
Using Visual and Auditory Feedback for Instrument-Playing Humanoids

Daniel Maier Ramin Zohouri Maren Bennewitz

Abstract— In this paper, we present techniques that enable
a humanoid to autonomously play instruments like the metal-
lophone. The core of our approach is a model-based method
to estimate the pose of the instrument and the beaters held
by the robot using observations from the onboard camera. For
accurate playing, we calibrate the kinematic parameters of the
robot and find valid configurations of the arms for beating the
individual sound bars of the instrument. To determine these,
we rely on the estimated pose of the instrument and the beaters
and apply inverse kinematics (IK). Hereby, we use precomputed
forward kinematics solutions represented by a reachability tree
to accelerate the IK computation and compensate for local
minima. The robot automatically validates the computed IK
configurations based on visual and auditory feedback using its
sensors, and adapts its arm configurations if necessary. Our
system parses MIDI-files of whole songs, maps the notes to the
corresponding arm configurations for beating, and generates
trajectories in joint space to hit the sound bars. As we show in
the experiments with a Nao humanoid presented in this paper
as well as in the accompanying video, our approach allows for
clean and in-time playing of complete songs on a metallophone.

I. INTRODUCTION

In the last decade, there has been a raise of interest
in employing robots in the entertainment field, including
music. For instance, Chida et al. [1] developed the robotic
flutist WF-4, Weinberg et al. [2] introduced the marimba-
playing robot Shimon, and Mizumoto et al. [3] demonstrated
a theremin-playing HRP-2 robot, while Batula and Kim
[4] developed a small-scale humanoid pianist. In addition
to entertainment, such robots could also be employed for
teaching musical instruments to children or in the treatment
of autistic people [5, 6].

In this work, we now present an approach that enables a
humanoid robot to autonomously play an instrument like the
metallophone. In contrast to the previous robotic musician
applications, in our case visual observations are necessary
to track the instrument and the beaters held by the robot.
To this end, we use a particle filter and developed a novel
observation model to enable the robot to accurately track the
pose of these objects based on edge observations from its
onboard camera. Furthermore, we calibrate the parameters
of the robot’s kinematic model using a graph-based opti-
mization with respect to marker observations in the camera
image. Given the calibration and the pose estimates of the
instrument and beaters, we use inverse kinematics (IK) to

All authors are with the Department of Computer Science, University of
Freiburg, Germany. M. Bennewitz is also with the Humanoid Robots Lab,
Univ. of Bonn. This work has been supported by the German Research Foun-
dation (DFG) within the SFB/TR-8 Spatial Cognition, the Research Train-
ing Group 1103 Embedded Microsystems, and the BrainLinks-BrainTools
Cluster of Excellence (grant number EXC 1086).

Fig. 1. Left: Nao humanoid playing the metallophone. Right: View of the
robot’s onboard camera with estimated pose of the instrument, one beater’s
head (indicated r tip tracked), and calibration marker (coordinate frame
inside the checkerboard).

Visual Instrument
Tracking

IK Computation
From Reachability Tree

Joint Trajectory
Generation

Beating Execution

Auditory Feedback

Configuration
Validation

Visual Beater
Tracking

Kinematic Model

Kinematic
Calibration

Fig. 2. Overview of the proposed system.

determine valid configurations of the arms to execute beating
motions. To speed up the IK computation and compensate for
local minima, we hereby use a so-called reachability tree in
which we store precomputed forward kinematics solutions.
Since the visual observations and the robot calibration might
not be perfect, the robot automatically validates the generated
IK configuration by playing the notes and adapting its motion
if necessary. Hereby, the robot uses auditory feedback from
its onboard microphones and applies pitch detection based
on the Fast Fourier Transform (FFT) to identify whether the
note was hit correctly. For playing whole songs, our system
parses MIDI-files and maps the tones to the corresponding
arm configurations that enable the robot to beat the individual
sound bars. To reach these arm configurations, the robot
generates joint trajectories using Bezier interpolation. Fig. 2
shows an overview of the system.

We implemented our approach for a Nao humanoid. Fig. 1
shows the robot playing the instrument and illustrates the
tracking result for the metallophone and one beater’s head
in its camera image. As the experiments presented in this
paper as well as the accompanying video demonstrate, the
robot is able to play complete songs cleanly and in time
using the methods presented in this paper.



II. HUMANOID ROBOT AND INSTRUMENT

We implemented and evaluated our system on a Nao V4
humanoid. The robot is 57 cm in height while standing and
its arms have a length of approximately 31 cm. Each arm
has five degrees of freedom and is equipped with sensors to
measure the position of each joint. To determine the pose
of the instrument and the beaters’ heads the robot analyzes
images from the lower monocular camera located in its head,
which has a diagonal field of view of 73◦.

We use a Sonor SM soprano-metallophone with 11 sound
bars of 3 cm in width. The instrument has a size of
49 cm × 20 cm × 22 cm, including the resonating body. The
smallest sound bar is playable in an area of 5.5 cm × 3 cm,
the largest in an area of 9.5 cm × 3 cm. The instrument is
diatonically tuned in C-Major. As beaters, we use Sonor
SCH2 with modified grips (see Fig. 1) to allow the Naos’s
simple grippers to hold them. The beaters are approximately
26 cm in length with a head of 1 cm radius.

III. CALIBRATION OF THE KINEMATIC PARAMETERS

Knowledge about the parameters of the robot’s kinematic
model is essential for tasks requiring high precision such as
playing the metallophone. While the kinematic structure is
known from the construction plan, errors can occur, e.g., due
to imperfect manufacturing. We therefore use a calibration
method to accurately estimate these errors.

We use a self-calibration procedure based on
checkerboard-markers (see Fig. 1) to calibrate the kinematic
model, similar to [7, 8]. More concrete, we minimize the
error F between the marker locations observed in the
camera image and the projection of the estimated marker
locations according to the kinematic model. The projection
of a 3D-point P̃ in homogeneous coordinates is according
to the pinhole model

p =
[
u v 1

]ᵀ
= P P̃, (1)

with P = KR [I3×3 − c] , (2)

and K =

fx 0 kx
0 fy ky
0 0 1

 . (3)

Here, K are the camera intrinsics (focal length (fx, fy))
and principle point (kx, ky), and R and c are the camera’s
rotation and center, respectively.

Let θ be the set of calibration parameters. For a set of joint
readings q̂i and corresponding marker locations zi observed
in image i, we seek the values θ∗ minimizing the error
function F , i.e.,

θ∗ = arg min
θ

F (θ), (4)

where F is given by

F (θ) =
∑
i

ei(θ, z, q̂)
ᵀ
ei(θ, z, q̂), (5)

with ei(θ, z, q̂) :=
∥∥zi − P forwardCM(θ, q̂i)

∥∥ . (6)

Here, forwardCM computes the marker location in the camera
frame according to the kinematic structure, the calibration
parameters θ, and the joint readings q̂i.

For our Nao robot, the calibration parameters θ to be
estimated include the marker location relative to its gripper,
the camera relative to the torso and the joint offsets qoff.
Here, we assume a constant error qoff affecting the joint
encoder readings q̂i due to imprecise assembly, repair or
wear. That means, the true joint position is modeled as

qi = q̂i + qoff. (7)

To solve Eq. 4, we use the g2o framework [9]. More details
on our approach to self-calibration can be found in [10].

IV. MODEL-BASED OBJECT POSE TRACKING

To play the metallophone, the robot needs to be able
to adjust its motions according to the estimated relative
poses of the instrument and the heads of the beaters it
is holding. Our approach to estimating these poses uses a
model-based technique within a particle filter framework1.
The main idea is, given a hypothesis about an object’s
pose, one can project the contour of the object’s model into
the camera image and compare them to actually observed
contour. In this way, it is possible to estimate the likelihood
of the pose hypothesis. Using independent particle filters, our
system maintains multiple hypotheses and propagates them
over time to track the instrument as well as the beaters’
heads. Our approach hence shares the same idea as e.g., the
works [11, 12, 13].

In more detail, the particle filter represents the posterior
density function over an object’s pose at time t by a set
of weighted samples St = {(X1

t , w
i
t), · · · , (Xn

t , w
n
t )}. Each

sample represents a hypothesis about the pose of the object
Xi
t ∈ SE(3). The weight wit is proportional to the likelihood

of the hypothesis given the history of observations. At each
update step, the particles are first propagated according to a
random walk as

Xi
t = M i

t X
i
t−1 (8)

where M i
t = expµit, with µit ∼ N (0,Σt). (9)

Here, Σt is the motion covariance at time t and exp is the
matrix exponential mapping se(3) 7→ SE(3). From the
current camera image imgt, the importance weights of the
particles are updated according to the observation model as

wit = p(imgt | Xi
t), (10)

which is described in the next two sections for the met-
allophone and the beaters’ heads. Finally, the filter applies
resampling, i.e., a new set of particles is drawn according
to the distribution of the importance weights {wit}. Our
algorithm uses the mean of the particles after the resampling
step as pose estimate for the given time step.

1It is possible to integrate the pose estimation in the kinematic calibra-
tion (Sec. III). However, we chose a particle filter framework, as it provides
continuous updates of the pose. In this way, it is possible to adjust the
motions while playing in case the relative poses change, as we plan to
address in future work.



Fig. 3. Example for likelihood computation in instrument tracking. Green
lines are the model edges according to a pose hypothesis, with sampled
points (green dots). Gray indicates canny edges, blue dots are detected
matches to the green dots. The magenta lines indicate the residuals, used
in the likelihood computation. Only successful matches smaller than a
maximum distance are shown.

Fig. 4. Example for the likelihood computation for tracking a beater’s
head. The green ellipse corresponds to the contour of a pose hypothesis,
with sampled points (black dots). Gray indicates canny edges, blue dots are
detected matches to the green dots. The magenta lines indicate the residuals,
used in the likelihood computation. Only successful matches smaller than
a maximum distance are shown.

A. Tracking of the Instrument

Fundamental to the localization capabilities of the particle
filter is the choice of the observation model p(img | X)
in Eq. (10). To estimate the pose of the metallophone, our
approach matches the camera image img to the projection of
the instrument’s edge model according to the pose estimate
X . To this end, our system uniformly samples points Pkm
from the model’s edges and projects them into the image ac-
cording to the standard pinhole model (see Eq. (1)). Here, the
camera’s rotation and translation (R, c) are with respect to
the robot’s torso frame. The projected model edge points pkm
are then matched to the closest edge points pke , obtained from
the Canny edge detector [14]. To find the correspondences,
our method follows the model edge normal at pkm until the
line intersects with a Canny edge point. If the difference in
orientation between the model edge and the corresponding
image edge at pke falls below a threshold, we consider the
points matching and store the residual rk =

∥∥pkm − pke
∥∥.

Otherwise, we follow the line until the next Canny edge
with matching orientation. If no match can be found within
a maximum distance, this maximum distance is assigned

to rk. Our algorithm approximates the image edge orientation
by convolving the image with a horizontal and a vertical
Sobel operator and computing the atan2 of the two resulting
gradients2.

With the residual vector r =
(
r1 · · · , rNp

)ᵀ
, where Np

is the total number of sampled points, our approach then
computes the observation likelihood from the the arithmetic
mean r̄ of r. We assume the observation likelihood to be
distributed according to an exponential distribution over r̄
where the distribution parameter λ was determined experi-
mentally:

p(img | X) = λ e−λ r̄ (11)

Fig. 3 shows an example for the likelihood computation.
The green lines are the projected model edges, gray are the
canny edges, green dots are the pkm, blue dots the pke , and
magenta lines the residuals rk. Only edge points that could
be matched are shown in the image.

B. Tracking of the Beaters’ Heads
To estimate the pose of the beaters attached to the robot’s

grippers, we use the same particle filter framework3. The
observation model we employ is based on a mathematical
model of the spherical head of the beaters, which we project
into the image and sample points from to match to the Canny
edge features. A similar mathematical model was previously
used to calibrate the camera intrinsics [15].

Specifically, we describe a beater’s head as quadric S ∈
R4×4 in homogeneous coordinates, with

S =

[
I3×3 −x
−xᵀ γ

]
(12)

where γ = xᵀ x− r2. (13)

Here, x is the estimated translation from the gripper to the
center of the head, and r its radius. To evaluate the likelihood
of x, we consider the matching of the camera image img,
with the projection of S into img. The projection of S is a
conic C ∈ R3×3 [16], with

C =
(
P S−1 Pᵀ

)−1
, (14)

where P is the projection matrix from Eq. (1). Here, (R, c)
are the rotation and translation of the camera relative to
the gripper. The conic C describes an ellipse that is the
outline of the projected sphere, i.e., p̃C p̃ᵀ = 0 for all p̃ in
homogeneous coordinates on the ellipse. In inhomogeneous
coordinates, the ellipse can be described by

0 = pᵀAp + bᵀp + d (15)

with C =

[
A b
bᵀ d

]
. (16)

2One underlying assumption for finding the correspondences is that the
poses represented by the particles are not too far away from the true pose of
the instrument. We currently achieve that by a rough manual initialization.

3Again, it would also be possible to integrate the pose estimation into the
kinematic calibration described in Sec. III, however, we observed suboptimal
estimation results from such an approach. This is likely due to non-linearities
in the encoder readings near the joint limits, unmodeled effects such as joint
elasticity, and local minima in the optimization. The particle filter approach
automatically handles such problems by updating the pose estimate between
gripper and beater.



From Eq. (15), we compute the ellipse’s center
[
hx, hy

]ᵀ
,

major and minor axes (l1, l2) and rotation ψ, which are
needed to sample points from the ellipse. To do so, we
bring the ellipse in center-oriented from and perform an
eigendecomposition to obtain the parameters. Thus, with
definition

o := −A−1 1

2
b (17)

and B := A (bᵀA−1b− d)−1 (18)

and can rewrite Eq. (15) as

(p− o)ᵀB (p− o) = 1 . (19)

By the eigendecomposition

B = RDRᵀ, with D = diag(ν1, ν2) (20)

we finally obtain the ellipse parameters as:[
hx, hy

]ᵀ
= o, l1 =

√
1
ν1

, l2 =
√

1
ν2

, and
ψ = 1

2 atan2 (−2A12, A22 −A11). This allows us to
write the ellipse equation as

x(u) = l1 cosψ cosu− l2 sinψ sinu+ hx (21)
y(u) = l1 sinψ cosu+ l2 cosψ sinu+ hy, (22)

where (x(u), y(u))ᵀ are the contour points of the ellipse,
with u ∈ [0, 2π]. Our algorithm uniformly samples a
fixed number of values for u and follows the normals at
(x(u), y(u))ᵀ until they intersect with the Canny edges.
From there, we proceed as with the instrument model, using
the same exponential distribution as in Eq. (10) to evaluate
the likelihood. The normals of the ellipse are computed from
its gradients as

n(u) =
[
y′(u) −x′(u)

]ᵀ
,with (23)

x′(u) = −l1 cosψ sinu− l2 sinψ cosu (24)
y′(u) = −l1 sinψ sinu+ l2 cosψ cosu (25)

Fig. 4 shows an example for the likelihood computation of a
single particle, while tracking a beater’s head. Even though
the background contains clutter, the sampled model points
are matched to the contour of the beater’s head, as a result
of considering the edge orientations.

V. INVERSE KINEMATICS AND BEATING

Based on the estimated pose of the instrument, the beaters’
heads, and the calibrated kinematic model, our system com-
putes for each sound bar a suitable beating configuration for
the arm kinematic chain. Suitable means that the beater’s
head can be placed on the surface of the sound bar at a
desired angle. From this configuration, the control points
of a predefined beating motion are updated. To compute
the corresponding joint configuration, the system applies IK
based on a resolved-rate approach [17]. To specify the target
configurations for the individual sound bars, we provide 4D
target poses (position xS and roll angle φS) for the beaters,
as well as two general reference joint configuration qr (for
the left and the right arm), from which the computed arm
configurations should deviate as little as possible. The latter

is to ensure that the robot does not perform too large motions
when switching between different notes and to exploit the
redundancy. qr is automatically generated once per arm as
the beating configuration for the respective central sound bar,
which is calibrated first.

In more detail, let XB(q) := forwardTB(θ,q) the pose
of the beater’s head (relative to the torso) according to the
forward kinematic model, the estimated transform from the
gripper to the beater’s head (Sec. IV-B), as well as the cali-
bration parameters θ (Sec. III), and a joint configuration q.
Let xB(q) and φB(q) be the translational component and
roll angle of XB(q), respectively. Further, let XS be the pose
of the target sound bar (i.e., its center relative to the robot’s
torso) according to the tracking result (Sec. IV-A) and the
instrument model and let xS be the translational component
of XS . With the desired roll angle from the target pose of
the beater φS , we define the error for a configuration q

e(q) = 06

e[1:3](q) = X−1
S w[1:3] ◦XS(xS − xB(q)) (26)

e4(q) = w4(φS − φB(q)),

where ◦ is the Hadamard product, i.e., for v = w ◦ x, it is
vi := wi xi. Here, w is a vector of error weights. The idea is
to give more weight to deviations in direction of the shorter
side of the sound bar, as a misplacement in the other direction
is less crucial for hitting the bar. Therefore, the displacement
vector (xS−xB) is transformed into the frame of the sound
bar, weighted, and transformed back. Further, we consider
the deviations of the roll angles.

To reach the target pose, we iteratively compute joint
velocities q̇t for a discrete time interval ∆t, and update the
joint positions qt until ‖e(q)‖ falls below a threshold. Let

q̇t = J#
t e(qt) + (I − J#

t Jt)(βl∇ft + βd∇gt) (27)
qt = qt−1 + ∆t q̇t. (28)

Here, Jt is the manipulator Jacobian of the beater for
configuration qt with its pseudo-inverse J#

t , βl, βd are
weights for the secondary tasks, (I−J# J) is the null-space
projector, ∇ft the joint limit gradient for qt, and ∇gt the
gradient of the function g(qt) that punishes deviations from
the reference joint configuration qr, where

g(q) := (q− qr)
ᵀ (q− qr). (29)

Such resolved-rate IK solvers suffer from problems such as
singularities and local minima. Therefore, providing a good
seed configuration is essential. To this end, we developed an
approach, the so-called reachability tree (see Fig. 5), to pre-
compute a set of joint configurations (similar to [18]), along
with the corresponding beater pose. These configurations are
stored for efficient lookup in a kd-tree. In particular, we
use the kd-tree to lookup the configurations {qn} closest to
the target pose for each IK query. The closest configuration
might not be the best for the IK computation, as the gripper
location or robot calibration potentially changed since the
tree creation. We therefore pick the configuration q ∈ {qn}



Fig. 5. Illustration of the reachability tree. The blue dots indicate locations
that the beater’s head can reach with the beater in the right hand. The green
dots indicate the same for the beater in its left hand. The configurations
are sampled from forward kinematics and used in the IK computation. The
samples are restricted to the robot’s typical workspace.

as seed that minimizes ‖e(q)‖ with e as defined in Eq. (26)
from the current kinematic state and the pose estimates.

After adapting the joint configuration, our system checks
whether the beater’s head is at the desired pose. Otherwise,
the pose estimates are updated and the IK computation
is restarted. When the desired pose is reached, the robot
performs a predefined beating motion to hit the sound bar,
which is then further analyzed from auditory feedback, as
described in the following.

VI. AUDITORY FEEDBACK

To identify whether the executed beating motion success-
fully hit the sound bar, we rely on auditory feedback, as
visual feedback would required a high speed camera which is
still uncommon for robots. To this end, our system analyzes
the audio signal of the integrated microphones, sampled at
48 kHz. The system considers a window of circa 2 s after
the beating motion is executed. To analyze this signal, we
follow a straight-forward approach, based on the Fast Fourier
Transform (FFT) [19]. Let a be a discrete, normalized audio
signal of length Na, with ai ∈ [−1, 1] for i ∈ {1, · · · , Na}.
Our algorithm first computes

y =
1

Na
FFT(a) (30)

and m = absy, (31)

where m is the magnitude of y. The algorithm then searches
for local maxima in m based on a sliding window. The peaks
are ordered according to the magnitude values, beginning
with the strongest magnitude, i.e., m(ij) ≥m(ij+1). We
assume that the frequency f(i1) with the maximum mag-
nitude m(i1) is the note that was supposedly played, where
f(i) = i

Na−1 48kHz. Our approach employ four different
heuristics to identify whether the note was played correctly.

1) The ratio of m(i1) to the median magnitude is larger
than a threshold.

2) The ratio m(i1)
m(i2) is larger than a threshold.

3) The deviation of f(i1) from the frequency fr of the
closest reference note for the instrument in frequency

space is smaller than a threshold. The deviation is
specified in cent as 1200 log f

fr
.

4) The detected frequency f matches the frequency fd of
the desired note.

Only if all heuristics are satisfied, the note is considered
successfully played. If only the fourth heuristic fails, the
robot repeats the complete IK computation, as the beater
is obviously positioned wrongly, e.g., due to wrong pose es-
timates. Because the pose estimates are continously updated,
repeating the IK computation can compensate for temporary
errors in the pose estimate. If any of the other heuristics fail,
the audio signal is likely to contain only noise, and the robot
first tries to beat harder prior to restarting the complete IK
computation. This way, the robot learns the strongness for
beating a note, and we achieve a robust self-calibration and
positioning for playing the instrument.

VII. JOINT TRAJECTORY GENERATION

Our system parses single-track MIDI files to obtain the
sequence of notes to play. It converts the notes into a joint
trajectory using the beating configurations obtained from
IK as control points. The timestamps for the control points
are extracted from the MIDI file as well. The trajectory is
then computed using Bezier interpolation in joint space by
the manufacturer-provided API and send to the the robot
controller for execution. This way, the robot plays in-time
with the song.

VIII. EXPERIMENTS

A. Qualitative Evaluation

First, we evaluate the performance of our system as a
whole. The results are also shown in the accompanying
video as well as in Fig. 6. Initially, our system performed
the kinematic calibration procedure as outlined in Sec. III.
Afterwards, we placed the beaters in the the robot’s grippers,
as autonomous grasping is not in the scope of this work. We
then manually initialized the localization system and moved
the instrument closer to the robot, such that it can reach all
the bars with the beaters. As can be seen in the video, the
tracker was following the motion of the instrument closely.
The robot started the automatic beating calibration, i.e., it
estimated the pose of the heads of the beaters, moved the
head to the first sound bar, calibrated the beating motion, and
proceeded to the next bar. Each sound bar was hit correctly
on the first try. As can be seen in the video, the robot
was then immediately able to play complete songs such as
Beethoven’s Ode to Joy and Jingle Bells provided as MIDI
files. Each note in both songs was hit correctly. In the video,
one can hear some dissonances that occur when the previous
note still sounds while another note is hit and both notes are
dissonant. Such effects can be prevented by advanced players
by stopping the previous note at the same time as playing
the current one. In future work, we will investigate such
techniques in our system.



Fig. 6. Screenshots from the beating calibration procedure shown in the accompanying video. The top row shows an external camera video for reference,
the lower the robot’s onboard perspective along with the tracking results. 1st left: The instrument is moved in front of the robot, while it keeps track of
the instrument. 2nd left: The robot calibrates the beating configuration for the D-sound bar from the visual pose estimation. 3rd left: The robot calibrates
the beating motion for another sound bar with its left arm. The green stick indiactes the determined IK solution. Right: The robot plays a song using the
learned motions.

B. Pose Estimation and Calibration

Fig. 1 shows an example for the pose estimation of the
instrument and one beater’s head. The edge model closely
fits the camera image, and the estimated center of the beater’s
head (indicated by the coordinate frame) aligns with the head
in the image as well. Furthermore, one can see the result of
the kinematic calibration, as the coordinate frame indicating
the center of the checkerboard marker, nicely overlays with
the checkerboard in the camera image. Furthermore, in the
accompanying video, a sequence showing tracking results for
the beater and the instrument can be seen.

The localization performance is generally good, but the
markerless localization approach can fail, once it loses track
of the instrument. This is because there is a strong symmetry
in the appearance of the object. If the pose estimate is shifted
by one (or more) sound bar plus a small deviation in depth,
the appearance is very similar and hence, the likelihood
function will also return similar values. This can be avoided
by additional markers on the object, which we chose to
avoid. In practice, the localization performance has proven
sufficient for our application.

C. Auditory Feedback

To test the auditory feedback, we had a novice human
player play the notes of the instrument while the robot
ran the audio analysis. We evaluated whether the detected
notes were the actually played one. The human played notes
randomly, with a pause of circa 5 s in between two notes.
We placed the instrument at 3 different locations (left, right,
center) relative to the robot. Each of the 11 notes were
played in each position. From 33 played notes, the system
was able to recognize 30 correctly, for the 3 failures, the
notes were determined correctly, but heuristic 2 was not
satisfied. Consequently, in the beating calibration context, the
robot would unnecessarily have tried to solved the IK again.
Further, we tested whether the analyzer is able to identify
whether two notes were hit at the same time. In practice, this
is useful, as the robot sometimes hit inbetween two notes,
due to imprecise motion execution or minor pose estimation
errors. To this end, the novice player was asked to hit two

neighboring notes at the same time, thereby simulation the
inbetween-sound-bars effect (as hitting inbetween on purpose
proved to be difficult). In all three positions, all of the 11
notes were correctly identified as unacceptable.

D. Beating Calibration Accuracy

To test the accuracy of the beating motion calibration,
we let the robot perform the beating calibration five times,
similar to the one shown in the video and described in
Sec. VIII-A. For each trial, the instrument’s location was
shifted slightly within the reachable limits for the robot. For
each location, the robot managed to find a configuration for
all of the 11 sound bars and beat each note correctly as part
of the auditory feedback. Therefore, one can conclude, that
the accuracy of the visual tracking is sufficiently good for
the task of calibrating the beating motions.

IX. CONCLUSIONS

In this paper, we presented a novel approach to enable
a humanoid robot to play the metallophone. To realize this
task, we developed a technique for self-calibration of the
robot kinematic model, a particle filter framework for model-
based pose estimation of the instrument and the beaters, and
a method for exploiting auditory feedback to automatically
adapt the beating motion. As we showed in the experiments
in the paper and in the accompanying video, we achieve
good accuracy in tracking the relevant object poses and
in the kinematic calibration that allows for clean playing
of complete songs. Hereby, the robot adapts its motions if
necessary based on visual and auditory feedback. In future
work, we plan to update the beating motions while the
robot is playing, which relies on a constant update of the
instrument’s pose using our particle filter framework.

Our methods are not restricted to the Nao humanoid
but could easily be adopted for other robots as well. The
employed techniques such as visual tracking using a model-
based approach are also general and can be used in the
context of other tasks such as stair climbing or estimating
the pose of other tools held by the robot.



REFERENCES

[1] K. Chida, I. Okuma, S. Isoda, Y. Saisu, K. Wakamatsu, K. Nishikawa,
J. Solis, H. Takanobu, and A. Takanishi. Development of a new
anthropomorphic flutist robot WF-4. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2004.

[2] G. Weinberg, T. Mallikarjuna, and A. Ramen. Interactive jamming
with Shimon: A social robotic musician. In Proc. of the Int. Conf. on
Human Robot Interaction (HRI), 2009.

[3] T. Mizumoto, H. Tsujino, T. Takahashi, T. Ogata, and H. Okuno.
Thereminist robot: Development of a robot theremin player with
feedforward and feedback arm control based on a theremin’s pitch
model. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2009.

[4] A. M. Batula and Y. Kim. Development of a mini-humanoid pianist. In
Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
2010.

[5] I. Fujimoto, T. Matsumoto, P. R. S. De Silva, M. Kobayashi, and
M. Higashi. Study on an assistive robot for improving imitation skill
of children with autism. In Proc. of the Int. Conf. on Social Robotics
(ICSR), 2010.

[6] D. Ricks and M. Colton. Trends and considerations in robot-assisted
autism therapy. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2010.

[7] U. Hubert, J. Stückler, and S. Behnke. Bayesian calibration of the
hand-eye kinematics of an anthropomorphic robot. In Proc. of the
IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2012.

[8] O. Birbach, B. Bäuml, and U. Frese. Automatic and self-contained
calibration of a multi-sensorial humanoids upper body. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2012.

[9] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

[10] D. Maier, S. Wrobel, and M. Bennewitz. Whole-body self-calibration
via graph-optimization and automatic configuration selection. 2015.
Submitted.

[11] C. Choi and H. I. Christensen. Robust 3d visual tracking using particle
filtering on the special euclidean group: A combined approach of
keypoint and edge features. Int. Journal of Robotics Research (IJRR),
31(4), 2012.

[12] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and
T. Kanade. GPU-accelerated real-time 3D tracking for humanoid
locomotion and stair climbing. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2007.

[13] D. Gonzalez-Aguirre, M. Vollert, T. Asfour, and R. Dillmann. Robust
real-time 6d active visual localization for humanoid robots. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2014.

[14] J. Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8:679–
698, 1986.

[15] M. Agrawal and L. Davis. Camera calibration using spheres: a semi-
definite programming approach. In Proc. of the IEEE Int. Conf. on
Computer Vision (ICCV), 2003.

[16] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, second edition, 2004.

[17] S. R. Buss. Introduction to inverse kinematics with jaco-
bian transpose, pseudoinverse and damped least squares meth-
ods. http://euclid.ucsd.edu/˜sbuss/ResearchWeb/
ikmethods/index.html, 2004.

[18] N. Vahrenkamp, T. Asfour, and R. Dillmann. Robot placement based
on reachability inversion. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2013.

[19] J. W. Cooley and J. W. Tukey. An algorithm for the machine
calculation of complex fourier series. Mathematics Computation,
1965.


