood solely based on theFig. 3 illustrates the effect of detecting different obgect
distance to the closest object along the acoustical or @ptiddy varying the amplification factor. The two bottom images
axis of the sensor. In this paper, we especially cope with thshow the environment observed by a SICK laser range finder
problem and propose a model that explicitly considers thend the sonar measurements using several amplification
opening anglé = 1.22 % which depends on the wavelengthfactors. With higher amplification factors, the detectiapa-
) of the signal and the diametdp of the membrane (see bility increases. However, the sensor then also tends &rtlet
Brown [3]). Accordingly, the closest object in the entireneo objects that are perpendicular to the heading of the sensor.
is considered, which better reflects the wide opening anglén our approach, we model this behavior by considering the
B. The Cone Model detection of objects_, _depending on their s.ize, angle, distan

and the used amplification factor. In particular, we calula

In contrast to other approaches, we seek to model the ropability distribution of triggering a measurement by
observatlon |I|$e|lh00d by systematically considering time modeling the received signal over the elapsed titvte
derlying physics of ultrasound sensors. The measurementy, consider the propagation of the signal in the envi-
starts with the generation and transmission of a periodigyment we define a spherical coordinate system (Fig. 4).
ultrasound signal. The signal propagates spherically @th e emitted signal intensity (power per ardajiepends on
intensity pattern which depends on the size of the sendgf zenith angle, which is depicted in Fig. 2. Due to the
(Fig. 2). For very small transmitters with a diameter in th%ymmetry of ultrasonic membranes it does not depend on

same order of magnitude as the wavelength, the signal §$s azimuth angle). Hence, the whole signal power can be
hardly focused. Thus, it can be considered as a growingiien as

hemisphere, which has lower intensity at its boundary area.
Usually, the transmitted signal is reflected by objects in P, :/1(9) dQ
the environment and is observed by the receiving sensor.

D 3]
—a
D

2 1 0 1 2 3 3 2 1 0 1 2 3




by integration over the hemisphere in front of the sensois Th  Furthermore, the probability distribution d?z(r,z) can
signal power is damped by a factbr(r) and the intensity is be calculated by the convolution

scaled by}2 with increasing distance since the surface area

of the hemisphere scales with. In contrast to Moravec [18], p(Pr(r) | z) = ( * pi> (Pr(r) | x) .

we explicitly model these two effects physically. HieH(r)

To determine the objects that potentially reflect the propBy choosing an appropriate and variable resolution during
agating signal, we assume that a map of the environmetite calculation of the objects via ray-casting, which resul
specifying the obstacles and the free space is given. In an adapted?;, we can achieve equdP; for all objects
our current implementation we use multi-level surface mapH; € H(r). Thus, this quantity can be simplified to
for this purpose [28]. Alternatively, one could also use the HE /1)
maximum likelihood estimate obtained from a 3D occupancy ( (( j ) g

mapping algorithm. We determine the set of relevant objectg Pr(r) | z) = ; 21H(r)]

by a discrete set of ray-casting operations according taed fix =0

angular resolution such that the entire visible hemisplgere (1- a)|H(r)\—j -8 (Pp(r,z) — j - P) )
covered. LetH; be an object, which is seen by the sensor ’ ‘

in distancer; and zenith angl®; and which corresponds to

the dihedral anglé2;. Then, the incident signal power is Here, we exploit the fact that the Dirac delta is the neutral

element of the convolution.
P, =1(6;) D(r;) Q; . For large values ofH(r)| this binomial distribution can
be approxmated by a Gaussia(u,o?). The meany =

A proportion Pr ; = p; P; of this signal power is reflected « o and variancer? = Praxa (1 — a) depend on

back to the sensor. Thereby, the reflection proporpore

[0, 1] depends on the relative angle of incidence of the signal Prax(7, ) Z P;.
and the reflection properties of the object. Unfortunatelg, H,eH(r)
latter properties are hard to obtain and would also furthe][hls ields

increase the storage requirements. As diffuse reflectish ju y
occurs on surfaces that have a roughness in .the order OIJ(PR(r) | ) %N(a Prax(r, ), a (1 —a) Pmax(r,x)) )
magnitude of the wavelength, typical uncluttered indoati-en

ronments mainly produce specular reflections. Additignall ~ The received signal is amplified by some predefined factor
diffuse reflected Signa|s again propagate on a hemisphegegnd the threshold circuit causes the sensor to measure the
which causes them to be very weak. Therefore we on@hortest distance, out of which the received and amplified
consider specular reflections, whereby the signal powesignal exceeds some fixed threshdtd. Consequently, the
which is reflected towards the receiver, can be estimatéfeasurement probability

according to
g p(ri | x)

p(g- Pr(r;) > Pg | x) - 1—Zprj\x 3)

j<i

pi(Pr.i) = ap(Pr,; | reflection towards senspr
+ (1 — o) p(Pg,; | reflection to other direction
~ad(Pri = Fo) + (1= ) 3(Pry) @ is the product of the probability that the amplified signal
for somea € [0, 1] using the Dirac delta. As there is typically exceeds the threshold and the probability that the measure-
no information about correlations between the reflectioment not already has been stopped. Thereby, we discretize
properties of objects, we assume them to be independetife measured distances intg, ...,y similar to Moravec
Furthermore, we do not consider multiple reflections oet al. [18].
interference. Additionally, dynamic, unmapped objects like people or
At time At the sensor starts to receive the reflected signakher robots could influence the measurements. This effect
of objects at the distance= ”'TN. The emitted ultrasound can be modeled by a small probability for dynamic objects
signal has the length which usually is a couple of wave- 3 which modifies (3) to
lengths. Therefore, at this time the sensor still receivies t |
reflected signal of objects in distances betweer andr.In P (ri | )
the following we will denote the set of objects which reflect
a signal that could contribute to trigger the measurement of= (? (9" Pr(ri) > P |2)+ ) [ 1= #/(r; | )
distancer by H(r) = {H; : r; € [r — £,7]}. Consequently, g<i
the total rece|ved power correspondrng to the distancan Furthermore, the sensor could fail and generate measure-
be written as the sum over the reflected powers of all objectsents uniformly distributed over the whole measurement
of H(r), where eachPy ; is distributed according to (2):  range. This can be modeled by the uniform random mea-
Z P surement probability and leads to the overall likelihood
R,

HieH(r) p'(ri )= (1—=7)-p'(ri| ) + 7 punitorm(7s) -
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Fig. 5. Two exemplary sonar measurements at different positibhe map is shown as a horizontal sectional view at a heighto®fm (left) and 2.55 m
(right). The picture illustrates a three-dimensional viemikr to the field of view of the sonar sensor. The calculatecsneement likelihoods and the
measurements are depicted for the standard sensor model fppeand our novel sensor model (lower plot).

V. EXPERIMENTS laser-based localization approach and calculated thergara

The sensor model described above has been implement8 Using the given map and 40,000 sonar measurements.
and evaluated using real data acquired with a 1.70 m lonigiére were virtually no dynamic objects and very little
blimp [20] in a large indoor environment. The blimp isWrong measurements while we acquired the data. As a result,
equipped with four Devantech SRF10 sonar sensors (sEi¢ values for the corresponding parameférandy of our
Fig. 1) with a measurement range up to 6.0 m. Each sens®del were lower than 0.01.
has membrane with a diameter Bf~ 8.5mm, a wavelength Fig. 5 depicts two examples of sonar measurements and
A = 8.5mm, and weighs 3.3 grams. Three sonar sensors dhe corresponding measurement likelihood calculations. |
mounted horizontally at the front, left hand, and right hangontrast to the ray-casting model, our sensor model specifie
side of the hull. The fourth sensor is integrated into the-gort Multi-modal likelihood, which explicitly models diffené
dola pointing downwards to measure the height. The blimp @bject sizes and takes into account multiple objects in
actuated by two main propellers that pivot together, priogd different distances. This demonstrates that our model can
thrust in the forward/backward and upward/downward direcdeal better with the large opening angle of miniature sonar
tions. A third propeller is mounted laterally at the rearfogt S€NSOrs.
blimp for yaw rotation. Additionally, our blimp is equipped
with an IMU [22] that weighs 8.8 grams and provides
accurate attitude and heading estimates. Both are usemwith In order to evaluate the improvement in terms of the
the motion model which is a variant of that proposed byocalization error, we compared the performance of our
Zuffereyet al.[29]. This model is based on the Newton-Eulefovel sensor model to the standard ray-casting model. To
equation of motion depending mainly on forces of propellerdetermine the localization error, we placed visual markgrs
and air drag and its parameters were learned on the datat@¢ floor, which allow us to accurately determine the pose
flying experiments. In our current implementation we us@f the vehicle using the camera integrated in the gondola of
low-variance resampling [27] and omit the resampling stefi’e blimp [2]. As a measure of localization error we used
until the effective number of particles [17] drops belowfhalthe Euclidean distance between the weighted average of all
the number of particles. particles and the reference pose.

The indoor environment, in which we carried out the In an extensive experiment of about 23 minutes of man-
experimentsi provided an area for f|y|ng of abautx 7 m?2 uaIIy Operated ﬂlght, the bllmp collected 13,430 sonar mea-
with a vertical space of 5m. The multi-level surface magpurements. Fig. 6 shows the path of the blimp as estimated
representing the environment had a resolution of 0.1 m aty the localization system using our novel sensor model.
was created from 3D laser scans. In this map we determinédsmall fraction of this run is shown in the video attach-
the set of relevant objects for our sensor model by ray-+ogsti ment. Since the motion model parameters were only roughly

B. Quantitative Results

using a fixed angular resolution of 5 degrees. approximated, the motion model path deviated highly from
o the real trajectory. As can be seen from Fig. 7, our novel
A. Qualitative Results sensor model resulted in a significantly smaller localaati

To compare our novel sensor model to the ray-castingrror than the standard ray-casting model. Furthermore, we
model [5], [27], we learned the parameters of both modeksvaluated the localization success rate which revealédtbaa
from real data by mounting the sonar sensor on a wheeledimber of particles required to reliably localize the blimmp
robot. We determined the corresponding sensor poses usingubstantially smaller using our sensor model.
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Fig. 6. A horizontal sectional view of our testing area at thCheight.
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rate of our novel sensor model in comparison to the standardasting
model. The error bars indicate the 0.3% confidence intervas @n runs. 17
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VI. CONCLUSIONS

In this paper, we presented a novel sonar sensor model 4!
probabilistic localization techniques that explicitlynsiders
the characteristics of small sonar sensors with large ogeni[20]
angles. In contrast to other models, our approach is based
on the physics of sonar sensors, explicitly takes the prop
gation of their hardly focused sound signal and its reflectio
by objects with different sizes and distances into accour‘ttZZ]
and specifies a multi-modal likelihood distribution. Preak
experiments with a real miniature blimp demonstrate that
our novel sensor model allows the blimp to robustly Io-[23]
calize itself in a known environment. It also significantly
outperforms the popular ray-casting model in terms of the
localization accuracy and the number of particles needeg.ﬂ
In future work we would like to consider the influence of
multiple reflections of the ultrasound signal and the qoesti
of how to model the corresponding effects in the sensdf®!
model. 26]
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