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Abstract—For long-term operations, graph-based SLAM ap-
proaches require to marginalize nodes in order to control the
computational cost. In this paper, we present a method to
recover a set of nonlinear factors that best represents the
marginal distribution in terms of Kullback-Leibler divergence.
The proposed method, which we call nonlinear factor recovery
(NFR), estimates both the mean and the information matrix of
the set of nonlinear factors, where the recovery of the latter
is equivalent to solving a convex optimization problem. NFR
is able to provide either the dense distribution or a sparse
approximation of it. In contrast to previous algorithms, our
method does not necessarily require a global linearization point
and can be used with any nonlinear measurement function.
Moreover, we are not restricted to only use tree-based sparse
approximations and binary factors, but we can include any
topology and correlations between measurements. Experiments
performed on several publicly available datasets demonstrate that
our method outperforms the state of the art with respect to the
Kullback-Leibler divergence and the sparsity of the solution.

I. INTRODUCTION

Graph-based optimization techniques are an effective solu-
tion to the simultaneous localization and mapping (SLAM)
problem. In graph-based optimization, the estimation problem
is commonly associated with a factor graph, whose nodes
represent the variables to be estimated and whose factors
represent the measurements between the nodes. In most cases,
the observations have nonlinear measurement functions and
are affected by Gaussian noise. For such cases, it can be shown
that performing inference on the factor graph representation is
equivalent to nonlinear least squares minimization [Dellaert
and Kaess, 2006]. By exploiting the sparse nature of the
problem, researchers have developed effective optimization
algorithms to solve even large-scale and challenging SLAM
problems [Grisetti et al., 2010, Kaess et al., 2007, Kümmerle
et al., 2011, Olson et al., 2006, Grisetti et al., 2007].

Unfortunately, when the number of variables is very large,
the computational complexity of the estimation problem is
high. In such cases, it is possible to reduce the problem size
by eliminating a set of variables and minimizing the approxi-
mation loss in a statistical sense. To reduce the approximation
error, the information related to the eliminated variables is pre-
served by marginalization. However, after successive marginal-
izations, the information matrix of the estimation problem
becomes dense and sparsity enforcing methods need to be
used [Kretzschmar et al., 2011, Kretzschmar and Stachniss,
2012, Carlevaris-Bianco and Eustice, 2013a, Vial et al., 2011,
Huang et al., 2013]. Unfortunately, the marginalization process
relies on the linear Gaussian assumption and can potentially
introduce errors due to a suboptimal linearization point.
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Fig. 1. Conditional dependence graphs for the Intel dataset with 66.6% node
reduction using the three marginalization methods proposed in this paper.

In this article we present a method to recover a set of
nonlinear factors that best represents the marginal distribu-
tion in term of Kullback-Leibler divergence. The proposed
method, nonlinear factor recovery (NFR), aims at estimating
the mean and the covariance of this set of factors. The current
manuscript incorporates the initial findings reported in our
previous publication [Mazuran et al., 2014], extends them in
a more general framework, and provides an extended experi-
mental and theoretical analysis. Specifically, we included:
• An extensive theoretical analysis of NRF;
• The capability of considering correlations between obser-

vations;
• The closed form solution for the correlated case;
• The proof that the work of Carlevaris-Bianco et al. [2014]

is equivalent to a special case of NFR when using only
relative measurements;

• The theoretical analysis of error propagation and NFR,
when applied to odometry chains;

• The experimental analysis of NFR in 3D environments;
• The analysis of different linearization points.
Our method has several theoretical and practical advantages:
• The problem of determining factor covariances is convex;
• The approximation is performed either on a local or a

global linearization point;
• The approach is general, i.e., any nonlinear measurement

function can be used;
• The framework can consider any topology and any cor-

relation between the measurements;
• The solution preserves the block structure of the matrix;
• A closed form solution exists in some particular cases.
We experimentally evaluate NFR using diverse sparsifica-

tion and node reduction strategies and compare it with respect
to the state of the art for both 2D and 3D SLAM settings. The
results demonstrate that our method significantly outperforms
the state of the art in terms of approximation accuracy and



sparseness of the solution, especially in online scenarios.

II. RELATED WORK

Over the last decade, numerous efforts have been made
towards minimizing the computational requirements of SLAM
by reducing the amount of variables in the state space, while
keeping the sparse structure of the problem. In the context of
filtering, Thrun et al. [2004] introduced the sparse extended
information filter (SEIF). The authors enforced sparsity when-
ever a node is marginalized by keeping only the edges with the
largest entries (in terms of absolute value) in the information
matrix. Eustice et al. [2005] provided a modification to SEIF
minimizing the differences between the SEIF estimate and that
of a non-sparsified filter. Vial et al. [2011] further extended
SEIF by providing a method that ensures that the approximated
information is strictly conservative. They also noted that the
optimization need only be carried out on the Markov blanket
of the node to marginalize. Our approach is similar in spirit
to the one of Vial et al. [2011] but we are not restricted
to the filtering setting and we are able to recover nonlinear
measurement functions.

More recently, given the popularity of graph-based opti-
mization solutions for SLAM, researchers investigated how
to reduce the number of nodes in the SLAM graph, while
keeping low approximation errors and the sparsity of the
information matrix. Ila et al. [2010] proposed an information-
theoretic approach to add only non-redundant nodes and highly
informative edges to the graph. Despite this, the graph will
eventually grow unbounded also with their approach, albeit at
a slower rate. Johannsson et al. [2013] followed a similar idea.
Instead of introducing spatially redundant nodes in the graph,
they propagate their measurements through already existing
nodes and add an additional measurement between them. In
this way, the graph will only grow according to the size of
the environment but not according to the operational time. We
differ from them in two main aspects. First, we can deal with
the elimination of nodes both spatially and temporally. Second,
we can remove nodes at any point in time and not only at the
time of insertion, thus keeping their information for as long
as possible.

Another family of approaches focused on which node to
remove from the graph via marginalization and how to treat the
resulting Schur complement. Konolige and Bowman [2009]
clustered nodes in the graph according to their spatial distance.
Among each cluster, they removed the least recently used
views, in order to keep a limited number of views and still
capture the dynamic nature of the environment. The informa-
tion of the removed nodes is kept via dense marginalization,
causing an increased fill-in in the information matrix. A similar
idea has also been introduced by Eade et al. [2010]. The
authors proposed to remove nodes without image data or with
views similar to existing nodes in the vicinity. To reduce
complexity, they also proposed to prune some edges according
to a heuristic based on node degree.

Some authors replaced the Markov blanket of the marginal-
ized node with either a linearized measurement or a set of

linearized measurements. Folkesson and Christensen [2004]
considered a particular case of linearized measurement, called
star nodes. In there, the position of each node is a linear
function of a root node, which, in turn, is connected with
the rest of the graph. Similarly, Frese [2007] proposed to
use linearized measurements to remove nodes in cliques when
performing relaxation, and applied this technique within the
Treemap algorithm [Frese, 2006]. In order to keep the lin-
earized measurements sparse, the author also removed low
informative edges in the clique graph, in the same spirit of
the thin junction tree algorithm [Paskin, 2003].

Kretzschmar et al. [2011] proposed a information-based
criterion for determining which nodes to marginalize. They
further employed the Chow-Liu tree approximation [Chow and
Liu, 1968] to sparsify the Markov blanket of the marginal-
ized nodes and keep the complexity low. Carlevaris-Bianco
et al. extended the previous work by introducing Generic
linear constraint (GLC) factors [Carlevaris-Bianco et al., 2014,
Carlevaris-Bianco and Eustice, 2013a,b]. GLCs are n-ary
edges of a factor graph, either dense or based on the Chow-
Liu tree, which approximate the information matrix of the
Markov blanket. With respect to those approaches, we explic-
itly consider nonlinear measurement functions and provide a
sound mathematical framework based on convex minimiza-
tion. The same authors further extended their approach to
enforce a conservative approximation of the true marginalized
potential [Carlevaris-Bianco and Eustice, 2014]. The authors
proposed three different algorithms with increasing complexity
and approximation accuracy, based on the covariance inter-
section framework. Our work is orthogonal to that and both
can be jointly employed to obtain a sparse, conservative and
nonlinear approximation of the true marginalized distribution.

Huang et al. [2013] approximated the dense information
matrix solving an `1-regularized minimization problem. They
used the alternating direction of multipliers method (ADMM)
[Boyd et al., 2011] to solve the problem and determine a
conservative and sparse approximation. The approach, how-
ever, requires the information matrix of the full graph. On the
contrary, our approach is local, in the sense that we directly
operate on the Markov blanket of the marginalized node.
Moreover, we explicitly consider nonlinear measurements and
the block structure of the state space, while they commit on a
linearization point and do not preserve the block structure.

Sparsification problems similar to the one presented in this
work have been considered in the machine learning commu-
nity, under the name of Sparse Inverse Covariance Selection
(SICS). Banerjee et al. [2006] first introduced the problem of
estimating the sparsity pattern of an information matrix from
a dense covariance by regularizing it with an `1 penalizer.
They showed that the dual problem has a simpler solution and
employed a block coordinate descent algorithm. The work has
been extended by Friedman et al. [2008] with the introduction
of the Graphical Lasso. They modified the Lasso algorithm to
work directly on the primal problem and showed an improved
convergence speed.

Duchi et al. [2008] extended the approach to deal with block



x1
x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5 x6

x2

x3

x4

x5 x6

x2

x3

x4

x5 x6

(c) Markov blanket
optimization (optional)

(a) Input factor graph (b) Markov blanket extraction

(f) Substitution in original graph (e) Factor retrieval (d) Node marginalization

Fig. 2. The main steps of the node removal algorithm.

sparsity by introducing an `1,∞ regularization term. They
solve the resulting minimization problem using a projected
gradient descent algorithm. Schmidt et al. [2009] introduced
the projected quasi newton algorithm (PQN) and showed its
application to block inverse covariance selection problems.

Our method shares some grounds with the block inverse
covariance selection problem with the difference being that we
aim to obtain a set of nonlinear measurements that approxi-
mate the target information, instead of a specific information
matrix.

III. NONLINEAR FACTOR RECOVERY

In this section we describe our general framework for non-
linear factor recovery (NFR), which we first introduced in our
previous work [Mazuran et al., 2014]. The proposed algorithm
consists of different steps, depicted in Fig. 2. Without loss
of generality, we assume that there exists a node selection
method that specifies which node will be eliminated. This
includes strategies such as the work of Kretzschmar et al.
[2011], Kretzschmar and Stachniss [2012], or strategies based
on the Euclidean distance [Johannsson et al., 2013]. Fig. 2(a)
depicts both an example factor graph as input, together with
the node x1 to be removed (in red).

In the first step of our method (Fig. 2(b)), we extract the
Markov blanket of the node x1 from the original graph. In
typical SLAM applications, the Markov blanket is in general
sparse and composed of few nodes. Then, we decide on
a linearization strategy to use. In this work we consider
both global and local linearization points, and evaluate both
approaches for the proposed graph topologies. Section III-A
describes in more details the differences between the two
linearization strategies.

We proceed to compute the linearized potential induced
by the factors in the Markov blanket. In the case of local

linearization, we first compute the configuration of the nodes
in the Markov blanket via maximum likelihood optimiza-
tion, by considering only measurements within the blanket.
This provides us with an optimal local linearization point
(Fig. 2(c)). In the case of global linearization, we keep the
estimates of the nodes on the Markov blanket the same as the
current best estimate of the full graph, as done by Carlevaris-
Bianco et al. [2014].

Given the linearization point, we then compute the Schur
complement of the node to be removed, obtaining the
marginalized d-dimensional multivariate normal distribution
p(x). This distribution has mean µ and strictly positive definite
information matrix Ω, with inverse Σ. We will explore the
problem of a singular Ω in Section IV-C. At this point, we
can choose to either recover the exact potential using a dense
nonlinear factor or to approximate the distribution by a sparse
set of (potentially correlated) nonlinear factors. Section V
introduces the topologies considered in this work and describes
them in more details.

Suppose now that we are also given a set of m indepen-
dent nonlinear measurements zi with measurement functions
fi(x). These functions, for instance, can be derived from a
sensor model or can be defined by an expert user. Using
the chosen linearization point, NFR recovers the mean ζi
and information matrix Xi of the set of nonlinear factors
between the nodes defined by the topology (Fig. 2(e)). This
set of nonlinear factors induces a distribution q(x), whose first
two standardized moments, the mean ν and the information
matrix Υ, can be estimated via maximum likelihood inference.
We formulate the nonlinear recovery such that the resulting
linearized distribution q(x) minimizes the Kullback-Leibler
divergence (KLD) with respect to p(x), which for multivariate



normal distributions is equivalent to:

DKL(p(x)‖q(x)) =

∫
Rd

p(x) log
p(x)

q(x)
dx = (1)

=
1

2

(
〈Υ,Σ〉 − log det (ΥΣ) +

∥∥Υ 1
2 (ν − µ)

∥∥2
2
− d
)
. (2)

Here, 〈·, ·〉 denotes the matrix inner product, while Υ
1
2

denotes any square root matrix of Υ.
The computation of mean and information matrix can be

carried out independently. In fact, ζi acts only on the squared
Mahalanobis distance ‖Υ

1
2 (ν − µ)‖22, which can be brought

down to zero by noting that ν = µ when ζi = fi(µ) for all i.
On the other hand, recovering the optimal information matrix
is not trivial and we describe it in Section IV.

Finally, we replace the original factors in the Markov
blanket with the newly recovered ones and substitute them
in the original graph (Fig. 2(f)).

A. Global versus local linearization

The approximation of the Markov blanket of a node can be
carried out on different linearization points. As a matter of fact,
the choice of linearization point will impact the value of the
measurement functions and the Jacobians that are introduced
in Section IV. This, in turn, not only affects which mean and
covariance will be chosen for the virtual measurements, but
is also crucial to achieve low KLD values for the particular
sparsification scenario at hand.

As mentioned before, we distinguish two major choices:

• Global linearization: we keep the estimates of the nodes
on the Markov blanket the same as the current best
estimate of the full graph. This is the approach taken
by Carlevaris-Bianco et al. [2014] with GLC.

• Local linearization: we optimize the nodes on the Markov
blanket as if they were not connected to the original
graph. The estimates of the nodes are thus given only
by considering the factors in the Markov blanket.

Both approaches have drawbacks and benefits. The global
linearization point is most effective when the Markov blanket
is strongly constrained by the factors that connect it to the
remainder of the graph. In such a scenario, the nonlinearities
of the factors in the Markov blanket have a negligible effect
on the linearization point of the full graph. A possible example
is the removal of nodes from a region of a factor graph with
multiple loop-clusures, such as a batch sparsification scenario.

Using a local linearization point, on the other hand, guar-
antees the node removal to be independent of the linearization
point of the full factor graph, and can be thus used without the
need of optimizing the whole graph beforehand. Furthermore,
as shown in Section VII, using a local linearization point pro-
duces superior results when the non-linearities in the Markov
blanket are non negligible, such as in an incremental mapping
scenario. This, however, comes at the expense of degraded
accuracy in batch sparsification scenarios.

IV. INFORMATION MATRIX COMPUTATION

The computation of the information matrices of the mea-
surements cannot always be done by maintaining the exact
relationship ΥΣ = I. Let f(x) and z be the vectors obtained
by stacking all fi(x) and all of the measurement random
vectors, respectively. We define the following matrices:

A =
∂f

∂x

∣∣∣∣
x=µ

X = cov(z)−1 =

X1 · · · 0
...

. . .
...

0 · · · Xm.

 (3)

Here, A is a constant matrix that depends on the linearization
point, while X is the combined information matrix that we
wish to compute for the relative measurements. Thus, if we
denote by ni the number of rows or columns of Xi and taking
into account the symmetry of information matrices, X is an
optimization variable with dimension

m∑
i=1

ni(ni + 1)

2
. (4)

Notice that X is block diagonal due to the assumption of
independence between nonlinear measurements. This comes
without loss of generality, since correlated measurements can
be expressed as a larger diagonal block in X. In the limiting
case, X can be fully dense. For clarity we will henceforth refer
to X as the set of block diagonal matrices consistent with the
measurement functions and their correlations, hence X ∈ X .

Then, the information matrix Υ is given by:

Υ = A>XA. (5)

Note that we will assume A to be of full column rank, as
otherwise the Υ is singular and the KLD not well defined.
Under this assumption we can then express the problem of
computing the minimum of (2) as the following constrained
optimization problem:

minimize
〈
A>XA,Σ

〉
− log det

(
A>XA

)
(6)

subject to X ∈ X (7)
X � 0 (8)

Note that (6)-(8) is indeed a convex optimization problem.
In fact, it is known that − log det(·) is convex in its argument
[Boyd and Vandenberghe, 2009], which, together with the fact
that convex functions are closed with respect to positively
weighted addition and composition with affine functions, gives
the convexity of (6). More specifically, (6)-(8) is an instance
of the MAXDET problem [Vandenberghe et al., 1998].

In general, a closed form solution to (6)-(8) does not exist,
however, its convexity at least guarantees that we can always
compute its global optimum.

A. Closed form solution

For special instances of the matrices A and X it is in
fact possible to compute a closed form solution to problem
(6)-(8). In the following we consider two particular instances
where this is the case. The first is of practical interest as we



will show in Sections V-A and V-C; the second, on the other
hand, is of theoretical importance for what will be presented
in Section VI-C.

Here we denote with {·}i the i-th diagonal block of the
enclosed matrix, and, for aesthetic reasons, we denote by A∓

the pseudoinverse of the transpose of A. In an effort to not
curb the readability of this article, any proposition reported
in the main body will be stated without proof. We refer the
reader to the Appendix for the mathematical proofs.

Proposition IV.1. When A is invertible, the unique solution
to problem (6)-(8) is given by:

Xi =
({

AΣA>
}
i

)−1
. (9)

Proposition IV.2. When A is of full column rank and X is
the set of fully dense matrices, one of the solutions to problem
(6)-(8) is given by:

X = A
∓

ΩA+. (10)

Furthermore, (10) yields equality between A>XA and Ω.

B. Iterative solution

For the instances not covered by Propositions IV.1 and IV.2,
the solution to problem (6)-(8) needs to be computed numer-
ically. In order to do so one can either rely on the Limited-
memory Projected Quasi-Newton algorithm (PQN) [Schmidt
et al., 2009] as was the case for our previous work [Mazuran
et al., 2014], or, rather, adopt a more traditional interior point
approach.

Both approaches carry advantages and drawbacks:
• An interior point method requires the explicit compu-

tation (and inversion) of a Hessian matrix which, for
large Markov blanket sizes, may be exceedingly large.
At the same time, however, it requires only a small
number of iterations to converge, and in fact has quadratic
convergence due to the use of the Hessian.

• PQN, being a modification of the L-BFGS algorithm
[Nocedal, 1980], has much more modest memory re-
quirements, but is only super-linear in convergence, and
thus may require many more iterations than interior point,
particularly if we are interested in computing the solution
up to high accuracy.

When optimizing via interior point we require a log barrier
on the constraints and the ability to compute both gradient and
Hessian of the resulting cost function. Note that we assume
constraint (7) to be enforced implicitly by optimizing only
with respect to the relevant variables, a choice that is also
shared by the PQN approach.

Given a strictly feasible initial guess, say X = I, we thus
transform the constrained problem (6)-(8), into a sequence of
unconstrained problems where the log barrier parameter, say ρ,
is iteratively decreased towards 0. Each unconstrained problem
aims to minimize the cost u(X), given by:〈

A>XA,Σ
〉
− log det

(
A>XA

)
− ρ log det X. (11)

We can therefore find the minimum of (11) by using
Newton’s method. If we denote by xjk the entries of X, by
Jjk the single entry matrix with zeros everywhere except a
one at (j, k), and also let

Φ = A
(
A>XA

)−1
A>, (12)

then the gradient and the entries of the Hessian are given by:

∂u

∂Xi
=
{

A
[
Σ−

(
A>XA

)−1]
A> − ρX−1

}
i
, (13)

∂2u

∂xjk∂Xi
=
{
Φ Jjk Φ + ρX−1JjkX−1

}
i
. (14)

As for PQN, the method requires the ability to compute the
gradient of the cost function, namely

∂DKL

∂Xi
= A

[
Σ−

(
A>XA

)−1]
A>, (15)

and an Euclidean projection P(X) onto the constraint set,
which in this case is the set of positive semidefinite matri-
ces. In particular, if we denote by V diag(λi)V

> the eigen
decomposition of an arbitrary symmetric matrix X, P(X) is
known to be expressible in closed form [Higham, 1988] as:

P(X) = arg min
Y�0

‖X−Y‖2F = V diag(max{0, λi})V>, (16)

where ‖·‖F represents the Frobenius norm. Furthermore, since
in our case X is block diagonal, this process can be carried
out independently for each block, resulting in a very efficient
linear-time projection.

The efficiency of PQN strongly depends on the initial guess
and the speed of computation of the gradient (15). For the
former we can use the educated initial guess reported in
our previous work [Mazuran et al., 2014]. Note that this
initialization cannot be used for interior point, as it often yields
a point on the feasible set boundary. As for the gradient, since
we are only interested in computing the blocks on the main
diagonal of a, possibly large, matrix, the computation can be
optimized by noting that for any Y:{

A Y AT
}
i

=
∑
j

∑
k

AijYjkAT
ik, (17)

which can be computed very efficiently if A is sparse. For the
gradient we would thus set Y = Σ −

(
A>XA

)−1
, but we

can also use this same approach to recover the closed form
solution (9), in which case Y = Σ.

C. Handling Rank Deficient Information Matrices

In Section IV, we assumed the information matrix Ω to be
invertible. Unfortunately, when dealing with node removal, this
is not always the case. From a SLAM perspective, for example,
if we are dealing only with relative SE(n) measurements, Ω
will be rank deficient, with nullity(Ω) = γ, where γ is the
dimension of an SE(n) pose.

If Ω has n rows, then the distribution of p(x) is actually an
(n − γ)-dimensional multivariate normal embedded in an n-
dimensional space. Therefore, we propose to project p(x) and



q(x) onto the (n − γ)-dimensional informative subspace and
to compare the resulting (n− γ)-dimensional distributions. In
order to do so, we require an (n−γ)×n projection matrix Π,
acting as an operator that projects any arbitrary information
matrix Ψ onto the lower dimensional space, by computing
ΠΨΠ>.

While the use of a projection does guarantee that the KLD
is well defined, if the measurement functions acting on q(x)
are not chosen wisely, q(x) may very well have an information
matrix with greater rank than the one we are approximating.
An intuitive example is that of approximating a Markov
blanket composed of only relative SE(n) measurements with
a set of absolute measurements (e.g. GPS) on all poses. In
such cases the rank should be limited structurally, by providing
appropriate measurement functions.

Since Ω is a symmetric real-valued matrix, its eigen decom-
position is real-valued and always exists. Further, let us denote
with the expression rank revealing eigen decomposition the
factorization Ω = UΛU>, such that Λ is a strictly positive
definite diagonal matrix, and U is a, possibly rectangular, full
column rank matrix with orthonormal columns. Note that such
a decomposition can be trivially computed by setting Λ to be
the diagonal matrix of the non-null eigenvalues of Ω, and by
setting U to be the matrix of eigenvectors associated to the
non-null eigenvalues.

To account for singular information matrices, we can thus
use as projection matrix Π = U>. We will thus convert the
specification (6)-(8) into a well defined problem by applying
the following substitution rules:

A 7→ AU, (18)
Σ 7→ Λ. (19)

Note that this substitution should be applied for any in-
stance of A and Σ, except for Proposition IV.2. In fact,
Proposition IV.2 holds regardless of the projection operation.
Consequently, A and Ω should respectively be kept as the
actual Jacobian and the original, singular, information matrix.

Even with this substitution, we can preserve efficiency when
computing gradient (15) for PQN, by substituting into (17):

Y = U
[
Σ−

(
U>A>X A U

)−1]
U>. (20)

V. MARKOV BLANKET TOPOLOGIES

In order to approximate the Markov blanket of a node,
we first require a particular topology to select which nodes
are affected by the nonlinear measurement functions. When
dealing with relative SE(n) rigid body transformations, this
is equivalent to determining the number of measurement
functions and which nodes to use as their input. This, in turn,
defines the Jacobian matrix A and the block structure of the
information matrix X.

In this section we propose multiple approaches towards
computing a topology for the measurements, with varying
levels of sparsity and, as a consequence, also accuracy and
computational complexity. Fig. 3 gives an overview of the
topologies we consider.
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Fig. 3. Different topologies for the Markov blanket approximation. In (a) we
wish to remove node x1; we can either approximate the exact marginalization
with (b) a tree, (c) a subgraph, or (d) a cliquey subgraph. Note that (c) and
(d) introduce the same fill-in, but only (d) has a closed form solution.

A. Tree topology

The sparsest topology we propose is in the form of a tree
of virtual measurements connecting the nodes in the Markov
blanket. For this we rely on the Chow-Liu tree [Chow and Liu,
1968] approximation of an arbitrary distribution, which was
first adopted for factor graph sparsification by Kretzschmar
et al. [2011].

The goal of the Chow-Liu tree is that of computing the
best approximation possible (in terms of KLD) of an n-
variate arbitrary distribution p(x1, . . . ,xn) by relying only
on second order conditional distributions. In other words,
this entails computing an index r and set of index pairs
I ⊆ {1, . . . , n} × {1, . . . , n} such that:

p(x1, . . . ,xn) ≈ p(xr)
∏

(i,j)∈I

p(xi | xj). (21)

Chow and Liu [1968] proved that the optimal set I is given
by the edges of any directed maximum spanning tree (MST)
of an undirected graph weighted on the mutual information
between the nodes it connects. The index r, on the other hand,
indicates the root of the directed MST. The Chow-Liu tree
is therefore of practical importance since the MST can be
computed efficiently by means of either Kruskal’s or Prim’s
algorithm.

Unfortunately, as underlined by Carlevaris-Bianco et al.
[2014], when dealing with under-constrained problems such
as those with only SE(n) relative measurements, the mutual
information

I(xi,xj) = −1

2
log

det
(
Ωii −ΩijΩ

−1
jj Ωji

)
det Ωii

(22)



is undefined. This follows from noting that I(xi,xj) requires
Ωii, Ωjj , and Ωij to be obtained by first marginalizing all xk

with k 6∈ {i, j}. Since the nullity of the Schur complement of a
matrix cannot be smaller then the nullity of the matrix itself,
it follows that Ωii − ΩijΩ

−1
jj Ωji is singular. Furthermore,

when dealing with only relative SE(n) measurements, Ω has
as nullity the dimension of a pose, therefore in such instances
Ωii −ΩijΩ

−1
jj Ωji is actually the null matrix.

To circumvent this problem, Carlevaris-Bianco and Eustice
[2013a] adopt the Tikhonov regularization X+ε I, with ε = 1,
whenever they require to compute the determinant of a singular
matrix X.

The use of (22), however, has as drawback the fact that
it requires a quadratic number of Schur complements, one
for each pair of nodes. Since each matrix inversion has cubic
complexity in the number of rows, this approach effectively
results in an algorithm with quintic complexity in the number
of nodes of the Markov blanket.

To reduce this complexity, we propose to compute the
mutual information directly from Σ̂ = (Ω + ε I)−1, the
covariance associated to the Tikhonov regularization of Ω:

I(xi,xj) =
1

2
log

det Σ̂ii det Σ̂jj

det

[
Σ̂ii Σ̂ij

Σ̂ji Σ̂jj

] . (23)

When the information matrix is invertible, (23) is exactly
equivalent to (22). This can be trivially proven by substituting
the entropy formula for a normal random variable into the
mutual information identity:

I(x,y) = H(x) +H(y)−H(x,y). (24)

Since the Tikhonov regularization is carried out on the full
information matrix, rather than the argument of the deter-
minant alone, this approach is not strictly equivalent to the
one of Carlevaris-Bianco and Eustice [2013a], nevertheless,
the differences are negligible and it is arguable which one
would provide better results. Contrary to the multiple Schur
complements required by (22), this approach requires only
one inversion, where each computation of (23) has constant
complexity in the number of nodes of the Markov blanket.
Thus, this results in an overall cubic complexity. For an
efficient computation of the inverse, we can then employ the
Cholesky decomposition, since Σ̂ � 0.

By using the Chow-Liu tree as a base, we can thus de-
fine a tree topology of factors, for example relative SE(n)
measurements, with I as connectivity specification. A sample
representation of such a topology is given in Fig. 3(b). Most
importantly, however, if both the Markov blanket and the tree
topology consist of relative SE(n) measurements, it is possible
to solve (6)-(8) in closed form. This is a direct consequence
of Lemmas A.6 and A.7, which ensure that under projection
U> the product AU is invertible.

B. Subgraph topology

Due to the generality of NFR, we are not restricted to a
mere tree topology when determining virtual measurements.

Let n be the number of nodes in the Markov blanket; we
can generalize the Chow-Liu tree by computing the maximum
spanning subgraph with at most γ (n−1) edges, where γ ≥ 1
is a proportionality factor. If we choose γ = 1 then the method
is equivalent to the Chow-Liu tree.

We employ a greedy heuristic and leverage on the “informa-
tion never hurts” principle to compute such a subgraph. The
algorithm starts by taking the Chow-Liu tree as a base and
continues by augmenting it with the b(γ − 1) (n− 1)c edges
with the highest mutual information that are not part of the
spanning tree.

We can then use the resulting subgraph as connectivity
specification for a subgraph topology such as the one depicted
in Fig. 3(c). Note that choosing a bound on the number
of edges as a proportion of the number of nodes allows to
improve the accuracy in approximating the target information
matrix Ω, while avoiding the quadratic fill-in of a dense
marginalization. We refer to the special case of unbounded
γ as a dense topology.

Contrary to the tree topology, the solution of (6)-(8) cannot
be computed in closed form for the subgraph and dense topolo-
gies. This is because the Jacobian A remains rectangular even
when projected and hence is not invertible. The information
matrices of the factors thus need to be computed either with the
PQN-based iterative solver or with an interior point procedure.

C. Cliquey subgraph topology

If we inspect the closed form solution in Proposition IV.1 we
see that there is no strict need to consider the factors that define
the Jacobian matrix A to be uncorrelated. In fact, by intro-
ducing an abstract “joint” factor, we may consider any number
of virtual measurements to be correlated. The joint factor will
then have as measurement function the stacked measurements
of the original factors, and as information matrix the joint
information matrix over all the involved measurements.

With this in mind, by using correlated measurements we can
provide a better, albeit more dense, approximation of a target
information Ω than the one obtained by a tree. Contrary to the
subgraph topology, such an approach will still keep a closed
form solution, thus maintaining computational efficiency as an
interior point procedure is not required.

When computing such a topology we introduce correla-
tions between the factors yielded by the tree topology, and
as with the subgraph approach, limit the final fill-in by a
proportionality factor γ of n − 1, where n is the number
of nodes in the Markov blanket. It is important to realize
that correlating two measurements will also fully correlate the
clique of nodes on which the measurements act, we thus refer
to this topology as cliquey subgraph. Further, we refer to the
special case of unbounded γ as a cliquey dense topology. We
report in Fig. 3(d) a toy example, where the two ternary factors
were obtained by taking the tree in Fig. 3(b) as an input and
correlating two pairs of factors.

We propose in Algorithm 1 a greedy approach towards
computing a set of cliques for the cliquey subgraph. In the
algorithm, we further constrain the cliques to be over a tree



Algorithm 1 Clique computation for the cliquey subgraph.
Require: Vertices V and edges E ⊆ V×V of the tree topology.

A proportionality factor γ for the maximum fill-in.
1: function CLIQUEYSUBGRAPH(V, E , γ)
2: // C ⊆ P(V) specifies the set of cliques to return
3: C ← E
4: // Fill-in induced by C on the strictly upper triangular
5: // part of the information matrix
6: φ ← |V| − 1
7: // Try to join pairs of cliques Q1 and Q2 by starting
8: // from joins of smaller size to progressively bigger sizes
9: for s ∈ {3, . . . , |V|} do

10: for Q1 ∈ C do
11: for Q2 ∈ C \ {Q1} do
12: // Check if the cliques share vertices and their union
13: // is not too large
14: if Q1 ∩Q2 6= ∅ ∧ |Q1 ∪Q2| ≤ s then
15: // Extra fill-in introduced by joining the cliques
16: δ ← (|Q1| − 1) (|Q2| − 1)
17: // If the fill-in is acceptable join the cliques
18: if φ+ δ ≤ γ (|V| − 1) then
19: C ← (C \ {Q1,Q2}) ∪ {Q1 ∪Q2}
20: φ ← φ+ δ
21: end if
22: end if
23: end for
24: end for
25: end for
26: return C
27: end function

of connected measurements, in order to limit the fill-in that a
single correlation introduces.

VI. THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the
optimality of our method and its relationship with GLC and
error propagation.

A. Equality of NRF with respect to a fixed linearization point

The first important result of NRF is that we are able to ex-
actly represent the true marginal distribution if the linearization
point is kept fixed and if the Jacobian A and the information
matrix Ω satisfy particular properties. This statement can be
coalesced into the following Proposition:

Proposition VI.1. If A is of full row rank, Ω � 0, and
ker A = ker Ω, then:

A>
(
AΩ+A>

)−1
A = Ω. (25)

Proposition VI.1 is important as it is a keystone in proving
equality for any nonlinear function and rank-deficient infor-
mation matrices, provided that the resulting Jacobian has full
row rank.

In this section we concentrate ourselves to explicitly stating
equality results for the SE(n) case. Specifically, it is possible

to achieve information matrix equality when using the cliquey
dense topology, by considering a set of fully correlated SE(n)
measurements over any spanning tree of the Markov blanket.
Thus, the following Proposition holds:

Proposition VI.2. Let M be a connected factor graph com-
posed of only SE(n) nodes and (possibly correlated) SE(n)
relative factors. Then, if the linearization point is kept fixed,
the removal of any number of nodes from M can be carried
out with no approximation in terms of information matrix by
using fully correlated relative SE(n) measurements alone.

B. Non optimality of error propagation with respect to KLD

To limit the the introduction of too many nodes in the graph,
many approaches rely on a pre-processing step, where short
sequences of relative rigid body transformations are composed
into a single one. The general approach is to create new
factors, whose mean is the result of the composition and whose
covariance is obtained via linear error propagation.

If we denote by δi and Σi respectively the mean and
covariance of the i-th relative rigid body transformation, then
the approach computes an SE(n) measurement with mean µ
and covariance Σ as follows:

µ =
⊕
i

δi, (26)

Σ =
∑
i

∂µ

∂δi
Σi

∂µ

∂δi

>
. (27)

Since the approach is equivalent to removing a chain of
nodes, we analyze its optimality with respect to the Kullback-
Leibler divergence and compare it with NFR. The first impor-
tant result is that error propagation is in general not optimal.
As a counter example, let us consider the following relative
SE(2) rigid body transformations:

δ1 =
[

0 0
π

2

]>
, δ2 = [ 1 0 0 ]

>
, (28)

Σ1 = Σ2 =

 2 1 0
1 2 1
0 1 2

 . (29)

Applying error propagation, it is straightforward to numer-
ically verify that it will yield the following covariance matrix

Σ =

 4 0 1
0 8 3
1 3 4

 . (30)

On the other hand, the optimal covariance matrix, computed
according to Proposition IV.2, is:

X−1 =

 4 0 −1
0 8 3
−1 3 4

 . (31)

Despite often being similar, the two covariances will in
general be different, hence linear error propagation is not
optimal in terms of Kullback-Leibler divergence. On the
contrary, NFR is optimal, given Proposition VI.2 and the fact



that the single edge is equivalent to the dense topology in this
case. We thus recommend the use of NFR even with tasks as
trivial as composing multiple odometry measurements.

C. Equivalence between NFR and GLC

In this section we present two equivalence results between
NFR and GLC when using only relative SE(n) measurements.
The first result proves the equivalence between the dense
versions of the two methods, while the second proves the
equivalence between their tree-based counterparts. The results
are important, since they show that in this case, GLC with
reparametrization is indeed a special instance of NFR.

To prove the results, we first need to characterize the struc-
ture of a GLC dense factor and prove it can be expressed in
the framework of NFR. This is accomplished by the following
Proposition:

Proposition VI.3. A dense GLC factor with SE(n)
reparametrization is strictly equivalent to a factor with mea-
surement function:

r(x) = r




x1

x2

...
xm


 =


	x1

	x1 ⊕ x2

...
	x1 ⊕ xm

 (32)

Proposition VI.3 shows that we can express GLC with
reparametrization as a nonlinear factor, whose nonlinear func-
tion is expressed by r(x). The nonlinear function r(x), how-
ever, is different from the one we consider in this article, since
we only use relative measurements. Despite this, we can still
prove equivalence, according to the following Proposition:

Proposition VI.4. Let M be a connected factor graph com-
posed of only SE(n) nodes and (possibly correlated) SE(n)
relative factors. Then, if we remove a node from M and
approximate the result via dense GLC, the resulting factor is
strictly equivalent to a set of fully correlated relative SE(n)
measurements with star topology.

Similarly, we can prove equivalence between the tree-based
approximations of GLC and NFR, owing to the following
Proposition:

Proposition VI.5. Let M be a connected factor graph com-
posed of only SE(n) nodes and (possibly correlated) SE(n)
relative factors. Then, if we remove a node from M and
approximate the result via sparse GLC, each resulting factor
is strictly equivalent to an SE(n) measurement.

VII. EXPERIMENTS

We implemented NFR by using as a factor graph optimiza-
tion back-end g2o [Kümmerle et al., 2011], and evaluated its
accuracy when compared to the version of GLC using SE(n)
reparametrization [Carlevaris-Bianco et al., 2014] on both two-
and three-dimensional public datasets.

While in our previous work [Mazuran et al., 2014] we
relied on the implementation of GLC provided with iSAM
[Kaess et al., 2007], for this article we reimplemented the

TABLE I
EXPERIMENTAL DATASETS

Dataset Type # Nodes # Edges Fill-in

Duderstadt Center SE(2)/SE(3) 545 1800 1.32%
EECS Building SE(2)/SE(3) 615 2134 1.25%
Intel Research SE(2) 943 1833 0.52%
MIT Killian SE(2) 5489 7626 0.069%
Manhattan SE(2) 3500 5596 0.12%

Parking Garage SE(3) 1661 6275 0.52%

(a) Duderstadt Center (b) EECS Building

(c) Intel Research (d) MIT Killian

(e) Manhattan (f) Parking Garage

Fig. 4. Datasets considered in the experimental evaluation of this article.

algorithm on g2o. This choice was made in order to provide
a fair comparison between the two methods for 3D datasets,
as g2o and iSAM parametrize and optimize differently on the
SE(3) manifold. As a matter of fact, g2o computes the errors
in terms of condensed quaternions (quaternions without the
real part), while iSAM in terms of Euler angles, further, g2o
uses symbolic gradients, while iSAM numerical ones.

While, for the most part, the updated SE(2) results agree
with our previous values [Mazuran et al., 2014], in some
instances the new implementation does provide slightly dif-
ferent KLD values, although the changes are not significant.
The differences might be due to the fact that, in the iSAM
implementation of GLC, the gradient of the reparametrization
is computed numerically, even for SE(2) nodes.

A. Experimental setup

In order to evaluate different aspects of both GLC and our
method we devised three different test applications: a full
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Fig. 5. Sparsity pattern of the Manhattan dataset with 80% reduction. The
figure shows the fill-in of the information matrix for the dense and subgraph-
based marginalization using the three strategies.

online node removal scenario, a periodic batch scenario and a
full batch scenario.

In the full online scenario we build a factor graph incre-
mentally: at each iteration we append a node to the graph,
connecting it to the other ones via factors. Following the
removal strategy described in [Carlevaris-Bianco and Eustice,
2013b, Alg. 3], we then remove the node if it is deemed
spatially redundant. In the periodic batch scenario we, again,
build the factor graph incrementally, however, instead of
choosing whether to remove a node at each iteration, we do so
once every 100 node insertions, and remove all the spatially
redundant nodes that were added since the last removal. In the
full batch scenario we take the complete graph and remove all
spatially redundant nodes at the same time. As determining
which nodes to remove is out of the scope of this article, we
simulate the test on spatial redundancy by trivially keeping
one node every t time steps.

The first two scenarios serve as representative test for typical
online sparsification choices. The last, on the other hand, is
meant as a stress test in which the linearization point is closest
to the optimal solution, favoring node removal methods that
rely on the global linearization point, such as GLC.

For each scenario we keep both a sparsified and baseline

graph. We update the latter whenever we add a new node
to the sparsified graph, without the further step of removing
nodes. We then use the baseline graph as a target distribution
(in terms of mean and covariance of the full estimate) against
which we evaluate the KLD of our sparse approximation.

It should be noted that in the online and periodic batch
scenario, it may not be possible to add a factor to the
incremental graph if it connects a node which has already
been removed. In such instances we instead add a factor to
the closest existing node, for both the sparsified and baseline
graph, and compute a new measurement accordingly. It is
thus important to note that since the baseline comparison
varies across the node removal scenarios, the Kullback-Leibler
divergence is not comparable across different tests.

We evaluated the node removal approaches on publicly
available datasets, five stemming from real data and a synthetic
one, respectively, Duderstadt Center, EECS Building, Intel
Research, MIT Killian, Parking Garage, and Manhattan. Of
those, Duderstadt Center, EECS Building, and Parking Garage
involve SE(3) poses. Since in our previous work [Mazuran
et al., 2014] we projected Duderstadt Center and EECS
Building onto the SE(2) manifold, in this article we consider
both two- and three-dimensional realizations of the datasets.
In Table I we provide a short overview of the datasets we
considered, while Fig. 4 visualizes the full factor graphs of
each dataset.

We considered four degrees of node reduction, respectively
keeping one in two, three, four, or five nodes. Further, we
evaluated the following approaches, where for NFR we use in
all instances either relative SE(2) or SE(3) measurements:
• GLC-Tree/NFR-Tree-Global: GLC with Chow-Liu tree

approximation. Note that, due to Proposition VI.5 and the
optimality of GLC, in our test scenarios, this is exactly
equivalent to NFR with Chow-Liu tree topology on the
global linearization point. This prediction agrees with
the numerical data, we thus report the two as the same
method.

• GLC-Dense/NFR-Cliquey-Dense: GLC with dense fac-
tors. Note that, due to Proposition VI.4, this is equiv-
alent to NFR with cliquey dense topology on the global
linearization point, if the spanning tree is in fact a star.
While the latter is in general not true, the results differ
by such a negligible amount that we decided to group
them together.

• NFR-Tree-Local: Chow-Liu tree topology on the local
linearization point.

• NFR-Subgraph-Global: Subgraph topology with twice as
many edges as the spanning tree, on the global lineariza-
tion point.

• NFR-Subgraph-Local: The same as NFR-Subgraph-
Global but on the local linearization point.

• NFR-Cliquey-Subgraph: Cliquey subgraph topology with
the same fill-in limit as NFR-Subgraph-Local/Global, on
the global linearization point.

We did not consider the cliquey subgraph and cliquey
dense topologies on the local linearization point because they
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Fig. 6. Online sparsification results for 2D datasets. Each graph represents the KLD as a function of the time step for the six methods considered.

often cause the optimizer to diverge. This is possibly due to
the fact that the linear correlations between measurements
are not adequately preserved when the linearization point
changes considerably. Furthermore, contrary to our previous
work [Mazuran et al., 2014], we do not report the results for
the dense relative measurement topology since it is practical
only for online sparsification scenarios, and in such instances
it is virtually equivalent to NFR-Subgraph-Local/Global.

In order to convey the difference in sparsity between using
a subgraph and dense node removal, we report in Fig. 5 the
sparsity pattern of the information matrix of the Manhattan
dataset in the three different scenarios. While both dense and
subgraph approaches maintain a adequately sparse information
matrix for the full online scenario, the dense approach quickly
degenerates for the other ones. The subgraph approaches,

on the other hand, maintain sparsity even in the full batch
scenario, producing accuracy results only bested by the dense
approach.

B. Evaluation criteria

We focus the evaluation of the aforementioned approaches
on the Kullback-Leibler divergence between the overall spar-
sified and baseline graphs, as it jointly captures differences in
both estimate and information matrix. Specifically, we adopt
the same formula as (2), but instead of considering only the
Markov blanket of one variable we set ν and Υ to be the
estimate and information matrix of the complete sparsified
graph, while we set µ and Σ to be the estimate and covariance
matrix of the nodes of the baseline graph that have not been
removed in the sparsified graph.

Further, we note that the SLAM optimization problem is
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Fig. 7. Online sparsification results for 3D datasets. Each graph represents the KLD as a function of the time step for the six methods considered.

not formulated on a vector space, but rather on a differentiable
manifold, where the matrices Υ and Σ express uncertainties
with respect to a particular parameterization of the manifold
that is implementation dependent. We thus replace the vector
difference ν − µ with the group difference associated to the
manifold and map it according to the particular parameteriza-
tion used by the optimizer. For instance, when dealing with
SE(n) estimates, we consider the substitution

ν − µ 7→

 ψ(	µ1 ⊕ ν1)
...

ψ(	µo ⊕ νo)

 . (33)

Here, an i subscript references the estimate of the i-th node
of either the sparsified or baseline graph, o is the number of
poses in the sparsified graph, and ψ is a homeomorphism
that maps an SE(n) group element to the corresponding
vector space defined by the chart. For instance, in the SE(3)
implementation of g2o [Kümmerle et al., 2011] this would be
a 6-dimensional vector containing x, y, z coordinates and the
condensed quaternion representation of the rotation.

In addition to the KLD we also consider to a limited extent
an evaluation in terms of χ2 value. This is in order to quantify
the accuracy loss in the estimate alone, instead of considering
it together with the discrepancy in information matrices.

We use an approach similar to the one proposed by Huang
et al. [2009]: we substitute the estimated poses of the sparsified
graph into the baseline one and then optimize the baseline
graph with respect to the nodes not present in the sparsified

graph. We then compute the resulting χ2 value, which we refer
to as χ2

s and compare it with the χ2 of the baseline graph, χ2
b .

Contrary to Huang et al. [2009], we choose to evaluate the
percentage increase in terms of χ value, i.e.

∆χ% = 100 · χs − χb

χb
. (34)

This is for two reasons: first, a change in the estimate results
in a roughly proportional, rather than quadratic, variation
in terms of ∆χ%, which makes it a more intuitive value.
Second, the χ2 values vary wildly across the datasets, even
when normalized by the number of degrees of freedom. This
effectively results in different scales for different datasets,
which does not allow to compute overall statistics.

C. Accuracy results

We report in Fig. 6 and in Fig. 7 the KLD results for
the full online scenario, respectively for the two- and three-
dimensional datasets. In both instances, NFR-Subgraph-Local
achieves almost a numerical zero in terms of KLD, thus
proving to be a near-optimal choice for online node removal.
Further, in all instances, NFR-Tree-Local achieves superior
KLD results than its global counterpart, suggesting that it is
indeed a better choice to use a local linearization point in
the absence of accurate information on the final linearization
point.

Interestingly, less sparse approximations on the global lin-
earization point do not improve significantly the KLD results,
in fact, in some instances they may be even counterproductive.
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Fig. 8. Periodic batch sparsification results for 2D datasets. Each graph represents the KLD as a function of the time step for the six methods considered.

This is particularly the case for the Parking Garage dataset,
where NFR-Cliquey-Subgraph and GLC-Dense/NFR-Cliquey-
Dense consistently achieve the worst results. This may be the
effect of considering only linear correlation between the mea-
surements in the Markov blanket, as NFR-Subgraph-Global
tends to obtain more competitive results. Having said this, for
a full online approach, dense approximations still prove to
be efficient from a sparsity perspective, and in all instances
they achieve less than a 2% increase in fill-in when compared
to the tree approach. In fact, removing nodes at each iteration
ensures that there is never spatial redundancy, therefore, due to
the limited range of sensors, the connectivity of a node cannot
increase significantly, which translates to a less pronounced
fill-in, even for dense node removal.

The SE(3) datasets, in general, prove to be a challenge for
all methods. In fact, the strong nonlinarities of relative SE(3)

transformations cause, at times, the optimization to get stuck
in a local minimum. This is most evident in the Duderstadt
Center dataset at 50% and 66.6% node reduction and the
Parking Garage dataset at 50%, where the large discontinuities
in KLD happen when the optimizer converges to a local,
suboptimal, attractor. This shouldn’t be viewed as failure on
the side of the sparsification method, but rather as an inevitable
byproduct of the inherent complexity of optimization on the
SE(3) manifold. Indeed, this problem is shared by all the
tested methods, and while for NFR-Subgraph-Local it has
not surfaced in the experiments, it is not unreasonable to
conjecture that it too is not immune.

We report in Fig. 8 and Fig. 9 the KLD results for the
periodic batch sparsification scenario, respectively for two-
and three-dimensional datasets. The graphs exhibit a saw-tooth
behavior due to the periodic node removal that happens in
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Fig. 9. Periodic batch sparsification results for 3D datasets. Each graph represents the KLD as a function of the time step for the six methods considered.

batches, thus resulting in localized sharp increases in KLD.
In this scenario, save for the Manhattan dataset, NFR-

Subgraph-Local again achieves the best results. As for NFR-
Tree-Local this time the results are mixed. In two-dimensional
datasets, with the exception of Manhattan, the local lineariza-
tion point generally proves to be better than its global coun-
terpart. For three-dimensional datasets, only EECS Building
shows consistent improvements.

For Manhattan and Parking Garage it is possible to motivate
this behavior due to the datasets’ particular structure. In
the Manhattan dataset, in fact, small loop closures happen
with a much higer frequency than that of the sparsification
(every 100 iterations). This results in very rigidly constrained
Markov blankets, which are better approximated on the global
linearization point. This same effect is present in the Parking
Garage dataset, due to the fact that it is locally highly
connected. For the three-dimensional Duderstadt dataset the
behavior is much more erratic. NFR-Tree-Local provides
worse results than GLC-Tree halfway through the dataset,
but leads to improvements near the end. This may, again, be
caused by the optimization algorithm converging to a local
attractor, as GLC-Dense and NFR-Cliquey-Subgraph result in
steep and unexpectedly large KLD changes as well.

Although in many instances GLC-Dense performs well, it
is not uncommon for it to provide worse results than a tree on
the global linearization point, similarly to the online sparsifi-
cation scenario. This is most evident in the three-dimensional
Duderstadt dataset and in the Parking dataset. NFR-Cliquey-
Subgraph provides results between those of GLC-Dense and

GLC-Tree, for better or worse, while NFR-Subgraph-Global
tends to provide results in the range of GLC-Dense without
suffering from the large increases in KLD that at times plague
it.

Contrary to the online scenario, this time the added fill-in
of a dense node removal is significant and, in practice, un-
acceptable for real-time execution, with a maximum increase
of more than 20% when compared to a tree. The subgraph
approaches, on the other hand produce a much sparser graph,
with a maximum increase of about 4%.

Table II presents the numeric results in terms of KLD
and fill-in for the batch sparsification scenario. Note that we
replaced any KLD value below 10−8 with a numerical zero,
the reasoning being the finite accuracy of IEEE 754 double
precision numbers.

The batch scenario is clearly more favorable towards the
use of the global linearization point, where, save for a few ex-
ceptions, the local linearization point methods are consistently
outperformed by their global counterpart. Further, in this case,
GLC-Dense achieves the best results in terms of KLD, often
with a practically nil value. However, with the exception of
Killian, which is sparsely connected, this comes at a gross and
unacceptable cost in sparsity, with EECS even resulting in a
full fill-in.

In the tested datasets all of the subgraph approaches provide
an often significant decrease in KLD when compared to their
tree counterparts, at an acceptable cost in sparsity. There is no
clear preferred choice as to which subgraph approach should
be used, as any of the three achieves the minimum value



Dataset Approach
Node reduction level
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(2
D

) GLC-Tree/NFR-Tree-Global 1.186 1.42% 1.425 2.14% 1.938 2.77% 2.463 3.38%
NFR-Tree-Local 1.307 1.42% 1.695 2.14% 2.233 2.77% 2.870 3.38%

NFR-Subgraph-Global 0.915 2.24% 1.044 3.11% 1.481 3.92% 1.541 4.85%
NFR-Subgraph-Local 0.975 2.24% 1.179 3.11% 1.628 3.92% 1.809 4.85%

NFR-Cliquey-Subgraph 0.800 2.05% 0.723 3.02% 0.999 3.90% 1.327 4.75%
GLC-Dense/NFR-Cliquey-Dense 3.11e-4 21.2% 0 77.1% 2.02e-4 80.2% 0 84.9%

E
E

C
S

(2
D

)

GLC-Tree/NFR-Tree-Global 1.975 1.87% 2.448 2.99% 3.978 3.94% 4.761 5.01%
NFR-Tree-Local 2.519 1.87% 3.770 2.99% 6.180 3.94% 7.322 5.00%

NFR-Subgraph-Global 1.323 2.91% 1.919 4.59% 2.666 6.28% 3.141 8.15%
NFR-Subgraph-Local 1.672 2.91% 3.006 4.58% 4.200 6.28% 4.677 8.16%

NFR-Cliquey-Subgraph 1.267 2.82% 1.822 4.53% 2.540 6.37% 3.092 8.39%
GLC-Dense/NFR-Cliquey-Dense 2.22e-3 80.1% 0 100% 0 100% 0 100%

In
te

l

GLC-Tree/NFR-Tree-Global 46.49 0.89% 43.52 1.27% 39.71 1.64% 41.69 1.91%
NFR-Tree-Local 55.79 0.89% 52.95 1.27% 48.78 1.63% 50.02 1.92%

NFR-Subgraph-Global 14.96 1.22% 20.26 1.77% 17.41 2.25% 16.89 2.65%
NFR-Subgraph-Local 17.07 1.22% 22.73 1.77% 19.30 2.25% 18.37 2.66%

NFR-Cliquey-Subgraph 20.87 1.24% 22.31 1.76% 24.43 2.28% 20.19 2.74%
GLC-Dense/NFR-Cliquey-Dense 0.881 3.16% 0.199 14.4% 0 66.1% 0 71.5%

K
ill

ia
n

GLC-Tree/NFR-Tree-Global 75.13 0.13% 151.1 0.18% 73.42 0.24% 129.1 0.29%
NFR-Tree-Local 75.06 0.13% 154.0 0.18% 76.52 0.24% 132.9 0.29%

NFR-Subgraph-Global 2.062 0.17% 45.58 0.25% 17.01 0.34% 39.84 0.40%
NFR-Subgraph-Local 0.530 0.17% 46.16 0.25% 17.62 0.34% 40.55 0.40%

NFR-Cliquey-Subgraph 3.416 0.16% 44.59 0.25% 24.33 0.34% 50.17 0.39%
GLC-Dense/NFR-Cliquey-Dense 1.548 0.17% 0 0.40% 5.72e-3 0.52% 0 1.47%
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n

GLC-Tree/NFR-Tree-Global 204.8 0.26% 167.0 0.39% 150.3 0.52% 144.2 0.65%
NFR-Tree-Local 213.4 0.26% 172.5 0.39% 159.3 0.52% 154.1 0.64%

NFR-Subgraph-Global 33.22 0.38% 46.30 0.62% 58.33 0.79% 58.23 0.95%
NFR-Subgraph-Local 32.43 0.38% 46.29 0.62% 61.73 0.78% 60.51 0.95%

NFR-Cliquey-Subgraph 47.13 0.36% 60.80 0.60% 71.28 0.80% 68.98 1.00%
GLC-Dense/NFR-Cliquey-Dense 2.314 0.55% 0.775 2.54% 0 11.7% 0 35.3%
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t

(3
D

) GLC-Tree/NFR-Tree-Global 8.516 1.42% 6.477 2.09% 7.388 2.79% 9.743 3.37%
NFR-Tree-Local 72.04 1.42% 19.49 2.09% 18.19 2.79% 19.86 3.37%

NFR-Subgraph-Global 6.029 2.24% 3.923 3.07% 5.268 3.89% 5.900 4.49%
NFR-Subgraph-Local 24.65 2.24% 7.568 3.08% 9.113 3.89% 8.955 4.49%

NFR-Cliquey-Subgraph 4.841 2.04% 3.576 3.04% 5.637 3.70% 4.693 4.68%
GLC-Dense/NFR-Cliquey-Dense 1.687 21.2% 1.27e-5 77.1% 4.65e-2 80.2% 4.72e-6 84.9%

E
E

C
S

(3
D

)

GLC-Tree/NFR-Tree-Global 7.927 1.85% 10.26 2.96% 15.98 3.86% 19.23 4.81%
NFR-Tree-Local 10.32 1.85% 13.11 2.95% 21.34 3.86% 24.38 4.81%

NFR-Subgraph-Global 4.667 2.92% 7.795 4.71% 8.623 6.37% 12.09 7.88%
NFR-Subgraph-Local 5.639 2.92% 9.339 4.73% 11.32 6.34% 15.66 7.88%

NFR-Cliquey-Subgraph 5.084 2.84% 6.857 4.50% 9.960 6.37% 12.63 8.02%
GLC-Dense/NFR-Cliquey-Dense 2.95e-3 80.1% 1.29e-5 100% 8.56e-6 100% 4.54e-6 100%

Pa
rk

in
g

GLC-Tree/NFR-Tree-Global 730.7 0.40% 461.2 0.60% 373.0 0.78% 311.0 0.97%
NFR-Tree-Local 859.4 0.41% 578.8 0.60% 462.7 0.78% 395.7 0.97%

NFR-Subgraph-Global 169.4 0.69% 138.9 0.99% 113.3 1.29% 104.3 1.58%
NFR-Subgraph-Local 236.8 0.69% 190.3 0.99% 151.8 1.29% 150.2 1.58%

NFR-Cliquey-Subgraph 315.7 0.60% 248.8 0.83% 182.5 1.09% 148.0 1.34%
GLC-Dense/NFR-Cliquey-Dense 1.52e-4 12.4% 7.94e-5 17.3% 4.87e-5 28.3% 6.61e-5 46.2%

TABLE II
FULL BATCH SPARSIFICATION RESULTS



0 2 4 6

GLC-Dense/NFR-Cliquey-Dense
NFR-Cliquey-Subgraph

NFR-Subgraph-Local
NFR-Subgraph-Global

NFR-Tree-Local
GLC-Tree/NFR-Tree-Global

χ increase [%]

Online

0 2 4

χ increase [%]

Periodic Batch

0 2 4

χ increase [%]

Full Batch

Fig. 10. Box plots of the percentage increase in χ with respect to the original factor graph, for the considered removal strategies and sparsification scenarios.

in some particular test. It is to be said, however, that since
NFR-Cliquey-Subgraph has a closed form expression, from
a computational standpoint it is significantly more efficient
than NFR-Subgraph-Local/Global, especially if the size of the
Markov blanket is significant.

Finally, we report in Fig. 10 the overall results in terms of
∆χ% for all sparsification scenarios over all of the datasets
considered. We report the results as box plots, displaying
respectively the 5%, 25%, 50%, 75%, and 95% percentiles for
the χ increase. For the online and periodic batch scenarios, the
values are computed over the whole runs, while for the full
batch result they represent statistics only on the overall ∆χ%.

The results agree to some extent with the KLD ones,
although the differences between the methods are either mag-
nified or shrunk. For instance, there is even more of a clear
advantage to using the local linearization point for online
scenarios, but the differences between other methods are not
as clear-cut. This suggests that in such cases the KLD is
strongly affected by the discrepancy in information matrices.
For the periodic batch scenario, the local linearization point
approaches overall provide either the best or competitive
results, while the opposite is true for the full batch scenario.

VIII. CONCLUSION

In this paper, we presented a novel approach to repre-
sent the marginal distribution induced by the removal of
nodes in graph-based SLAM. The goal of our approach is
to estimate both the mean and the information matrix of
the set of nonlinear factors that best represent the marginal
distribution. We showed that estimating the former is equiva-
lent to evaluating the nonlinear functions at the linearization
point, while estimating the latter is equivalent to solving
a convex optimization problem. Our approach can be used
in variety of settings, ranging from representing the exact
marginalization with a dense factor to sparsely approximating
it over a tree- or a subgraph-based distribution. The proposed
approach has several properties. It does not necessarily require
a global linearization point, it can be used with any nonlinear
measurement function, and it can consider any topology of
possibily correlated measurements. We presented an exten-
sive theoretical analysis of our method and characterized its
properties with respect to GLC and linear error propagation.
Finally, we performed an extensive experimental analysis on
publicly available datasets and demonstrated the effectiveness

of our approach. We quantified the algorithm performance
in the SLAM context by sparsifing maps in an online and
in a periodic batch fashion. In both cases, our technique
outperforms state-of-the-art methods by closely recovering the
original distribution and producing highly sparse graphs.
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APPENDIX

Definition A.1. Let x = [x1 x2 . . . xn ]
> denote an n-

dimensional vector, then we define the selection operator
πm(·) with m ≤ n as:

πm(x) = [x1 x2 . . . xm ]
>
. (35)

With a slight abuse of notation, we further denote πm(S)
to be the image of a set S under the selection operator πm(·),
i.e.:

πm(S) = {πm(x) | ∀x ∈ S} . (36)

Lemma A.2. If A is square with det A 6= 0 and can be
left-multiplied to B, then ker(AB) = ker B.

Proof:

det A 6= 0 =⇒ (Ax = 0 ⇐⇒ x = 0) (37)
x ∈ ker(AB) ⇐⇒ ABx = 0 (38)
⇐⇒
(37)

Bx = x ⇐⇒ x ∈ ker B. (39)

Lemma A.3. ker
(
A>A

)
= ker A

Proof: Let (·)⊥ denote the orthogonal complement oper-
ator. Then by Fredholm’s theorem we have:

im A =
(
ker
(
A>
))⊥

(40)

=⇒
(
A>Ax = 0 ⇐⇒ Ax = 0

)
. (41)



Lemma A.4. Let A � 0, and let UDU> be the rank-
revealing eigen decomposition of A, then ker A = ker

(
U>
)
.

Proof: By Lemma A.2, ker
(
D

1
2 U>

)
= ker

(
U>
)
, while

by Lemma A.3 ker
(
D

1
2 U>

)
= ker

(
UDU>

)
= ker A.

Therefore ker A = ker
(
U>
)
.

Lemma A.5. Let:

A =

[
A11 A12

A21 A22

]
(42)

With A11 an n × n matrix, A22 an m × m matrix, and
det (A22) 6= 0. Then the following holds:

ker
(
A11 −A12A

−1
22 A21

)
= πn(ker A) (43)

Proof: We can prove the equality as a direct consequence
of the application of the Schur complement to a system of
linear equations:[

x1

x2

]
∈ ker A ⇐⇒

{
A11x1 + A12x2 = 0
A21x1 + A22x2 = 0

(44)

=⇒
(
A11 −A12A

−1
22 A21

)
x1 = 0 (45)

=⇒ x1 ∈ ker
(
A11 −A12A

−1
22 A21

)
. (46)

Let now:

y1 ∈ ker
(
A11 −A12A

−1
22 A21

)
, (47)

y2 = −A−122 A21y1. (48)

Then it is easy to see that y1 and y2 satisfy (44). Therefore,
we conclude:

ker
(
A11 −A12A

−1
22 A21

)
= πn(ker A). (49)

Lemma A.6. Let A and B be full row rank matrices of the
same size. Then, if ker A = ker B, AB> is invertible and the
following holds: (

AB>
)−1

= B
∓

A+ (50)

Proof: We prove the assertion by directly checking the
definition of inverse, i.e. the following conditions need to hold:(

AB>
)(

B
∓

A+
)

= I,
(
B
∓

A+
)(

AB>
)

= I. (51)

By the properties of the pseudoinverse, by Fredholm’s theo-
rem, and the ker A = ker B hypothesis, we have that:

im
(
A+
)

= im
(
A>
)

= (ker A)
⊥

= (ker B)
⊥
. (52)

Furthermore, by the definition of Moore-Penrose pseudoin-
verse we have, that:

B+B =
(
B+B

)>
= B>B

∓
. (53)

However, we note that B+B is the orthogonal projector onto
(ker B)

⊥ [Golub and Van Loan, 1996, pp. 257-258], thus:

B>B
∓

A+ = A+. (54)

Taking into account that for any full row rank matrix A, A+ =

A>
(
AA>

)−1
, we have:

AB>B
∓

A+ = AA+ = AA>
(
AA>

)−1
= I. (55)

Similarly, for the second condition, we have:

im
(
B>
)

= (ker B)⊥ = (ker A)⊥. (56)

Since A+A is the orthogonal projector onto (ker A)
⊥, we

have:
A+AB> = B>. (57)

Thus, finally:

B
∓

A+AB> = B
∓

B> =
(
BB>

)−>
BB> = I. (58)

Lemma A.7. Let x denote any minimal vector representation
of m SE(n) poses stacked together, and let y = πk(x), where
k is divisible by the dimension of a pose and the quotient
is strictly smaller than m. Let also f(x) and g(y) be vector
functions obtained by stacking any number of SE(n) relative
measurements, respectively between the poses in x and y.
Furthermore, let f(x) (resp. g(y)) be such that there is a
chain of relative SE(n) measurements that connects any two
poses in x (resp. y). Then:

ker

(
∂g

∂y

)
= πk

(
ker

(
∂f

∂x

))
. (59)

Proof: Let z be a vector of poses in the same format of
x. Let us also define the binary operator ⊕ between the vector
representation δ of an SE(n) pose and z as follows:

δ ⊕ z =
[

(δ ⊕ z1)> (δ ⊕ z2)> · · · (δ ⊕ zm)>
]>
. (60)

Then, the following holds:

f(z) = f(δ ⊕ z) ∀δ. (61)

This comes from noting that, by assumption, f(z) is given by
stacking vector functions of the form 	zi ⊕ zj , hence:

	(δ⊕zi)⊕(δ⊕zj) = 	zi⊕(	δ⊕δ)⊕zj = 	zi⊕zj . (62)

Let, now, x = δ ⊕ z and let us consider the gradient of f(x)
with respect to δ. Clearly it is nil, since the function is constant
in δ, however by the chain rule we also have that:

∂f

∂δ
=
∂f

∂x

∂x

∂δ
= 0. (63)

In other words:

ker

(
∂f

∂x

)
⊇ im

(
∂x

∂δ

)
. (64)

Due to the minimality and connectedness assumptions we have
nullity

(
∂f
∂x

)
= γ, where γ is the dimension of a pose. Further,

if there exists a δ such that x = δ⊕ z, then it is also unique,
therefore rank

(
∂x
∂δ

)
= γ. We thus conclude that the columns

of ∂x
∂δ form a basis that spans ker

(
∂f
∂x

)
, therefore:

ker

(
∂f

∂x

)
= im

(
∂x

∂δ

)
. (65)



Following the same approach for g(y) we find:

ker

(
∂g

∂y

)
= im

(
∂y

∂δ

)
. (66)

However, we note that ∂y
∂δ is given by nothing more than the

first k rows of ∂x
∂δ , therefore we conclude:

ker

(
∂g

∂y

)
= im

(
∂y

∂δ

)
= πk

(
im

(
∂x

∂δ

))
= (67)

= πk

(
ker

(
∂f

∂x

))
. (68)

Proposition IV.1. When A is invertible, the unique solution
to problem (6)-(8) is given by:

Xi =
({

AΣA>
}
i

)−1
. (9)

Proof: Let us consider the gradient of the objective
function (6) with respect to each block Xi on the diagonal
of X:

∂DKL

∂Xi
=
{

A
[
Σ−

(
A>XA

)−1]
A>
}
i

= (69)

=
{
AΣA> −AA−1X−1A−>A>

}
i

= (70)

=
{
AΣA> −X−1

}
i

(71)

Let us now forgo constraint (8); (6) is convex, therefore a
necessary and sufficient condition for optimality is that the
gradient be equal to 0. We thus find:

Xi =
({

AΣA>
}
i

)−1
. (72)

However, since Σ is positive definite, so is AΣA>. Further-
more, since all principal minors of positive semisemidefinite
matrices are positive semidefinite, we have Xi � 0 and
therefore constraint (8) is satisfied.

Proposition IV.2. When A is of full column rank and X is
the set of fully dense matrices, one of the solutions to problem
(6)-(8) is given by:

X = A
∓

ΩA+. (10)

Furthermore, (10) yields equality between A>XA and Ω.

Proof: Assume by ansatz that the solution to problem
(6)-(8) is indeed (10). By the same reasoning of the proof
of Proposition IV.1, we find that constraint (8) is satisfied.
Furthermore, since A is of full column rank we can express
its pseudoinverse as:

A+ =
(
A>A

)−1
A>. (73)

We thus have:

A>XA = A>A
∓

ΩA+A = (74)

= A>A
(
A>A

)−>
Ω
(
A>A

)−1
A>A = Ω (75)

Since equality holds, the Kullback-Leibler distance must be 0,
and therefore at a minimum.

Proposition VI.1. If A is of full row rank, Ω � 0, and
ker A = ker Ω, then:

A>
(
AΩ+A>

)−1
A = Ω. (25)

Proof: Let the rank-revealing eigen decomposition of Ω
be UDU>, then Ω+ = UD−1U>.

By Lemma A.4, ker
(
U>
)

= ker Ω = ker A, therefore by
Lemma A.6 we have that not only is AU invertible, but also:

(AU)−1 = U+A+ = U>A+. (76)

Thus:

A>
(
AΩ+A>

)−1
A = A>(AU)−>D(AU)−1A = (77)

= A>A
∓

UDU>A+A. (78)

Since A+A is the orthogonal projector onto (ker A)
⊥ and

im U = (ker A)
⊥, we have that A+AU = U. By the defi-

nition of Moore-Penrose pseudoinverse, A+A is symmetric,
therefore:

U>A+A = U>
(
A+A

)>
=
(
A+AU

)>
= U>. (79)

Substituting (79) into (78), we conclude that:

A>A
∓

UDU>A+A = UDU> = Ω. (80)

Proposition VI.2. Let M be a connected factor graph com-
posed of only SE(n) nodes and (possibly correlated) SE(n)
relative factors. Then, if the linearization point is kept fixed,
the removal of any number of nodes from M can be carried
out with no approximation in terms of information matrix by
using fully correlated relative SE(n) measurements alone.

Proof: Let J and Λ be respectively the stacked Jacobians
and information matrices of the factors in M. Removing a
number of nodes on the current linearization point from M
entails computing the Schur complement Ω of the information
matrix J>ΛJ. By Lemmas A.2, A.3, and A.5, we know that
ker Ω is equal to ker J with the dimensions associated to the
marginalized variables removed.

We now wish to approximate the marginalized graph with
a spanning tree of SE(n) relative measurements. Let A be the
stacked Jacobian matrix of said tree, then under the assumption
that the poses are minimally represented and the connectedness
of the tree we have that A is of full row rank. Furthermore,
by Lemma A.7, we have that ker A = ker Ω.

Let us denote by UDU> the eigen decomposition of Ω,
then by Lemmas A.4 and A.6, we know that the product of
AU is invertible. If we consider all the relative measurements
in the spanning tree to be fully correlated, then by Proposition
IV.1 we can compute the optimal information matrix X to
assign to the measurements as:

X =
(
AUD−1U>A>

)−1
=
(
AΩ+A>

)−1
. (81)

The information that the new edges will contribute is thus
A>XA, which, by Proposition VI.1 is equal to Ω.



Proposition VI.3. A dense GLC factor with SE(n)
reparametrization is strictly equivalent to a factor with mea-
surement function:

r(x) = r




x1

x2

...
xm


 =


	x1

	x1 ⊕ x2

...
	x1 ⊕ xm

 (32)

Proof: Let Ω be the target information matrix and let R
be the Jacobian of r(x) with respect to x. We recall that a
dense GLC factor has by definition identity covariance, and
Gr(x) as measurement function, where G is a square root of
R−>ΩR−1 computed via eigen decomposition and r(x) is
the reparametrization function for SE(n).

If we now denote by R̆ the Jacobian of r(x) at a different
linearization point x̆, we see that a dense GLC factor con-
tributes as information the matrix quantity:

R̆>R−>ΩR−1R̆. (82)

On the other hand, since R is invertible, by Proposition IV.2
we have that it is possible to achieve equality to Ω by using
r(x) as measurement function, and R−>ΩR−1 as information
matrix of the factor. If we evaluate the information matrix
that this factor contributes at a different linearization point x̆
we, again, obtain (82), therefore the two factors are strictly
equivalent.

Proposition VI.4. Let M be a connected factor graph com-
posed of only SE(n) nodes and (possibly correlated) SE(n)
relative factors. Then, if we remove a node from M and
approximate the result via dense GLC, the resulting factor is
strictly equivalent to a set of fully correlated relative SE(n)
measurements with star topology.

Proof: By Proposition VI.3, a dense GLC factor is
equivalent to a factor with measurement function r(x). Let
us express its Jacobian as follows:

R =

[
R11 0
R21 R22

]
. (83)

Where R11 = ∂
∂x1
{	x1}, while R21 and R22 together

specify the Jacobian A =
[
R21 R22

]
of a star topology of

relative SE(n) measurements with respect to the nodes x.
Therefore, if we denote by Λ the information matrix asso-

ciated to the factor, the resulting information matrix R>ΛR
that this factor contributes is equal to:[

R>11 R>21
0 R>22

][
Λ11 Λ12

Λ21 Λ22

][
R11 0
R21 R22

]
= Ψ + Ξ, (84)

where:

Ψ =

[
R>21Λ22R21 R>21Λ22R22

R>22Λ22R21 R>22Λ22R22

]
= A>Λ22A, (85)

Ξ =

[
R>11Λ11R11 + Θ + Θ> R>11Λ12R22

R>22Λ21R11 0

]
, (86)

Θ = R11Λ12R21. (87)

Here, Ψ denotes the information contributed by the relative
SE(n) measurements alone.

By the optimality of GLC, R>ΛR must be equal to the
target information, which we denote by Ω. Moreover, by
Proposition VI.2 there also exists Λ̄ such that A>Λ̄A = Ω.
Since Ξ does not contribute information in the lower right
corner we have:

R>22Λ22R22 = R>22Λ̄R22. (88)

Given that R22 is invertible, we obtain Λ22 = Λ̄ and, as a
consequence, Ξ = 0. In a similar way, we can prove that
Λ12 = 0 and Λ11 = 0: Λ12 = 0 is proven by noting that
R>11Λ12R22 = 0 and R11 is invertible, while Λ11 = 0 is
proven by additionally noting that R>11Λ11R11 = 0 when
Λ12 = 0. We finally conclude that the only informative portion
of GLC is represented by the relative measurements part,
concluding the proof.

Proposition VI.5. Let M be a connected factor graph com-
posed of only SE(n) nodes and (possibly correlated) SE(n)
relative factors. Then, if we remove a node from M and
approximate the result via sparse GLC, each resulting factor
is strictly equivalent to an SE(n) measurement.

Proof: When approximating M, GLC computes a set of
factors from the conditional dependencies subsumed by the
Chow-Liu tree of the distribution to be approximated. The
contribution to the final information matrix of each factor is
the marginal information Ωi|j between the nodes xi and xj

involved in the factor.
Each Ωi|j is obtained by marginalizing all nodes xk with

k 6∈ {i, j}, therefore, by Proposition VI.2, there exists an
information matrix Λ by which a relative SE(n) measurement
between xi and xj yields Ωi|j . By the same reasoning of the
proof of Proposition VI.4 we find that each binary GLC factor
is strictly equivalent to a relative SE(n) measurement.
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