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Abstract

The study of the spatial relations between neural populations has shown its importance to

investigate possible constrains or connectivities between different cell types. In this paper we

present the application of the Voronoi diagram to detect possible spatial relations between cells.

1 Introduction

The study of the spatial relations between neural populations has shown its importance to investigate
possible constrains or connectivities between different cell types. A positive spatial dependencies
between two different populations of neurons may be an indicator of some connection patterns between
them [1, 5, 4, 2]. The spatial information is also helpful to study dependencies during development [10].

Different methods to study spatial relations between different cell populations have been proposed
in the past. The work in [14] extends the density recovery profile method [17] to study interdependences
between different S-cone cells. In [7], the author uses the K-function [16] to analyze the spatial relation
between on and off cells in the eye retina. The same cells are studied in [8] by fitting a bivariate
pairwise interaction model in the data. Spatial relations between beta cells are studied in [20] using
K-nearest neighbor histograms. This data was also analyzed in [19] using the J-function.

This paper introduces a method to study spatial relations between two cell populations. The
key idea is to calculate the Voronoi diagram of one of the populations, and then study the spatial
distribution of cells in the second population inside the polygons of the diagram. Using polygonal
areas around neural cells is a realistic approximation, since neurons present different irregularities in
their structure [11]. In this work we extend preliminary ideas and results presented in [2].

2 The Voronoi Diagram

The Voronoi diagram [3] is one of the most useful geometrical constructions to study point patterns
because it provides all the information needed to study the proximity relations in a set of points.

We define a Voronoi diagram as follows. Let P = {p1, p2, . . . , pn} be a set of points in the two
dimensional Euclidean plane. We refer to these points as reference points. Now we assign every other
point in the plane to its nearest reference point pi. This process creates a tessellation of the plane
into (sometimes unbounded) convex polytopes, also called Voronoi polygons. Let V (pi) be the Voronoi
polygon corresponding to reference point pi, then all the points inside this polygon are at least as close
to pi as to any other reference point pj

V (pi) = {p | d(pi, x) ≤ d(pj , x), ∀pi 6= pj},
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Figure 1: Example of a Voronoi diagram (black lines) for a set of reference points (black circles). Bands
around the edges of the Voronoi diagram are shown in gray. In this particular case δ = 0.29, indicating
the 29% of the distance between a Voronoi edge and its closest reference point.

with d(x, y) representing the Euclidean distance function.

The edges of the Voronoi regions form the Voronoi diagram V (P ) of a the reference points set.
Note that a point on the edges of the Voronoi diagram has two nearest neighbors and each vertex has
at least three. An example of a Voronoi Diagram is shown in Figure 1.

3 The V-Proportion Measurement

Let’s suppose we want to study the possible spatial interaction between two cell populations denoted
as P and Q. In principle, we want to study whether the cells in the Q population have a tendency to
be far from the cells in P . In this case, the average density of q-cells will be higher near the edges of
the Voronoi diagram than in the surrounding of the p-cells (Voronoi polygons). An example is given
in Figure 1, where p-cells are shown as black circles (reference points), and q-cells as white circles.

To quantify this far concept we construct bands around the edges of the Voronoi diagram with a
specified width (gray areas in Figure 1). If both populations, P and Q are spatially independent, then
the average density of q-cells should be the same in any region inside the Voronoi polygons. If there
exists an inhibition between the P and Q populations, then the density of q-cells should be higher
in the band zone. On the contrary, if there exists an attraction, then the density of q-cells should
be higher close to p-points and far from the edges. A way to quantified these spatial relations can
be obtaining by looking at the relative proportion between q-cells inside the bands nb and the total
number of q-cells inside the Voronoi polygons nvp

V-proportion =
nb

nvp

. (1)

If the measured V-proportion is higher than expected, then there should be more points inside the
bands, suggesting a negative correlation. If the measured V-proportion is lesser than expected, then a
positive correlation can be assumed.

An important issue in this method is the determination of the band widths. To determine this
value, we have to take into account that distances between the reference points pi and the edges of their
respective Voronoi polygon V (pi) are usually different for each reference point. As a result, polygons
with different sizes and shapes are obtained. This effect mainly appears in neuron populations, and it is
due to dendritic tree irregularities [11, 2]. To solve this problem a non-fixed value for the width in each
band is used. This value is represented by the parameter δ, 0 < δ < 1, and indicates the proportion
of the distance between each of the edges of V (pi) and the reference point pi . As an example, a value
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Figure 2: The plots shows the V-proportion for the populations of Figure 1 in comparison with the
simulated ones. The V-proportion is calculated for different band widths. Errors bars on the left plot
are at the 80% confidence interval, while on the right plot are at the 95% confidence interval.

of δ = 0.29 means that the width of the band for one edge must be 29% of the distance between that
edge and the reference point (Figure 1).

It remains to explain how to quantify the expected values to be compared with Expression 1.
To test the significance of the V-proportion, we use a Monte Carlo test procedure. This involves
generating a set of two random and independent patterns, each with the same number of points as the
two empirical populations P and Q, and in a study area identical to that of these patterns. We repeat
the generation N times for each δ, and then the mean and the standard deviation of the V-proportion
for each simulation are calculated. The resulting plot is compared with the V-proportion obtained
with the two real P and Q populations. Whenever the real V-proportion raises above the random
equivalent simulation, then we can assume a negative interaction between patterns, that is, P inhibits
Q. If the real V-proportion is below the simulated one, then a clustering process occurs in which P

cells attract Q cells. If the real V-proportion is close to the simulated one, we can not assume any
spatial interaction between the two populations.

Finally, an important problem when working with point populations is the edge effect. Typically,
the observation of the two point patterns is restricted to a regular sampling window, while usually the
patterns extend beyond the window. Furthermore, the Voronoi polygons on the boundary of the area
are open because they have no neighboring points in those directions. This edge effect affects the sense
of bands in the Voronoi polygons adjacent to the edges. In our case, we solve this problem by removing
the Voronoi polygons intersecting the edges of the sampling area (open polygons). Similar approaches
have been applied in other works for studying cell mosaics [13, 9]. Although this heuristic reduces the
total number of points used for the study, we think the results represent the spatial relations in a more
reliable manner.

An example of this process is shown in Figure 2. Here the V-proportion for the populations
in Figure 1 is calculated, where P cells correspond to black circles and Q cells to white ones. We
generated 100 simulations for the two populations. The simulations points were distributed randomly
in the space. As both plots in Figure 2 indicate, the V-proportion of the two populations is always
above the simulated values. This indicates that the Q population tends to be inhibited by the P

population. In the left plot of Figure 2, we can see that the V-proportion values fall most of the
time above the 80% confidence interval. That means that the negative interaction between cells is
significant at the 0.20 level. However, this difference is no more significant at the 0.05 level (95%
confidence interval) as shown in the right plot in Figure 2.

4 Results

This section presents experimental results that validate our approach. We first show experiments in
simulated populations that follow different spatial distributions. We then study the spatial relations
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Figure 3: Two Poisson clusters (upper images) with different values of σ2 in pixel units (left σ2 = 25,
right σ2 = 100). The area of the original image was 300 × 300 pixels. P points are shown in black,
whereas Q points are depicted in blue circles. Both clustering behaviors are clearly detected.

between real cell populations that have been previously studied in the literature.

4.1 Simulated Populations

In the following experiments we generated pairs of point patterns following a mathematical probability
distribution, and then we calculated their V-proportion. As explained in Section 3, we use two set
of populations. The P population will be the reference one, and the Q population will be the one to
study its spatial distribution.

We first study clusters behaviors of Q points with respect P points To generate the both patterns,
we simulate the Poisson cluster process presented in [15, 6] as follows. Each parent point p is generated
following a bidimensional Poisson process. For each p-point, we generate a set of q offspring points. The
positions of the q-point relative to their parents are independent and identically distributed according
to a bidimensional normal distribution. Details on the simulations can be found in [18]. We generate
different pairs of P and Q populations with 50 and 300 points respectively. The points are contained
in an image area of 300 × 300 pixels. For each pair of populations, we change the variance σ2 of the
offsprings q-points. Example simulations are shown in Figure 3 together with their V-proportions. In
these plots the interval confidence represented by the error bars is of 95%. As we can see the clusters
are detected by the V-proportion plots. A way to determine the level of clustering could be calculating
the area under the curve between the random simulations and the real patterns.

In a second simulation we generate a Q population in which each point can not be closer to a P

point less than a certain radius (80 pixels). Details on the simulation are found in [12]. Results are
shown in Figure 4. The plot clearly indicates the negative correlation between the populations at the
95% confidence interval. In a third simulation, we generate independent Poisson processes for both
P and Q populations. Part of the populations and V-proportions are shown in Figure 5. The plot
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Figure 4: The left image depicts the populations P and Q generated following a repulsion model [12].
The right plot clearly indicates a negative spatial relation between both populations.
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Figure 5: The left image depicts the populations P and Q generated following two independents Poisson
point processes. The right plot does not indicate any spatial relation between both populations.

correctly indicates that we can not describe any positive or negative spatial relation between the two
populations.

In summary, the previous experiments clearly show that the V-proportion value is able to detect
cluster and repulsion behaviors, as well as the lack of them.

4.2 V-proportion in real cell populations

In this section we apply the V-proportion measurement to real populations of cells. In addition, we
compare the results with previous works analyzing the same patterns.

4.2.1 Beta cells in the cat retina

The left image in Figure 6 depicts a pattern of beta-type ganglion cells in the retina of a cat [20]. Beta
cells are associated with the resolution of fine detail in the cat’s visual system. They can be classified
as on or off, depending on the branching level of their dendritic tree in the inner plexiform layer.
Analysis of the spatial pattern provides information on the cat’s visual discrimination. In particular,
independence of the on- and off -components would strengthen the assumption that there are two
separate channels for brightness and darkness. More details can be found in [20].

In [20] this pattern is investigated using histograms of nearest-neighbor distances (ignoring edge
effects). To test independence of the on and off patterns, a random translation of the off -component
was superimposed on the on-component, and the resulting nearest-neighbor histogram was compared



Figure 6: the left image shows the superimposed patterns of on and off cells in the cat retina. In the
right image we can see the cell nuclei of the hamster’s kidney.

with the original one by a sign reversal test. The authors in [20] concluded that both types of beta
cells form a regular lattice, which are superimposed independently. This data was also analyzed in [19]
using the J-function with a result greater than 1, which confirms conclusions of [20]. Our results
using the V-proportion are shown in the top plots of Figure 7. Using an confidence interval of 95% we
cannot assume a significant negative spatial relation between on and off cells. However, at a confidence
interval of 80% we can see a slightly negative repulsion. This small negative effect was not indicated
in previous works analyzing this pattern.

4.2.2 Hamster tumor

The right image in Figure 6 shows the positions of cell nuclei in approximately 0.25mm square histo-
logical sections of tissue from laboratory-induced metastasising lymphoma in the kidney of a hamster.
Two types of cells are distinguished: 77 pyknotic nuclei corresponding to dying cells, and 226 nuclei
arrested in metaphase. In [6] this pattern was studied and the random labeling hypothesis using the
K-function was accepted. Results in [19] agreed on the random hypothesis using the J-function. In
our analysis, we support the independence between both populations at the 80% and 95% confidence
level, as shown in the bottom plots in Figure 7.

5 Conclusion

This paper introduced a method to evaluate spatial relations between different neural cells. Our
approach is based on the Voronoi diagram and considers the relation between the density of points inside
Voronoi polygons and bands around it edges. The method has been tested in simulated populations as
well as in real ones. Results demonstrate that our measurement can be used to detect different spatial
relations between populations, such as repulsions, attractions or none of them.
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Figure 7: The top plots depicts the V-Proportion for the superimposed patterns of on and off cells
in the cat retina (left image in Figure 6). The repulsion between populations is slightly significant at
the 80% confidence level. However, this negative relation is not significant at the 95% confidence level.
The bottom plots present the V-proportion for the nuclei of a hamster (right image in Figure 6). Both
plots do not indicate neither positive or negative spatial relations between the two cell populations.
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