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Abstract—Autonomous robot navigation in out-
door scenarios gains increasing importance in vari-
ous growing application areas. Whereas in non-urban
domains such as deserts the problem of successful
GPS-based navigation appears to be almost solved,
navigation in urban domains particularly in the close
vicinity of buildings is still a challenging problem. In
such situations GPS accuracy significantly drops down
due to multiple signal reflections with larger objects
causing the so-called multipath error. In this paper we
contribute a novel approach for incorporating multi-
path errors into the conventional GPS sensor model
by analyzing environmental structures from online
generated point clouds. The approach has been val-
idated by experimental results conducted with an all-
terrain robot operating in scenarios requiring close-
to-building navigation. Presented results show that
positioning accuracy can significantly be improved
within urban domains.

I. Introduction

Autonomous robot navigation in outdoor scenarios
gains increasing importance in various growing applica-
tion domains, such as reconnaissance, urban search and
rescue, bomb disposal, transportation of goods, assis-
tance for disabled people, driving assistance systems, and
many more. Successful systems for GPS-based outdoor
navigation have been demonstrated in the past, as for ex-
ample during the DARPA Grand Challenge, and DARPA
Urban Challenge. In these domains perturbed GPS read-
ings are comparably seldom due to sufficient clearance
around the vehicle. In contrast, there are other domains
requiring mobile robots to navigate arbitrarily close to
buildings, as for example when the task involves entering
an unknown building through a geo-referenced entrance.
Depending on the complexity of the environment, and
the robot’s ability to recognize targets, the quality of
the estimated pose has to be sufficiently high. However,
particularly in close vicinity of buildings, GPS accuracy
significantly drops down due to multiple signal reflection
on larger objects causing the so-called multipath error.

A commonly deployed technique to compensate for
these errors is to fuse multiple sensor readings weighted
by their confidence with a filter. In case of GPS, confi-
dence is gained from the HDOP (Horizontal Dilution of
Precision) value, a measure computed according to the
geometric constellation of GPS satellites. Since HDOP
does not model multipath propagation, overconfident
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measurements are fused by the filter leading to highly in-
accurate position estimates particularly in urban terrain.
Figure 1 (a) illustrates the multipath effect between two
close buildings, and Figure 1 (b) plots the corresponding
GPS error (blue line) together with the HDOP-based 1σ
bound (red line) over time. As can be seen, conventional
error bounds do not hold in this particular situation.
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Fig. 1: (a) The effect of multipath when traveling between
two buildings. The GPS measurements (orange dots)
differ significantly from the true trajectory of the robot
(yellow). (b) The corresponding GPS error (blue line)
together with the HDOP-based 1σ bound (red line) over
time.

In this paper we contribute a novel approach for incor-
porating multipath effects into the conventional GPS sen-
sor model, and by this, increasing positioning accuracy
within urban domains. This is carried out by generating
online a 3D representation of the robot’s surroundings,
and detecting obstructed satellites by performing ray-
traces through this representation. The improved sensor
model is also computed based on the HDOP, however,
from non-obstructed satellites only. The approach has
been applied with an Unscented Kalman filter (UKF)
fusing data from odometry, IMU, and GPS, using the
new uncertainty measure for improving pose estimation.

Experimental results presented in this paper were
conducted with a telemax robot-based system that has
been designed for the TechX challenge [1] hold 2008 in
Singapore. Among other tasks, such as elevator handling,
stair negotiation, and target detection, one critical task
was about approaching the target building entrance via
a stair, which required accurate pose estimation close to
high building structures.

The remainder of this paper is structured as follows. In
Section II related work is discussed. Section III describes
the integration of GPS and odometry information, and
Section IV introduces the improved sensor model. In Sec-



tion V experimental results are presented, and concluded
in Section VI.

II. Related Work

Common to most outdoor approaches is that they
combine GPS and odometry or IMU measurements to
mutually compensate the drawbacks of individual sen-
sors. For instance, Panzieri et al. [2] fused GPS and
IMU measurements using an Extended Kalman Filter
(EKF) and surveyed the GPS performance. Sawabe et
al. [3] compared the performance of EKF and a particle
filter for outdoor GPS/IMU integration. Abbot and Pow-
ell [4] investigated the contribution of GPS, IMU, and
odometry on the navigation performance of various land
vehicles. They found that the overall position error is
dominated by the quality of GPS. In this paper we focus
on the assesment of the quality of GPS measurements for
mobile robot localization.

Jones et al. [5] used two independent Kalman filters
both incorporating GPS measurements. The outputs
were merged to obtain a final position estimate. The GPS
uncertainty was one of two constant values chosen by
thresholding the HDOP value. We share the assumption
that thresholding the GPS uncertainty is reasonable.

Several methods have been proposed to estimate the
uncertainty of GPS measurements. One of the simplest
ways to model GPS uncertainty is to assume a constant
value, for instance used by Goel et al. [6]. They claim that
it is not desirable to fuse GPS signals with gyroscope and
odometry signals using an EKF as low GPS accuracy
deteriorates the position estimate on small movements
too much. Another method of modeling the GPS uncer-
tainty is to dynamically adjust the covariance according
to a parameter. For example, Thrapp et al. [7] used the
number of available satellites.

Caron et al. [8] introduced contextual variables to
define the validity of IMU and GPS. Fuzzy logic was
used to weight sensor information in a Kalman filter.
Capezio et al. [9] augmented the state space to include
the non-zero mean bias of the GPS measurements in the
estimation process. They assume that the bias changes
slowly over time, which is not the case when multipath
occurs.

Some approaches have been proposed to estimate or
detect multipath errors. Giremus et al. [10] used a rao-
blackwellized particle filter to detect abrupt changes
in the state model. However, their approach was only
evaluated with simulated measurements. Also, in reality
multipath effects do not necessary reveal as abrupt jumps
(see Figure 1). Brenneman et al. [11] used a statistical
test on the signal of an array of GPS antennas to
detect the presence of multipath. Common to approaches
relying solely on the GPS receiver’s output is that they
cannot detect multipath presence if only the multipath
replica but not the direct signal itself is propagated to
the GPS receiver.

III. Integration of GPS and Odometry

In this section the unscented Kalman filter for the inte-
gration of GPS and odometry data, and the conventional
sensor model for GPS integration are described.

A. The Unscented Kalman Filter (UKF)
The UKF [12] allows the estimation of the state of

a dynamic system given a sequence of observations and
control inputs. Observations originating from different
sensors are typically fused to obtain a more robust
estimate of the state. Let xt be the state, ut the control
input, and zt the observation at time t. Furthermore,
assume that state transitions are given by a function
g and observations by a function h, both corrupted by
Gaussian noise. That is,

xt = g(xt−1, ut−1) + εt , (1)
zt = h(xt) + δt , (2)

where εt and δt are zero-mean Gaussian noise variables
with covariance Qt and Rt, respectively.

Because h and g are potentially non-linear, a Gaussian
variable passed through either of them loses its Gaussian
character. Hence, the UKF implements a stochastic lin-
earization of g and h, called unscented transformation,
around the pose estimate computed in the previous time
step t−1. We choose the UKF over the Extended Kalman
filter (EKF) because the latter can yield poor results in
highly non-linear situations. The EKF computes a first-
order Taylor approximation of the underlying models
while the UKF has been shown to provide approxima-
tions that are at least as accurate as the second-order
Taylor expansion [13]. Nonetheless, EKF and UKF share
the same asymptotic complexity.

The results of the state estimation using the UKF
depend strongly on covariances Qt and Rt. If for instance
Rt is very large, the residual of observation zt and
expected observation ẑt are only marginally influenc-
ing the current state estimate. Furthermore, Rt can be
regarded as weighting for different sensors when their
measurements are fused to estimate a system’s state.
Therefore, a substantial challenge of designing a Kalman
filter is to choose the covariance matrices appropriately.

B. Conventional GPS Sensor Model
The Global Positioning System (GPS) became a syn-

onym for satellite-aided global localization systems. GPS
currently consists of 31 satellites orbiting at about
20, 000 km providing global coverage with free access
for civilian usage. Anywhere in the world at least six
satellites are visible at all times. The signals of four
satellites are necessary for a GPS receiver to estimate
its position.

There are two major factors affecting the accuracy
of GPS. a) The geometric constellation of the satel-
lites represented by a numeric value termed Dilution
of Precision (DOP). b) The errors in the pseudorange
estimation, referred to as user-equivalent range error



Fig. 2: Influence of satellite constellation on position
estimate. For the right constellation the shaded area of
potential receiver locations is larger than for the left
one with the satellites further apart. Errors in the range
estimate are magnified by poor constellations.

(UERE), which is typically expressed by its standard
deviation σUERE . Therefore, the error of the position
estimate is approximated by

Positioning Error(1σ) = DOP ·σUERE . (3)

Standard deviation σUERE is affected by multiple
sources. First, atmospheric effects that influence the
propagation speed of the GPS signal. Second, trans-
mitted positions of satellites (the ephemeris) can be
inaccurate. Third, the satellites’ internal clock may ex-
perience drift and noise and is subject to relativistic
effects. Fourth, there are multipath effects in case re-
flected replica of the GPS signal are transmitted to the
receiver. Whereas the first three error sources can mostly
be compensated by using DGPS (Differential GPS), the
fourth source particularly dominates the error in urban
terrain.

The satellite constellation affects the accuracy of GPS
position estimates. DOP is one approach to express the
quality of the constellation. High DOP values indicate
poor constellations while low values indicate desirable
ones. Figure 2 illustrates a 2-dimensional example of the
satellite geometry affecting the positioning error. The
pseudoranges are given by the true distances (solid lines)
to the corresponding satellites plus error bounds (dashed
lines). The gray areas indicate the potential positions of
the receiver depending on the error in the pseudorange
estimation with the receiver being positioned at the
intersection of the solid lines. Assume that the faulty
pseudoranges were computed such that their intersection
point is at the red dot, indicating the estimated receiver
location. Although the distances to the satellites and
the error bounds are equal for the left and the right
constellation, their estimates for the receiver position
differ considerably due to the difference of the constel-
lation. Bad satellite constellations magnify errors in the
pseudorange estimate and are indicated by high DOP
values.

DOP values can be calculated for various levels accord-
ing to the specific requirements of the task. For example,
the Horizontal DOP (HDOP) captures the influence of

the satellite constellation on the position estimate in the
horizontal plane, i.e., ignoring the vertical component,
and is commonly used on unmanned ground vehicles
(UGVs). Algorithm 1 describes the HDOP calculation
according to [14]. From Equation 3 we obtain a model

DOP calculation for a set of n satellites:
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Algorithm 1: Dilution of Precision

for determining the covariance of the GPS position in
the horizontal plane. Therefore, DOP is replaced with
the HDOP value and the whole expression is squared
to obtain the covariance from the standard deviation.
A slightly more sophisticated model reflecting both error
amplitudes in East and North direction can be developed
by:

R =
(

σ2
x σ2

xy

σ2
xy σ2

y

)
·σ2

UERE , (4)

where the σ-values are computed as in Algorithm 1 and
denote the horizontal components of the error matrixM .

IV. Improved Sensor Model

The improved sensor model is computed from non-
occluded satellites, where occlusions are detected by ray
tracing on a local 3D map of the environment. This
section describes the generation of local 3D maps, com-
putation of the new HDOP model, and filtering of the
covariance.

A. Map Generation
The presented method requires 3-dimensional point

clouds in the local coordinate frame of the sensor. In
general, these can be generated by any sensor, such as a
3D camera, stereo vision, or a rotating laser range finder,
operating at a sufficient level of accuracy. In our imple-
mentation, a rotating laser range finder has been used
(see Section V). These point clouds are then projected
on the robot coordinate frame and accumulated to form
a map of the environment. To preserve local consistency
point clouds are aligned using the iterative closest point



Fig. 3: A local map of the environment along with traces
from the satellites to the robot. Green rays indicate
free signal paths, orange rays indicate obstructed signal
paths.

(ICP) algorithm [15]. The projection is obtained as fol-
lows. Let P be a point cloud and ξ the 6-dimensional
robot pose both at time t with ξ = (x, y, z, φ, θ, ψ)T .
p ∈ P denotes a point in local coordinates (px, py, pz)T .
Let Mx(α) denote the rotation around the robot’s x-axis
about α and analog forMy(β) andMz(γ). The projection
w of p in the robot’s coordinate frame is

wp = (x, y, z)T +Mx(φ) ·My(θ) ·Mz(ψ) · p . (5)

In an iterative process we obtain W =
⋃

p∈P wp. Figure 3
depicts a visualization of a thereby obtained map.

Given the point cloud representation and relative satel-
lite locations, one can detect obstructed satellites if lines
traced from the receiver towards satellites locations are
blocked by objects. Note that relative satellite locations
are computed with respect to the last global pose esti-
mate of the robot.

Because ray tracing is a time consuming operation, the
local map is maintained within a tree-like data structure
accelerating nearest neighbor search. Therefore, point
clouds are stored in ANN-trees (Approximate Nearest
Neighbor [16]), which are approximated kd-trees allowing
to tradeoff query speed and accuracy by a parameter
ε ∈ R. For ε > 0, ANN-trees approximate the nearest
neighbor of a point p by a point q whose distance to p
exceeds the distance to the true nearest neighbor by a
factor of at most (1 + ε). The k-nearest neighbors of a
query point can be enumerated in O(k log n), where n is
the numbers of stored points.

B. New HDOP Calculation
With the local map represented as ANN-tree, we can

easily identify blocked signal paths by using ray tracing
as in Algorithm 2. The positions of satellites are reported
by conventional GPS receivers in spherical coordinates
θ and φ which are converted to unit vectors using the
function spere2cartesian. The location of the antenna
is obtained from the robot’s position plus an offset.

input : satellite position θ, φ (spherical),
GPS antenna position (x, y, z), map M
max ray length rmax, step size rinc

output: true if satellite’s signal path is ob-
structed, false otherwise

r = 0 // Distance from antenna1

while r < rmax do2

(dx, dy, dz) ← sphere2cartesian(θ, φ, r)3

q = (qx, qy, qz) ← (x, y, z) + (dx, dy, dz)4

rsearch ← determineSearchRadius(r)5

Find neighbors N of q closer than rsearch6

if signal_path_obstructed(N,r) then7

return true8

r ← r + rinc9

return false10

Algorithm 2: Ray tracing algorithm for detect-
ing obstructed signal paths

The signal path of a GPS satellite is approximated by
a set of query points in fixed intervals along a ray
from the robot to the satellite. Obstruction is detected
using a fixed-radius neighbor search around the query
points. The search radius is determined by the function
determineSearchRadius which increases with the dis-
tance to the robot to compensate for the decreasing res-
olution of the LRF. A bounded linear model was chosen
to this end. After some experiments with the function
signal_path_obstructed we finally found that a simple
threshold on the number of neighbors yields reasonable
results at the advantage of easy implementation and low
error-proneness.

Once we know that the signal path of a satellite k
is blocked, we remove it from the set of satellites. The
remaining satellites form the set of visible satellites, Svis.
We use only the satellites from this set to calculate the
uncertainty of a GPS measurement by applying Algo-
rithm 1 to Svis. Thereby, we obtain Mvis and HDOPvis.
These values can only be calculated, if |Svis| > 3.
Otherwise, we set the uncertainty to a high value Rinf .
The obtained values indicate how desirable the visible
satellites are distributed over the celestial sphere for
a GPS position estimate. The UKF requires an areal
measure of the uncertainty. Therefore, we define the
uncertainty of the GPS measurements as

RImp = (Mvis) 2×2 ·σ2
UERE , (6)

where (M)2×2 denotes the upper left 2× 2 submatrix of
matrix M . The standard deviation σUERE was experi-
mentally determined as 3.75 m from collecting station-
ary measurements with good satellite constellation (low
HDOP values) and free of multipath effects.

C. Covariance Filtering

According to Equation 6 covariance RImp grows as
more as GPS signals are shadowed from multipath ef-
fects, and vice versa. However, due to an incomplete



mapping of the environment or larger vibrations of the
3D sensor, the structure of RImp can unsteadily change,
e.g., causing a series of larger covariances interrupted by
a series of smaller ones. This is clearly an undesired ef-
fect since in such situations overconfident measurements
might be fused by the filter perturbing the pose esti-
mate. Furthermore, we observed that receivers require
recover time after they have been exposed to multipath
situations. Hence, rapid changes in the covariance matrix
have to be avoided, which is achieved by Algorithm 3.

In Algorithm 3 we apply two different thresholds,

input : GPS uncertainty R

output: improved GPS uncertainty R′

classification GPSgood, GPSbad

σp ←
p

R1,1 + R2,2 // ≡ σUERE hDOPvis1

R
′
← R2

R′(σp > σthresh)← Rinf // threshold R3

foreach interval iv with σp > σsmooth do4

i← iv(end) + 1 // apply smoothing5

len← min(length(iv) · lenscale, lenmax)6

R′(i : i + len)← Rinf // to successors7

GPSbad ← find(R′ = Rinf )8

GPSgood ← find(R′ < Rinf )9

return R′
10

Algorithm 3: Filtering and inflation of R yield-
ing R′ and classification GPSgood, GPSbad

where σthresh is the maximally accepted standard de-
viation of the GPS position error. If the error exceeds
this value we set the uncertainty to a very high value
Rinf to give the corresponding measurements virtually
no weight in the filter. A second threshold affecting
the standard deviation σp is σsmooth, which activates
smoothing. When observing a series of measurements
with high uncertainties (exceeding σsmooth), it is evident
that the receiver is within a error-prone location. Then,
uncertainties of the successor values are inflated to obtain
smoothed uncertainties, and to respect the recovery time
of the receiver. The amount of smoothing depends on the
number of measurements with errors exceeding σsmooth.
During our experiments we set Rinf = diag(6002, 6002),
σthresh = 6, σsmooth = 9, lenscale = 0.2, lenmax = 12.

The result of Algorithm 3 can be seen as binary
classification. GPS measurements with an R′Imp value of
Rinf are given virtually no weight in the state estimation
process while the remainder of the measurements are
considered as usable. To evaluate whether we inflated the
right measurements we form two classes GPSgood and
GPSbad. In the experiments, we compare this classifica-
tion to a reference classification based on the observed
error.

V. Experimental Results

Experiments presented in this section have been
conducted with the all-terrain robot telemax from

the telerob [17] company, designed for bomb disposal
and reconnaissance missions. The robot is additionally
equipped with a SICK LMS 200 scanner measuring
at a field of view of 180◦ and a range of 80 m. The
scanner is continuously rotated by a PowerCube device
from Schunk to obtain 3D scans from the environment.
The PowerCube rotates the LRF at constant rate of
90◦/s around an axis parallel to the ground. Due to the
high accuracy of the PowerCube device it is possible to
generate point clouds by accumulating multiple range
readings with respect to their corresponding scan and
PowerCube angle. Accumulated scans from a half rota-
tion of the PowerCube form a hemisphere with a radius of
80 m. As already mentioned above, point clouds taken at
different time steps are consistently registered by the ICP
algorithm taking odometry and IMU bearing as an initial
guess. Odometry is obtained from the wheel encoders
attached to the tracks of the robot. As IMU sensor an
Crossbow AHRS440 has been used. The telemax robot
with sensor setup is shown in Figure 4 (a), and the
PowerCube with laser scanner in Figure 4 (b).

(a) (b)

Fig. 4: (a) Telemax robot approaching a building en-
trance in an urban environment. (b) Rotating device
mounted on the robot for taking 3D scans online during
navigation.

Data was collected from odometry, IMU, the LRF, and
the GPS module. The robot was manually controlled
with a wireless controller. Most of the time, the robot
was set to full speed which is ≈ 1 m/s. With this setup
we recorded three logfiles which we refer to as Log 014,
Log 022, and Log 042. In a time consuming process, we
created ground truth by manually aligning data from a
high-precision D-GPS receiver (Trimble GPS Pathfinder
ProXT) with aerial images and the maps created from
the LRF.

A. Classification
In the first experiment we evaluated the algorithm’s

ability to identify unusable GPS measurements caused by
multipath effects. Therefore, we compared on the three
logfiles the output of our algorithms with a reference clas-
sification. The reference classification was obtained by
computing the distance to the ground truth distGPS for
every GPS measurement. A measurement was considered



Instances Log 014 Log 042 Log 022

Class. corr. 1178 79.3% 507 73.0% 1708 78.7%

Class. incor. 308 20.7% 188 27.0% 463 21.3%

#GPS Good 1102 538 1578

#GPS Bad 384 157 593

Total 1486 695 2171

Estimated as Estimated as Estimated as

True Class Good Bad Good Bad Good Bad

GPS Good 0.79 0.21 0.69 0.31 0.84 0.16

GPS Bad 0.21 0.79 0.14 0.86 0.36 0.64

TABLE I: Classification results including confusion ma-
trix.
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Fig. 5: Comparison of GPS error and uncertainties for
Log 014. The improved model σ′Improved predicts the true
error better than the conventional model σGPS . The
σ′Improved has been cropped at 20 m.

unusable for navigational purpose if distGPS exceeded
the threshold σthresh, which we set to 6 m.

The comparison of the reference classification with
the classification from our algorithm is summarized in
Table I. We achieved a correct assignment for 70−80 % of
the GPS measurements. The algorithm was able to iden-
tify at least 64 % of the unusable GPS measurements.

Figure 5 illustrates the estimated GPS uncertainty for
Log 014 for the conventional uncertainty model (σGPS),
and for the improved model (σ′Improved) along with the
true GPS error distGPS . The improved model clearly
predicts the true GPS error more accurately than the
default model.

Figure 6 visualizes the classification we obtained for
Log 042 and Log 022. GPS measurements assigned to
GPSbad by our algorithm are marked in red. All re-
maining measurements are marked in green. One can
clearly see how the GPS measurements drift away from
the yellow line indicating the ground truth. Our approach
correctly identified those bad measurements. Once they
converged back towards ground truth they were identified
as good measurements again.

In Figure 6 the robot traveled from our campus (right)

(a) Log 042 Overview and Details

(b) Log 022 Overview and Details

Fig. 6: GPS uncertainty classification. Red dots indicate
GPS measurements classified as unusable for localization,
whereas green dots indicate good measurements. The
true robot trajectory is drawn in yellow.

to the university hospital’s campus (left) and back again.
During this experiment the robot traveled very close
to buildings leading to GPS errors of up to 30 m due
to multipath. Our method successfully identified these
critical situations as shown in the figure.

B. Pose Error

In this section, we present an evaluation of applying
the improved sensor model with an UKF filter. We
compare the results from the conventional GPS sensor
model with the results from the improved sensor model.
Figure 7 shows the results from applying the filtering
on the three logfiles. One situation worth mentioning is
the difference in the position estimate for the multipath
situation near the buildings on the upper right in Figure 7
(a) and (b). The robot drove on the pavement next to the
top-most building in a counter-clockwise fashion. Pose
tracking with the improved model (cyan line) approx-
imated the actual trajectory of the robot comparably
better than the tracking with the conventional model
diverging up to 40 m away from the actual trajectory.

The results of the filtering are summarized in Table II.
Most important to note is that the average and maximum
errors in the position estimate as well as the standard
deviation are significantly reduced by using the improved
sensor model compared to the conventional model. The
improvement of the average Euclidean distance error
was between 21− 38 %, and the improvement of the
orientation estimate between 10− 27 %.

VI. Conclusion

In this paper we presented a method of computing
the uncertainty of GPS measurements with special at-
tention to the multipath effect. The method is based on



(c)

(a)

(b)

Fig. 7: Results from the UKF. Cyan lines visualize the
results with the improved sensor model, blue lines with
the conventional model. The true Robot trajectory is
drawn in yellow.

Error Odometry Conv. Model Impr. Model Difference

Log 014
Position

avg. 31.05± 17.49 7.09± 9.19 4.36± 3.76 38.5 %
max. 95.29 39.06 19.01

Orientation
avg. 0.35± 0.37 0.29± 0.35 0.21± 0.30 27.6 %

Log 042
Position

avg. 55.24± 30.10 4.63± 4.98 2.90± 1.74 37.4 %
max. 116.90 22.21 10.70

Orientation
avg. 0.47± 0.53 0.34± 0.65 0.30± 0.64 11.8 %

Log 022
Position

avg. 53.10± 34.14 5.90± 7.76 4.65± 4.77 21.2 %
max. 116.90 37.85 37.58

Orientation
avg. 0.28± 0.42 0.28± 0.45 0.25± 0.45 10.7 %

TABLE II: Errors for pose estimation. Units are m for
positional errors and radian for orientational errors.

computing DOP values from only those satellites whose
signal path is not obstructed. Obstruction of the signal
path is determined using a 3D representation of the local
environment which is generated online. The method was
implemented and tested in realistic environments on the
all-terrain robot platform telemax. Experimental results
have shown that the improved sensor model outperforms
the conventional model particular for tasks where mobile
robots have to navigate close to buildings. We expect
even better results when high precision IMUs, e.g., with
fiber optics gyro, are used. In this case, an overconfident
GPS error model has an even stronger impact on the
resulting trajectory.

One difficulty we experienced while conducting exper-

iments is the influence of larger trees. They are detected
correctly as objects in the scan. However, their influence
on multipath effects seems to be less significant than
the one of buildings. One solution to this problem is to
distinguish trees from building structures and to treat
them differently in the sensor model.

It seems to be obvious that there can be further im-
provements when utilizing the information about shad-
owed satellites on the receiver level directly, i.e., using
pseudoranges only from satellites that are in line-of-
sight for computing the GPS position. In future work
we will consider to extend the approach towards such
a tightly coupled Kalman filter, although it might then
be applicable only to a few receivers which provide the
necessary pseudorange information.
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