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Abstract People tracking is essential for robots that are sup-
posed to interact with people. The majority of approaches
track humans in the vicinity of the robot independently. How-
ever, people typically form groups that split and merge. These
group formation processes reflect social relations and inter-
actions that we seek to recognize in this paper. To this end,
we pose the group tracking problem as a recursive multi-
hypothesis model selection problem in which we hypothe-
size over both, the partitioning of tracks into groups (mod-
els) and the association of observations to tracks (assign-
ments). Model hypotheses that include split, merge, and con-
tinuation events are first generated in a data-driven manner
and then validated by means of the assignment probabili-
ties conditioned on the respective model. Observations are
found by clustering points from a laser range finder and as-
sociated to existing group tracks using the minimum average
Hausdorff distance. We further propose a method to estimate
the number of people in the individual groups. Experiments
with a mobile robot demonstrate that the approach is able to
accurately recover social grouping of people with respect to
the ground truth. The results also show that tracking groups
is clearly more efficient than tracking people separately. Our
system runs in real-time on a typical desktop computer.
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Fig. 1 Tracking groups of people with a mobile robot. Groups are
shown by their position (blue), velocity (black), the associated laser
points (green), and a contour for visualization. In the two frames, a
group of four people splits up into two groups with two people each.

1 Introduction

The ability of robots to keep track of people in their sur-
rounding is fundamental for a wide range of applications in-
cluding personal and service robots, intelligent cars, crowd
control, and surveillance. People are social beings and as
such they form groups, interact with each other, merge to
larger groups, or separate from groups. Tracking individual
people in these formation processes can be hard due to the
high chance of occlusion and the large extent of data asso-
ciation ambiguity. This causes the space of possible associ-
ations to become huge and the number of assignment histo-
ries to quickly become intractable. Further, for many appli-
cations, knowledge about groups can be sufficient as the task
does not require to know the state of every person. In such
situations, tracking groups that consist of multiple people is
more efficient. Additionally, it reveals semantic information
about activities and social relations of people.

This paper focuses on group tracking in populated en-
vironments with the goal to track a large number of people
in real-time. The approach attempts to maintain the state of
groups of people over time, considering possible splits and
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merges as shown in Fig. 1. For our experiments we use a mo-
bile robot equipped with a laser range finder, but our method
should be applicable to data from other sensors as well.

In most of the related work on laser-based people track-
ing, tracks correspond to individual people [1–5]. In Taylor
et al. [6] and Arras et al. [7], tracks represent the state of
legs which are fused to people tracks in a later stage. Khan
et al. [8] proposed an MCMC-based tracker that is able to
deal with non-unique assignments, i.e., measurements that
originate from multiple tracks, and multiple measurements
that originate from the same track. Actual tracking of groups
using laser range data was, to our knowledge, first addressed
by Mucientes et al. [9]. Most research in group tracking
was carried out in the vision community [10–12]. Gennari
et al. [11] and Bose et al. [12] both address the problem of
target fragmentation (splits) and grouping (merges). They
do not integrate data association decisions over time – a
key property of the Multi-Hypothesis Tracking (MHT) ap-
proach, initially presented by Reid [13] and later extended
by Cox et al. [14]. The approach belongs to the most general
data association techniques as it produces joint compatible
assignments, integrates them over time, and is able to deal
with track creation, matching, occlusion, and deletion.

The works closest to this paper are Mucientes et al. [9]
and Joo et al. [15]. Both address the problem of group track-
ing using an MHT approach. Mucientes et al. employ two
separate MHTs, one for the regular association problem be-
tween observations and tracks, and a second stage MHT that
hypothesizes over group merges. However, people tracks are
not replaced by group tracks, hence there is no gain in effi-
ciency. The main benefit of that approach is the additional
semantic information about the formation of groups.

Joo et al. [15] present a vision-based group tracker us-
ing a single MHT to create hypotheses of group splits and
merges and observation-to-track assignments. They develop
a variant of Murty’s algorithm [16] that generates the k-best
non-unique assignments which enables them to make mul-
tiple assignments between observations and tracks, thereby
describing target splits and merges. However, the method
only produces an approximation of the optimal k-best solu-
tions since the posterior hypothesis probabilities depend on
the number of splits, which, at the time when the k-best as-
signments are being generated, is unknown. In our approach,
the split, merge and continuation events are given by the
model before computing the assignment probabilities, and
therefore, our k-best solutions are optimal.

In this paper we propose a tracking system for groups
of people using an extended MHT approach to hypothe-
size over both, the group formation process (models) and
the association of observations to tracks (assignments). Each
model, defined to be a particular partitioning of tracks into
groups, creates a new tree branch with its own assignment
problem. As a further contribution we propose a group rep-
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Fig. 2 Illustration of the detection step. Left: One group is detected
since all shortest links between the measured points zl are smaller
than the single-linkage clustering threshold dP . Right: Two groups are
found as the shortest link between their points exceeds dP . For group
size estimation, the number of human-sized blobs in a group is deter-
mined by applying the same clustering procedure with threshold dhs.

resentation that includes the shape of the group, and we
show how this representation is updated in each step of the
tracking cycle. This extends previous approaches to group
tracking where groups are assumed to have Gaussian shapes
only [11,9]. The group tracker proposed in this paper also
estimates the number of people in groups and employs a la-
beling system to represent the history of group interactions,
both of which extend the approach presented in our previous
work [17].

Finally, we use the psychologically motivated proxemics
theory introduced by Hall [18] for the definition of a group.
The theory relates social relation and body spacing during
social interaction and proposes thresholds that separate the
intimate, personal, social, and public space around people.

This paper is structured as follows: the following section
describes the extraction of groups of people from laser range
data. Section 3 introduces the definition of groups and group
tracks. Section 4 briefly describes the cycle of our Kalman
filter-based tracker. Section 5 explains the data-driven gen-
eration of models and how their probabilities are computed.
Whereas Section 6 presents the multi-model MHT formula-
tion and derives expressions for the hypothesis probabilities,
Section 7 describes the experimental results.

2 Group Detection in Range Data

Detecting people in range data has been approached with
motion and shape features [1–5,9] as well as with a learned
classifier using boosted features [19]. However, these sys-
tems were designed (or trained) to extract single people.
In the case of densely populated environments, groups of
people typically produce large blobs in which individuals
are hard to recognize. We therefore pursue the approach of
background subtraction and clustering. Given a previously
learned model (a map of the environment for mobile plat-
forms), the background is subtracted from the scans and the
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remaining points are passed to the clustering algorithm. This
approach is also able to detect standing people as opposed
to the work of Mucientes et al. [9] which relies on mo-
tion features. Note that the detection method is not critical
to the system and could also be replaced by map-free ap-
proaches that employ appearance information, motion fea-
tures, or other filtering techniques.

Concretely, a laser scanner generates measurements con-
sisting of bearing and range values. The measurements are
transformed into Cartesian coordinates zl = (xl, yl)T and
grouped using single linkage clustering [20] with a distance
threshold dP . The outcome is a set of clusters Zi making up
the current observation set Z(k) = {Zi | i = 1, . . . , NZ}.
Each cluster Zi is a complete set of measurements zl that
fulfills the cluster condition, i.e., two clusters are joined if
the distance between their closest points is smaller than dP .
A similar concept, using a connected components formula-
tion, has been used by Gennari and Hager [11]. The clusters
then contain range readings that can correspond to single
legs, individual people, or groups of people, depending on
the cluster distance dP .

Even though tracking of individuals in groups is not fea-
sible due to frequent occlusions, the number of detected in-
dividuals in a group correlates with the true number of peo-
ple in a group. As an observation of the group size, we there-
fore take the number of human-sized clusters nhs(Zi) found
in an observation cluster Zi. We determine this by counting
the clusters after reapplying single linkage clustering to the
points in Zi with an appropriate distance threshold dhs, with
dhs < dP .

An example for the clustering is given in Fig. 2. On the
left, all links are shorter than dP so that the measurements
are grouped into one cluster Z0 that contains four human-
sized clusters. On the right, the shortest distance between the
two groups exceeds dP so that they are kept as two clusters,
Z1 and Z2. The two people in Z2 are counted as only one
human-sized cluster.

3 Group Definition and Group Tracks

This section defines the concept of a group, describes the
initialization of group tracks and derives the probabilities
of group-to-observation assignments and group-to-group as-
signments.

What makes a collection of people a group is a highly
complex question in general, which involves social relations
among subjects that are difficult to measure. A concept re-
lated to this question is the proxemics theory introduced by
Hall [18] who found from a series of psychological experi-
ments that social relations among people are reliably corre-
lated with physical distance during interaction. This finding
allows us to infer group affiliations by means of body spac-
ing information available in the range data. The distance dP

thereby becomes a threshold with a meaning in the context
of group formation.

3.1 Representation of Groups

Concretely we represent a group as a tupleG = 〈x, C,P,L〉
with x as the track state,C the state covariance matrix,P the
set of contour points that belong to G, and L the set of iden-
tification labels. The track state vector x = (x, y, ẋ, ẏ, n)T

is composed of the position (x, y)T , the velocities (ẋ, ẏ)T ,
and n, the number of people in the group.

The points xPl
∈ P are an approximation of the current

shape or spatial extension of the group. Shape information
will be used for data association under the assumption of
instantaneous rigidity. That is, a group is assumed to be a
rigid object over the duration of a time step ∆t, and conse-
quently, all points in P move coherently with the estimated
group state x. The points xPl

are represented relative to the
state x.

The label set L contains identification labels that are as-
sociated with the group. These labels explicitly represent the
history of track interactions, which can be of high interest
for certain applications, e.g., to determine which people be-
long together.

3.2 Initialization of Group Tracks

If the tracker creates a new group track Gj from an ob-
servation cluster Zi in time step k, the positional compo-
nents (xj , yj)T of track state xj(k|k) are initialized with
the centroid position of the measurement cluster. The con-
tour points Pj are the points in Zi represented relative to the
centroid (omitting the time index (k|k) for readability):(
xj
yj

)
:= z̄i =

1
|Zi|

∑
zl∈Zi

zl , Pj :=
⋃
zl∈Zi

zl − z̄i . (1)

The unobserved velocity components (ẋj , ẏj)T of x are set
to zero, the size estimate is set to the number of human-sized
blobs in the measurement cluster, nj :=nhs(Zi), and the la-
bel set is assigned a unique number as its only element, e.g.,
Lj :={0} for the first group after starting up the tracker. The
initial state covariance is given by Cj = C0, where C0 is a
diagonal matrix with

(
σx

2, σy
2, σẋ

2, σẏ
2, σn

2
)

being the el-
ements on the main diagonal. To account for the unknown
components in the initial state vector, high uncertainty val-
ues are used for the corresponding entries in the initial state
covariance matrix.

3.3 Motion Model for Group Tracks

To track groups over time, the state x(k|k) and state covari-
ance C(k|k) of each group track in time step k are predicted
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into the next time step using a motion model. The predic-
tions are denoted as x(k+1|x) and C(k+1|k), respectively.
For tracks that are continued, i.e., no splits or merges take
place from one frame to the next, we assume constant ve-
locity for the centroid of the group, and a constant number
of people in the group. Using a linear Kalman filter we get
x(k+1|k) = Ax(k|k) andC(k+1|k) = AC(k|k)AT +Q
for the state prediction. The state transition matrixA and the
process noise covariance matrix Q are given by

A=


1 0 ∆t 0 0
0 1 0 ∆t 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Q=


εx

2 0 0 0 0
0 εy

2 0 0 0
0 0 εẋ

2 0 0
0 0 0 εẏ

2 0
0 0 0 0 εn

2

 .

The entries ofQ reflect the acceleration capabilities of a typ-
ical human. The noise for the number of people in the group,
controlled by εn, accounts for people joining or leaving the
group without being noticed. The actual noise values used
in our experiments are given in Sect. 7.

As mentioned before, we assume instantaneous rigidity
for the shape of a group. Since the points in P are relative to
the moving centroid, the point set remains unchanged, and
P(k + 1|k)=P(k|k).

If two observations can be associated with a group track
G, i.e., they both fall into the validation gate ofG, the tracker
can consider to split the track into two new tracks according
to an interaction model (see Sect. 5). Since the actual par-
titioning in the split is unknown at this stage, two new pre-
dicted group tracks G1 and G2 are created by duplicating
the predicted state and covariance of G. The same applies
for the point set P and the label set L. To make the label
sets unique, we attach different indices to the label, e.g., a
group with label set {0} would split up into two groups with
label sets {0−0} and {0−1}. Again, the component of the
state that represents the number of people in the group, n, is
treated differently: the sum of people in the resulting groups
must be equal to the original number of people. However,
the actual partitioning is not known in the prediction step.
Therefore, we use n1 = n2 = n/2, and reinitialize the state
covariances of the new split tracks with C0.

If the tracker considers to merge two group tracks Gi
andGj according to a track interaction model, the track pre-
diction has to be computed accordingly. The predicted set of
contour points of the merged group is the union of the two
former point sets, Pij = Pi ∪ Pj . The track states xi and
xj of the merging group track represent the position and ve-
locity of the centroids of the groups. Thus, the state of the
merged track, xij , is computed as the weighted mean of the
original track states, using the number of points in the merg-
ing sets Pi and Pj as weights. The tracks before the merge
are assumed to be independent. According to the summa-
tion and scaling laws for covariances, the covariance matrix

of the merging track is the weighted mean of the original
covariances with squared weights,

xij = wi · xi + wj · xj (2)

Cij = wi
2 · Ci + wj

2 · Cj , (3)

where wi = |Pi|/|Pij | and wj = |Pj |/|Pij |. Note that this
applies only for the first four components of xij and the
upper-left 4×4 block of Cij . The fifth component, namely
the group size nij , is excluded, since the number of people
in the merging groups naturally add up to nij :=ni+nj . Con-
sequently, the corresponding uncertainty values are summed
up as well. Finally, the label set of the new group is the union
of the label sets of the original tracks, Lij = Li ∪Lj . To re-
move redundant labels, an optional pruning can be done in
this step: whenever all tracks that resulted from a split have
merged again, the additional indices added in the split step
can be removed, e.g., when the groups with labels {0−0}
and {0−1} merge, they can be labeled {0} again. Although
this can remove split and merge events from the history rep-
resented by the labeling, it keeps the semantic information
consistent.

3.4 Group-to-Observation Assignment Probability

For data association we need to calculate the probability
that an observed cluster Zi belongs to a predicted group
Gj = 〈xj(k + 1|k), Cj(k + 1|k), Pj 〉. Therefore, we
are looking for a distance function d(Zi, Gj) that, unlike the
Mahalanobis distance used by Mucientes et al. [9], accounts
for the shape of the observation cluster Zi and the contour
Pj of the group, rather than just for their centroids. To this
end, we use a variant of the Hausdorff distance. As the regu-
lar Hausdorff distance is the longest distance between points
on two contours, it tends to be too sensitive to large varia-
tions in depth that can occur in range data. This motivates
the use of the minimum average Hausdorff distance [21] that
computes the minimum of the averaged distances between
contour points as

dHD(Zi, Gj) = min {d(Zi,Pj), d(Pj ,Zi)} , (4)

where d(Zi,Pj) is the directed average Hausdorff distance
from Zi to Pj ,

d(Zi,Pj) =
1
|Zi|

∑
zl∈Zi

min
xPj
∈Pj

{D(νlj , Slj)} . (5)

Since we deal with uncertain entities, we calculate the dis-
tance d(Zi,Pj) using the Mahalanobis distance

D(νlj , Slj) =
√
νljT S

−1
lj νlj , (6)

with νlj being the innovation and Slj being the innovation
covariance between a point zl ∈ Zi and contour point xPj
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of the predicted set Pj transformed into the sensor frame.
More precisely, these two terms are given as

νlj = zl − (Hxj(k + 1|k) + xPj
) (7)

Slj = H Cj(k + 1|k)HT +Rl, (8)

where H = ( 1 0 0 0 0
0 1 0 0 0 ) is the measurement Jacobian and

Rl the 2×2 observation covariance whose entries reflect the
noise in the measurement process of the range finder.

The probability that cluster Zi originates from group
track Gj is finally given by a zero-centered Gaussian,

Ni =
1

2π
√

det(Slj)
exp

(
− 1

2d
2
HD(Zi, Gj)

)
. (9)

3.5 Group-to-Group Assignment Probability

To determine the probability that two groups Gi and Gj
merge, we compute the distance between their closest con-
tour points in a Mahalanobis sense. In doing so, we have
to account for the clustering distance dP , since we consider
Gi and Gj to be one group as soon as their contours come
closer than dP . Let ∆xPij

= xPi
−xPj

be the vector dif-
ference of two contour points of Gi and Gj , respectively.
We then subtract dP from ∆xPij unless ∆xPij ≤ dP for
which ∆xPij

= 0. Concretely, the modified difference be-
comes ∆x′Pij

= max(0, ∆xPij
− dP uPij

) where uPij
=

∆xPij/|∆xPij |.
To obtain a similarity measure that accounts for nearness

of group contours and similar velocity, we augment ∆x′Pij

by the difference in the velocity components,

∆x∗Pij
= (∆x′TPij

, ẋi − ẋj , ẏi − ẏj)T . (10)

We now determine the statistical compatibility of two groups
Gi andGj according to the four-dimensional minimum Ma-
halanobis distance

d2
min(Gi, Gj) = min

xPi
∈Pi

xPj
∈Pj

{
D2(∆x∗Pij

, Ci+Cj)
}
. (11)

The probability that two groups actually belong together, is
finally given by

Nij =
1

(2π)2
√

det(Ci+Cj)
exp

(
− 1

2d
2
min(Gi, Gj)

)
. (12)

In this formulation, only the upper-left 4×4 blocks of Ci and
Cj are used, which excludes the group size estimate and the
corresponding uncertainties from data association. In future
work, these could be included as well.

State Prediction

Observation (Clustering)

Model Generation

Re-prediction

Re-clustering

Data Association MHT

Update

x(k+1|k)

M

Z'

ψ
x(k+1|k+1)

Z

x'(k+1|k)

range
readingsx(k|k)

Fig. 3 Flow diagram of the tracking system. It differs from a regular
tracker in the additional steps model generation, re-prediction and re-
clustering (see explanations in section 4).

4 Tracking Cycle

This section describes the steps in the cycle of our Kalman
filter-based group tracker. An overview is given by the flow
diagram in Fig. 3. The structure differs from a regular tracker
in the additional steps model generation, track re-prediction,
and re-clustering.

• State prediction: In this step, the states of all existing
group tracks are predicted under the assumption that they
continue without interacting with other tracks, i.e., with-
out splits or merges. See Sect. 3.3 for details.

• Observation: As described in Sect. 2, this step involves
grouping the laser range data into clusters Z .

• Model Generation: Models are generated based on the
predicted group tracks and the clusters Z , see Sect. 5.

• Re-prediction: Based on the model hypotheses that pos-
tulate a split, merge, or continuation event for each track,
groups are re-predicted using these hypotheses so as to
reflect the respective model, as explained in Sect. 3.3.

• Re-clustering: Re-clustering an observed cluster Zi is
necessary when it might have been produced by more than
one group track, that is, it is in the gate of more than one
track. If the model hypothesis postulates a merge for the
involved tracks, nothing needs to be done. Otherwise, Zi
needs to be re-clustered, which is done using a nearest-
neighbor rule: those points zl ∈ Zi that share the same
nearest neighbor track are combined to a new cluster. This
step follows from the uniqueness assumption, which is
common in target tracking and according to which an ob-
servation can only be produced by a single target.
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• Data Association MHT: This step involves the genera-
tion, probability calculation, and pruning of data associ-
ation hypotheses that assign re-predicted group tracks to
re-clustered observations. See Sect. 6.

• Update: Each group track Gj that has been assigned to
a cluster Zi is updated with a standard linear Kalman fil-
ter. We use an observation vector z̃i = (z̄i, nhs(Zi))T ,
that contains both the centroid position z̄i of Zi and the
number of human-sized blobs nhs(Zi) in the cluster. The
update is then given by

x(k+1|k+1) = x(k+1|k)+K
(̃
zi−H̃x(k+1|k)

)
(13)

C(k+1|k+1) = C(k+1|k)−KH̃ C(k+1|k) (14)

with K being the Kalman gain matrix and H̃ the corre-
sponding measurement Jacobian,

K = C(k+1|k) · H̃T
(
H̃C(k+1|k)H̃T +Rl

)−1

(15)

H̃ =

 1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 . (16)

The contour points in Pj are replaced by the points in
Zi after being transformed into the reference frame of the
posterior state x(k+ 1|k+ 1), as described in Sect. 3.2.
Thereby, Pj always contains the most recent approxima-
tion of the group.

5 Model Generation and Model Probability

A model is defined to be a partitioning of tracks into groups.
It assumes a particular state of the group formation process.
New models, whose generation is described in this section,
hypothesize about the evolution of that state. As this hap-
pens recursively, that is, based on the previous model of the
last time index, the problem can thus be seen as a recursive
clustering problem.

The space of possible model transitions is large since
each group track can split into an unknown number of new
tracks, or merge with an unknown number of other tracks.
We therefore impose the gating condition for observations
and tracks using the minimum average Hausdorff distance,
thereby implementing a data-driven aspect into the model
generation step:

• Multiple group tracks Gi can merge into one track only
if there is an observation which is statistically compatible
with all Gi.

• A group track can only split into multiple tracks that are
all matched with observations in that very time step. Splits
into occluded or obsolete tracks are not allowed.

Gating and statistical compatibility are both determined on
a significance level α.

We further bound the possible number of model transi-
tions as we assume that merge and split are binary operators.
More precisely, we assume:

• At most two group tracksGi,Gj can merge into one track
at the same time.

• A track Gi can split at most into two tracks in one frame.

• A group track can not be involved in a split and a merge
action at the same time.

These limitations are justified by the assumption that we
observe the world much faster than the rate with which it
evolves. This fact alleviates the impact of violations of the
above assumptions: even if, for instance, a group splits into
three subgroups at once, the tracker requires only two cycles
to reflect this change.

A new model now defines for each group track if it is
continued, split, or merged with another group track. The
probability of a model is calculated using the constant prior
probabilities for continuations and splits, pC and pS respec-
tively, and the probability for a merge between two tracks
Gi and Gj as pG · Nij . The latter term consists of a con-
stant prior probability pG and the group-to-group assign-
ment probability Nij defined in Sect. 3.5. Let NC and NS
be the number of continued tracks and the number of split
tracks in model M respectively, then the probability of M
conditioned on the parent hypothesis Ωk−1 is

P (M |Ωk−1) = pNC

C · pNS

S

∏
Gi,Gj∈Ωk−1

( pG · Nij)δij (17)

with δij being 1 if Gi, Gj merge and 0 otherwise.

6 Multi-Model MHT

In this section we describe our adaptions and extensions of
the original MHT by Reid [13] to a multi-model tracking
approach that hypothesizes over both, data associations and
models (as defined in the previous sections).

Let Ωki be the i-th hypothesis at time k and Ωk−1
p(i) its

parent. Let further ψi(k) denote a set of assignments that
associate predicted tracks in Ωk−1

p(i) to observations in Z(k).

As there are many possible assignment sets given Ωk−1
p(i) and

Z(k), there are many children that can branch off a parent
hypothesis, each with a different ψ(k). This makes up an
exponentially growing hypothesis tree.

The multi-model MHT introduces an intermediate tree
level for each time step, on which models spring off from
parent hypotheses (Fig. 4). In each model branch, the tracks
of the parent hypothesis are first re-predicted to implement
that particular model and then assigned to the (re-clustered)
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Hypothesis 0
p=0.048
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p=1.0000
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p=0.038MMM
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p=0.038MMM
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p=0.055
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4 Tracks

3 Tracks

3 Tracks

4 Tracks

4 Tracks

3 Tracks3 Tracks

Model 0
p=1.0000
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p=0.002

Model
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Data association

Track is continued
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NEW:
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New track
Track deleted

CONT:
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Fig. 4 The multi-model MHT. For each parent hypothesis, model hypotheses (ellipses) branch out and create their own assignment problems. In
our application, models define which tracks of the parent hypothesis are continued, split, or merged. The tree shows frames 13 to 15 of figure
6. The split of group 1 between frames 14 and 15 is the most probable hypothesis after data association following model branch 0, although the
continuation following model branch 1 is more probable (see the legend for details).

observations. Possible assignments for observations are ex-
isting tracks that match with existing tracks, false alarms or
new tracks. Using the generalized formulation of Arras et
al. [7] to deal with more than two track interpretation labels,
tracks are interpreted as matched, obsolete, or occluded.

6.1 Assignment Set and Hypothesis Probability

The probability of a hypothesis in the multi-model MHT is
calculated as follows. We compute the probability of a child
hypothesis Ωki given the observations from all time steps up
to k, denoted by Zk. According to the Markov assumption,
it is the joint probability of the assignment set ψi(k), the
model M , and the parent hypothesis Ωk−1

p(i) , conditioned on
the current observation Z(k). Using Bayes rule, this can be
expressed as the product of the data likelihood with the joint
probability of assignment set, model and parent hypothesis

P (Ωki |Zk)

= P (ψ,M,Ωk−1
p(i) |Z(k)) (18)

= η · P (Z(k)|ψ,M,Ωk−1
p(i) ) · P (ψ,M,Ωk−1

p(i) ). (19)

By using conditional probabilities, the third term on the right
hand side can be factorized into the probabilities of the as-
signment set, the model, and the parent hypothesis

P (ψ,M,Ωk−1
p(i) )

= P (ψ|M,Ωk−1
p(i) ) · P (M |Ωk−1

p(i) ) · P (Ωk−1
p(i) ). (20)

The third factor in this product is known from the previ-
ous iteration, whereas the second factor represents the model
probability derived in Sect. 5.

It remains to specify the first factor which is the proba-
bility of the assignment set ψ. The set ψ contains the assign-
ments of observed clusters Zi and group tracks Gj either to

each other or to one of their possible labels listed above. As-
suming independence between observations and tracks, the
probability of the assignment set is the product of the in-
dividual assignment probabilities. Namely, they are pM for
matched tracks, pF for false alarms, pN for new tracks, pO
for tracks found to be occluded, and pT for obsolete tracks
scheduled for termination. If the number of new tracks and
false alarms follow a Poisson distribution (as assumed by
Reid [13]), the probabilities pF and pN have a sound phys-
ical interpretation as pF = λFV and pN = λNV , where
λF and λN are the average rates of events per volume mul-
tiplied by the observation volume V (the field of view of the
sensor). The probability for an assignment ψ given a model
M and a parent hypothesis Ωk−1 is then computed as

P (ψ|M,Ωk−1)

= pNM

M pNO

O pNT

T λNF

F λNN

N V NF +NN , (21)

where the Ns are the number of assignments to the respec-
tive labels in ψ.

Thanks to the independence assumption, also the data
likelihood P (Z(k)|ψ,M,Ωk−1

p(i) ) is computed by the prod-
uct of the individual likelihoods of each observation cluster
Zi in Z(k). If ψ assigns an observation Zi to an existing
track, we assume the likelihood ofZi to follow a normal dis-
tribution, given by Eq. 9. Observations that are interpreted
as false alarms and new tracks are assumed to be uniformly
distributed over the observation volume V , yielding a likeli-
hood of 1/V . The data likelihood then becomes

P (Z(k)|ψ,M,Ωk−1) =
(

1
V

)NN+NF

NZ∏
i=1

N δi
i , (22)

where δi is 1 if Zi has been assigned to an existing track,
and 0 otherwise.
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Fig. 5 Space where we have recorded the datasets for our experiments.

Substitution of Eqs. (17), (21), and (22) into Eq. (18)
leads, like in the original MHT approach, to a compact ex-
pression, independent on the observation volume V .

Finally, normalization is performed yielding a true prob-
ability distribution over the child hypotheses of the current
time step. This distribution is used to determine the current
best hypothesis and to guide the pruning strategies.

6.2 Hypothesis Pruning

Pruning is essential in implementations of the MHT algo-
rithm, as otherwise the number of hypotheses grows bound-
less. The following strategies are employed:

K-best branching: instead of creating all children of
a parent hypothesis, the algorithm proposed by Murty [16]
generates only the K most probable hypotheses in polyno-
mial time. We use the multi-parent variant of Murty’s algo-
rithm, mentioned in [22], that generates the global K best
hypotheses for all parents.

Ratio pruning: a lower limit on the ratio of the cur-
rent and the best hypothesis is defined. Unlikely hypothe-
ses with respect to the best one, being below this threshold,
are deleted. Ratio pruning overrides K-best branching in the
sense that if the lower limit is reached earlier, less than K
hypotheses are generated.

N -scan back: the N-scan-back algorithm considers an
ancestor hypothesis at time k−N and looks ahead in time
onto all children at the current time k (the leaf nodes). It only
keeps the subtree at k−N with the highest sum of leaf node
probabilities. All other branches at k−N are discarded.

More details on these pruning strategies can be found in
the work of Cox and Hingorani [14].

7 Experiments

To analyze the performance of our system, we collected two
data sets in the entrance hall of a university building, shown
in Fig. 5. We used a Pioneer II robot equipped with a SICK
laser scanner mounted at 30 cm above floor, scanning at

Table 1 Summary of the two datasets used in the experiments.

Dataset 1 Dataset 2
Number of frames 578 991
Avg. / max people 6.25 / 13 8.99 / 20
Avg. / max groups 2.60 / 4 4.16 / 8
Number of splits / merges 5 / 10 48 / 44
Number of new tracks / deletions 19 / 15 34 / 39

10 fps. In two unscripted experiments (dataset 1 with a sta-
tionary robot and dataset 2 with a moving robot), up to 20
people are in the field of view of the sensor. They form
a large variety of groups during social interaction, move
around, stand together and jointly enter and leave the hall,
see Fig. 6.

To obtain ground truth information, we labeled each sin-
gle range reading. Beams that belong to a person receive a
person-specific label, other beams are labeled as non-person.
These labels are kept consistent over the entire duration of
the data sets. People that socially interact with each other
(derived by observation) are said to belong to a group with
a group-specific label. Summed over all frames, the ground
truth contains 5,629 labeled groups and 12,524 labeled peo-
ple.1 For further details, see Tab. 1.

The ground truth data is used for performance evalu-
ation and to learn the parameters of our tracker. The val-
ues, determined by counting the related events in the ground
truth and dividing by the total number of these events, are
pM = 0.79, pO = 0.19, pT = 0.02, pF = 0.06, pN = 0.02 for
the data association probabilities, and pC =0.63, pS =0.16,
pG=0.21 for the group formation probabilities. When eval-
uating the performance of the tracker, we separated the data
into a training set and a validation set to avoid overfitting.

The state uncertainty for new tracks is given by σx =
σy = 0.1, σẋ=σẏ = 0.5, and σn= 0.2. The noise parameter
for the motion model are given by εx = εy = 0.2, εẋ = εẏ =
0.3, and εn=0.1.

Six frames of the current best hypothesis from the sec-
ond dataset are shown in Fig. 6. The corresponding hypoth-
esis tree for frame 15 is shown in Fig. 4. The sequence ex-
emplifies movement and formation of several groups.

7.1 Clustering Error

This section analyzes how well the presented group tracker
can recover the true group formation processes, i.e., which
people actually belong together according to their social in-
teraction as encoded in the ground truth.

We compute the clustering error of the tracker using the
ground truth information on a per-beam basis. This is done

1 Data sets, ground truth and result videos are available online at
http://www.informatik.uni-freiburg.de/˜lau/grouptracking



9

Fig. 6 Tracking results from the second data set. In frame 5, two groups are present. In frame 15, the tracker has correctly split group 1 into 1-0
and 1-1 (see Fig. 4). Between frames 15 and 29, group 1-0 has split up into groups 1-0-0 and 1-0-1 and split up again. New groups, labeled 2 and
3, enter the field of view in frames 21 and 42 respectively.

by counting how often set of points P of a track contains
too many or wrong points (under-segmentation) and how of-
ten P is missing points (over-segmentation). Two examples
for over-segmentation errors can be seen in Fig. 6, where
group 0 and group 1-0 are temporarily over-segmented, com-
pared to the ground truth which is visualized with a rectan-
gle. However, from the history of group splits and merges
stored in the group labels, the correct group relations can be
determined in such cases.

For the first dataset, the clustering error rates for under-
segmentation, over-segmentation, and the sum of both are
shown in Fig. 7 (left), plotted against the clustering distance
dP .

We compare the clustering performance of our group
tracker with a memory-less group clustering approach, which
performs single-linkage clustering of the range data as de-
scribed in Sect. 2 without using a tracking framework. The
result is shown in Fig. 7 (middle).

The minimum clustering error of 3.1% is achieved by the
tracker at dP = 1.3m. The minimum error for the memory-
less clustering is 7.0%, more than twice as high. In the sec-

ond dataset, the error rates are higher due to the larger num-
ber of occlusions and the increased complexity in group in-
teractions. Here, the minimum clustering error of the tracker
is 9.6% while the error of the memory-less clustering reaches
20.2%, again more than twice as high.

To further investigate situations where tracking results
differ from memory-less clustering, we recorded laser data
of groups of people walking and passing in a corridor. An
example is shown in Fig. 8, where one person passes be-
tween a group of two people. The memory-less approach
would merge them immediately while the tracking approach,
accounting for the velocity information, correctly keeps the
groups apart by using re-clustering. This result shows that
the group tracking problem is a recursive clustering prob-
lem that requires integration of information over time.

In the light of the proxemics theory the result of a mini-
mal clustering error at 1.3 m is noteworthy. The theory pre-
dicts that when people interact with friends, they maintain
a range of distances between 45 to 120 cm called personal
space. When engaged in interaction with strangers, this dis-
tance is larger. As our data contains students who tend to
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know each other well, the result appears consistent with the
findings of Hall.

7.2 Tracking Efficiency

When tracking groups of people rather than individuals, the
assignment problems in the data association stage are of
course smaller. At the same time, the introduction of an ad-
ditional tree level, on which different models hypothesize
over different group formation processes, comes with ad-
ditional computational costs. We therefore compare our sys-
tem with a person-only tracker realized by inhibiting all split
and merge operations and reducing the cluster distance dP
to the value that yields the lowest error for clustering single
people given the ground truth. For the second dataset, the re-
sulting average cycle times versus the ground truth number
of people is shown in Fig. 7 (right). The plots are averaged
over different k from the range of 2 to 200 at a scan-back
depth of N = 30.

With an increasing number of people, the cycle time for
the people tracker grows much faster than the cycle time of
the group tracker. Interestingly, even for small numbers of
people the group tracker is faster than the people tracker.
This is due to occasional over-segmentation of people into
individual legs tracks. Also, as mutual occlusion of people in
densely populated environments occurs frequently, the peo-
ple tracker has to maintain many more occluded tracks than
the group tracker, as occlusion of entire groups is rare. Also,
the additional complexity of multiple models in the group
tracker virtually disappears when the tracks are isolated due
to the data-driven model generation.

This result clearly shows that our group tracking ap-
proach is more efficient. With an average cycle time of around
100 ms for up to 10 people on a Pentium IV at 3.2 GHz, the
algorithm runs in real-time even with a non-optimized im-
plementation.

7.3 Group Size Estimation

To evaluate the accuracy of our group size estimation ap-
proach, we define the error as the absolute difference be-
tween the estimated number of people in a group and the true
value according to the labeled ground truth. For counting the
number of human-sized clusters in a group as described in
Sect. 2, a clustering threshold dhs =0.3m is used.

For the first dataset, we find that the average error in
group size estimation is 0.23 people with a standard devi-
ation of 0.30. In the more complex dataset 2, the average
error is 0.33 people with a standard deviation of 0.49. If the
estimated group sizes are rounded to integers, the tracker de-
termined the correct value in 88.9% of all cases in dataset 1
and in 84.3% for dataset 2.

If only deviations of more than one person are consid-
ered an error, the system was correct in 99.5% of all cases
in dataset 1 and 97.5% in dataset 2.

8 Conclusion

In this paper, we presented a multi-model hypothesis track-
ing approach to track groups of people. We extended the
original MHT approach to incorporate model hypotheses
that describe track interaction events that go beyond what
data association can express. In our application, models en-
code the formation of groups during split, merge, and con-
tinuation events. We further introduced a representation of
groups that includes their shape, and employed the mini-
mum average Hausdorff distance to account for the shape
information when calculating association probabilities.

The proposed tracker has been implemented and tested
using a mobile robot equipped with a laser range finder.
The experiments with up to 20 people forming groups of
different sizes demonstrated that the system is able to ro-
bustly track groups of people as they undergo complex for-
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Fig. 8 One person crosses a group of two people. Since the groups
interweave, memory-less clustering (top) unifies the two groups. Our
group tracker can also create a model that postulates a merge of the
groups, followed later by a split (middle). However, the model hypoth-
esis leading to the most probable hypothesis in this situation continues
both tracks and triggers re-clustering (see Sect. 4). This way, the cross-
ing groups are tracked correctly (bottom). For a legend, see Fig. 6.

mation processes. Given ground truth data reflecting true in-
teractions of people with over 12,000 labeled occurrences of
people and groups, the experiments showed that the tracker
could reproduce such processes with a low clustering error
and estimate the number of people in groups with high accu-
racy. They also showed that in comparison with a memory-
less single-frame clustering, our system performs signifi-
cantly better in determining which people form a group.

The experiments demonstrated the ability of the approach
to recover the actual social grouping of interacting people
when compared to the ground truth. It was further found that
the clustering threshold for detection that produces the best
tracking results appears consistent with the proxemics the-
ory. Finally, we showed that tracking groups of people is
clearly more efficient than tracking individual people.

On a larger scale, we believe that group tracking is es-
sential for robots to reason about social relations of people
for various tasks in social robotics or human-robot interac-
tion.
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