
A major challenge in robotics and AI lies in creating robots that 
are to cooperate with people in human-populated environments, 
e.g. for domestic assistance or elderly care. Such robots need 
skills that allow them to interact with the world and the humans 
living and working there.
In this work we investigate the question of spatial understanding 
of human-made environments. The functionalities of our system 
comprise perception of the world, natural language, learning, 
and reasoning. For this purpose we integrate state-of-the-art 
components from different disciplines in AI, robotics, and 
cognitive systems into a mobile robot system.
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Abstract Goal

http://www.cognitivesystems.org/explorer.asp

"Question: How can a robot understand the 
semantic, social, and functional aspects of its 
(human-made) environment?

"Method: Create an integrated, cognitive robotic 
system, using

  state-of-the-art subsystems
   cognitive architecture framework
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The Robot Architecture

Here we describe the principles that were used for 
the integration, including cross-modal ontology-
based mediation, and processing of perception on 
multiple levels of abstraction. Finally, we present 
experiments with the integrated “CoSy Explorer” 
system and list some major lessons that were 
learned from its design, implementation, and 
evaluation.

"Scenario: Robot office assistant
" interactive, semi-supervised map 

   acquisition (Human-Augmented 
   Mapping, HAM)

" situated dialogue between robot and 
   user about their environment



System integration, main components, and techniques used

Perception

   Place Categorization:
"Based on simple geometrical features fj 

extracted from laser range scans
"Features are combined 

using AdaBoost
"Distinguish between 
Room and Corridor

Pan-tilt unit
with camera

SICK laser 
range finder

Wireless ethernet

On-board speakers

Five laptops interconnected via wireless network
The hardware used

On-board computer for 
hardware access and control

Laptop running the 
speech recognition 
software, paired with a 
Bluetooth headset

On-line viewing tool

Laptop running the place 
classification software

The robot platform
One ActivMedia PeopleBot

Laptop running the 
software for navigation, 
SLAM, and people 
tracking

Laptop running the 
natural language dialogue 

system and the 
subsystem for conceptual 

mapping

   Metric Mapping and Localization:
"Simultaneous Localization and 

Mapping (SLAM)
"Geometric features (lines) 

extracted from laser range scans
"Integration of feature 

measurements using the 
Extended Kalman Filter (EKF)

Scan 1 Scan 2 Violation
   People Tracking & Following:
"(1) Motion detection via scan 

matching (violation of free space)
"(2) Tracking via Kalman Filters
"(3) Human- and situation-aware 

person following behaviour
X

Y

   Object Recognition:
"Implementation of the Scale-

Invariant Feature Transform 
(SIFT) computer vision algorithm

"Appearance-based image 
recognition

"Recognition of instances rather 
than classes

Language & Dialogue

object found:
couch

(1)

fj =Area
di

• Σ di 
• Gap = di > θ
• fj = # Gaps

def

training image

matched image

(2)

(3)

"Speech Recognition & Synthesis: 
 •
Nuance v. 8.5, speaker-independent 

speech recognition
 •
Festival, FreeTTS, or MARY speech 

synthesis
"Parsing & Generation:
 •
OpenCCG, combinatory categorial 

grammar
 •
Ontologically rich relational syntactic 

and semantic representation 
"Semantic Analysis: 
 • Hybrid Logics Dependency Semantics 
"Dialogue Interpretation 

& Management: 
 • Contextual reference resolution
 • Basic rhetorical relation resolution
 • SDRT-like dialogue context model
 • SFG-like functional interpretation and 

production of dialogue
"Cross-modal Information binding:
  Ontology-based mediation for associating 

linguistic interpretations with knowledge 
about the robot’s environment

Conceptual Spatial Mapping & Reasoning

"OWL-DL commonsense
ontology of an indoor office 
environment, encoding relations
between the different areas 
and the objects found there

"Description-Logics based
A-Box and T-Box reasoning 
(e.g. RACER or Pellet)

"Combines 
•
 information from the robot’s 

sensors (laser & vision)
(acquired knowledge),

•
 information given by the 
robot’s tutor 
(asserted knowledge), 

•
 and conceptual knowledge 
(innate) 

•
 in order to infer 
new knowledge.

"The conceptual map is 
linked to the topological abstraction of the navigation map and 
used for resolving linguistic references to entities in the robot’s 
environment (e.g. objects, areas).

@{B1:state}(be
  & <Mood>indicative
  & <Restr>(W1:person & we)
  & <Scope>(I1:region & in
   & <Dir: Anchor>(L1:location & lab
    & <Delimitation>unique
    & <Number>singular)))

“we are in the lab”

5. Situated Dialogue

also only accessible to •. !, the strongest modality, is accessible to all other modalities.
Like this, lexical entries can be assigned modalized categories to have a detailed control

over permitted derivations. By adjusting lexical categories, Multi-Modal CCG (and thus
OpenCCG) can reflect language-specific properties in a universal, strictly lexicon-driven
way. Figure 5.1 shows the modalized combinatory rules of our OpenCCG grammar.

Example 10 and Example 11 show two syntactic derivations of our OpenCCG grammar
for typical sentences that occur in situations of our previous examples in Chapter 4.

(10) we are in the lab
pper s\.pper/.pp pp/∗np np/∗n n

>np
>pp
>

s\.pper
<s

(11) this is the copier
pper s\.pper/.np np/∗n n

>np
>

s\.pper
<s

5.1.2 Hybrid Logic Dependency Semantics

The OpenCCG parser constructs an alternative semantic representation of the utterance
that substitutes the λ-calculus typically used in traditional Categorial Grammar. The se-
mantic formalism that has been chosen is Hybrid Logic Dependency Semantics (HLDS,
cf. Kruijff (2001)). The approach of combining HLDS with CCG has been presented by
Baldridge and Kruijff (2002). HLDS offers a dependency-based, compositional represen-
tation of different sorts of semantic meaning: propositional content and intention. HLDS
also offers an extended modal logic framework preserving the advantages of standard
modal logic, i.e. decidability and a convenient complexity. The most prominent feature
of hybrid logic is the introduction of nominals as an additional basic formula. Nominals
allow for explicitly referring to states, a property that standard modal logic is lacking.
Moreover, a new operator ‘@’, the satisfaction operator, is introduced. It can be used to
form formulas in the same way as the common boolean operators. A formula @ip serves
to express that a formula p holds at the state referred to by i. Furthermore, nominals can
be typed with the ontological sorts of the states they refer to. In the example sentence in
Example 12, the nominal E2 is typed as process. Complex logical forms can be further
differentiated by the ontological sort of their intention and their propositional content. We
will present this ontology-based meaning mediation in the next section.
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T-Box: conceptual knowledge

area1:
  is-a ‘Area’	

  (acquired - mapping)
  is-a ‘Corridor’  (acquired - place categorization)
  has-a ‘obj1’  (asserted - user dialogue)

obj1:
  is-a ‘ChargingStation’  (asserted - user dialogue)

area2:
  is-a ‘Area’  (acquired - mapping)
  is-a ‘Room’  (acquired - place categorization)
  is-a ‘LivingRoom’  (inferred)
  has-a ‘obj2’  (acquired - vision)

obj2:
  is-a ‘Couch’  (acquired - vision)

obj3:
  is-a ‘TVSet’  (acquired - vision)

A-Box: instance knowledge


