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Abstract

Motion segmentation is a fundamental basis for automated image understanding

and evaluation of image sequences by computer systems. This thesis presents an

optimization-based approach to motion segmentation using Markov Random Fields.

Local image motion is estimated with a correspondence matching scheme that incorpo-

rates complete sum of squared differences (SSD) surfaces over a search window, rather

than best matches only. This way, information from ambigous motion estimates is

integrated. The choice of SSD as similarity measure is motivated by experimental

comparison of different metrics under noisy conditions.

Additional visual cues like color, depth information or brightness edges are integrated to

complement the motion information. Fusion of the cues and segmentation is combined

into one cost function. This way, individual cues can compensate the failure of others.

The performance of the developed system is evaluated with experiments on rendered

images with ground truth information and images obtained from a stereo camera

system. Results for commonly used standard sequences are shown to allow comparison

to other systems.





Zusammenfassung

Bewegungssegmentation ist eine fundamentale Grundlage für automatisiertes Bildver-

stehen und die Analyse von Bildsequenzen durch Computer Systeme. Die vorliegende

Arbeit präsentiert einen optimierungs-basierten Ansatz zur Bewegungssegmentierung

unter Benutzung von Markov Random Fields. Bewegung in Bildern wird mittels Korre-

spondenzbestimmung unter Verwendung der Quadratfehlersumme als Ähnlichkeitsmaß

geschätzt. Anstelle der jeweils besten Matches werden komplette Fehlergebirge als

Eingabedaten für die Segmentierung verwendet. Auf diese Weise werden Informationen

mehrdeutiger Schätzungsergebnisse integriert. Die Wahl der Quadratfehlersumme als

Ähnlichkeitsmaß ergibt sich aus empirischen Vergleichen verschiedener Metriken. Dabei

wird die Erkennungsleistung für verrauschte Bilddaten getestet.

Zusätzliche visuelle Merkmale wie Farbe, Tiefeninformationen und Helligkeitskanten

werden als Ergänzung zu den Bewegungsdaten bei der Segmentierung verwendet.

Die Fusion und Segmentierung erfolgt dabei kombiniert durch Optimierung einer

Kostenfunktion. Auf diese Weise können einzelne Merkmale den Ausfall anderer

kompensieren.

Die Leistung des vorgestellten Systems wird anhand von gerenderten Bildern mit

Ground-Truth Daten sowie Bildsequenzen von einem Stereokamerasystem evaluiert.

Ergebnisse für allgemein benutzte Standardsequenzen werden präsentiert, um den

Vergleich mit anderen Systemen zu ermöglichen.
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Chapter 1

Introduction

With the spreading of digital still and video cameras in the last decades, there has

been a tremendous increase in the amount of digital pictures and videos being used in

industrial, commercial and private applications of all kinds. Multimedia products are

present in everyday life. Along with this development, a strong demand for automatic

image and video processing has grown. From storage and transmission to annotation

and evaluation of image data, many tasks are done by machines in a semi-supervised

or unsupervised fashion.

In this context, motion segmentation can be seen as a key to image understanding

and many modern image processing applications. In video compression algorithms,

the analysis of motion and regions with coherent motion helps to drastically reduce

the amount of information that has to be stored and transmitted for each frame.

While first generation video codecs only use displacement vectors for whole pixel

blocks, the second generation approach comprises object segmentation to achieve better

compression results [Torres et al., 1996]. In scene evaluation applications like video

indexing [Snoek and Worring, 2005], medical imaging [Noble and Boukerroui, 2006] or

camera surveillance [Hu et al., 2004], motion segmentation allows the detection and

isolation of moving objects as a basis for higher-level scene understanding. Combined

with object recognition and motion pattern analysis, it is part of the way to the sublime

goal of building artificial systems that can semantically analyze and explain scenes,

answering questions like “what happens?” or “who does what?”. Motion segmentation
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2 CHAPTER 1. INTRODUCTION

and motion understanding also plays an essential role in detecting and/or avoiding

obstacles with vehicles or with a mobile robot, whenever one considers the position and

the velocity of objects as a potential obstacle or threat rather than just the position,

which seems desirable in highly dynamic environments.

Similar issues apply to the human vision system: walking in crowded areas or driving a

vehicle in high traffic calls for a robust localization of moving obstacles and estimation

of their velocities for collision avoidance. As with many problems in computer vision,

the tasks of motion detection and segmentation are mastered by the biological vision

systems of humans and animals with ease. In mammals the detection of movement

for different purposes is part of the low-level stages of the vision system, namely the

retina and the primary visual cortex [Squire et al., 2002]. Neurons in the primary

visual cortex are tuned to respond exclusively to brightness patterns moving in a

certain direction at a certain location in the field of vision [Hubel, 1995]. The system

developed in this work employs a similar way of motion detection, in the way that

a population of directionally selective units is used to obtain a dense representation

of perceived motion. The integration of different sources of information is also an

approach that biological vision systems [Grossberg, 2000] and the system presented

here have in common: complementary visual cues are fused to gain better results and

achieve robustness.

1.1 Segmentation and Motion Segmentation

Segmentation is the exhaustive partitioning of data into different non-overlapping parts

called segments by a certain criterion. On a 2D image lattice, each segment consists

of a region of adjacent pixels. The criteria that distinguish the segments in a good

segmentation can be of low-level nature, for example gray-level, color, edges, or of

higher-level nature like objects, foreground/background or semantic grouping. Existing

approaches employ techniques like clustering, region growing, region merging, neural

networks or optimization based methods using Markov random fields or graph cuts to

compute the segmentation [Pal and Pal, 1993].
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1.1. SEGMENTATION AND MOTION SEGMENTATION 3

In motion segmentation1 the partitioning criterion is based on motion information

obtained from the comparison of two or more images of a sequence. Such segmentations

can aim to distinguish image regions that move in the same way (e.g. translating

into the same direction) while neglecting the real object boundaries, or they can aim

for actual object segmentation. As mentioned before, motion segmentation can be

seen as a step towards a semantic motion interpretation that can be applied on top

of the actual segmentation process. In [Bouthemy and Francois, 1993] for example

the direction of movement of objects relative to a vehicle is determined. In [Cutler

and Davis, 2000] objects are classified based on the periodicity of their motion, and

[Yang et al., 2002] proposed a system that recognizes hand gestures of American Sign

Language.

An important aspect of different motion segmentation approaches is the type of motion

that they are able to detect. Some methods try to split an image into parts of uniform

translational or rotational motion, others allow even patches of homogeneous 3D planar

or non-planar projective motion.

Motion segmentation and image motion in general are vast fields of research with

many publications in the last decades. The first attempts to segment images based

on motion information like difference images or optical flow have been made in the

1970s by applying traditional segmentation techniques to this kind of data [Onoe

et al., 1973, Potter, 1977]. More recently the integration of feature tracking, trajectory

analysis across multiple frames, and the use of multiple cues have been proposed. The

approaches differ in characteristic ways, e.g. the number of objects they can detect,

the types of estimated motion and how motion is estimated, how the segments are

represented, or how problems like occlusions and transparency are handled. All of this

shall be reviewed and discussed in Chapt. 2.

1In the remainder of this work, the terms segmentation, motion estimation and motion segmentation

always refer to operations on 2D images or image sequences, if not stated otherwise.
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4 CHAPTER 1. INTRODUCTION

1.2 Scope and Fundamental Ideas

To restrict the scope of this work, several decisions have been made a priori on the

design of the motion segmentation approach developed in this work. The input data for

the system are obtained from a single non-moving monocular or stereo camera, but the

extension to a dynamic camera will be discussed. Several visual cues extracted from

the image data will be integrated to achieve robustness in segmentation. Dense optical

flow will be used as motion information. The representation of segmented regions will

be realized in an implicit way, as labeling on a 2D lattice.

The author is also inclined to adhere to certain principles of design that are inspired

by biological computation found in the human brain: as much available information

as possible shall be integrated into the data fusion and segmentation process. This

escpecially aims at the use of unsharp or uncertain information. When integrating

multiple cues, the supplementary nature of the cues shall be utilized. This requires a

framework where different types of information can be easily integrated, rather than

discarded after sequential processing. Optimization on Markov Random Fields seems to

be suitable to achieve these goals, and it also is an established approach to segmentation

[Murray and Buxton, 1987]. Therefore, it has been picked as the method of choice for

this work.

1.3 Organization and Contribution of this Work

In this work an approach to motion segmentation based on optimization on a Markov

Random Field is proposed. This approach integrates motion estimation, the fusion of

multiple visual cues and segmentation in one single optimization process. Chapt. 2

reviews and systemizes related research including past work and the current state of

the art, and provides the background for the following sections. Chapt. 3 presents the

new system for motion segmentation, based on motion and additional visual cues, and

Chapt. 4 presents experiments to analyze the properties of the system and measure

its performance. Chapt. 5 concludes with a discussion of the results and possible

extensions. The appendix contains an experimental comparison of similarity measures.
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Chapter 2

Background and Previous Work

This chapter reviews related previous work on motion segmentation and provides the

background for the following chapters. Motion segmentation systems can be distin-

guished and classified according to several characteristic criteria. These properties are

mostly orthogonal, and there is no intuitive hierarchical order that would allow a full

graphical taxonomy. Nevertheless, to visualize the relation between the system devel-

oped here and previous work, and to organize this chapter, a sequential classification

according to the main distinctive features has been done as depicted by the “decision

tree” in Fig. 2.1. The text in the following five sections explains these characteristics

and reviews the publications listed in the figure. Approaches that do not appear in the

figure due to the sequential kind of classification are included in the textual review as

well.

The remainder of the chapter describes further characteristics and ends with a conclusion

and a summary of the current state of the art.

2.1 Motion Estimation

The estimation of motion in an image comprises the estimation of local displacement

at some or all locations in an image from differences between two or more images from

an image sequence. This is only possible if certain assumptions about the similarity of

the images in the sequence are made. The two most popular ones are formulated in
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6 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

Dense

Sparse

• Debrunner, Ahuja 1998
• Gu, Shirai, Asada 1996
• Smith, Brady 1995
• Smith et al. 2004
• Xiao, Shah 2005
• Yang, Ahuja, Tabb 2002

• Cremers, Soatto 2005
• Mansouri, Konrad 2003
• Mitiche, Sekkati 2006
• Vázquez et al. 2006
• Yilmaz, Li, Shah, 2004

Labeling

Explicit Contours

Level Sets

• Åström, Kahl 1999
• Cremers, Soatto 2005
• Meygret, Thonnat 1990

Region Representation
(2.2)

Optimization

Clustering

Region Merging

• Choi, Kim 1996
• Moscheni et al. 1998
• Weber, Malik 1997

• Altunbasak et al. 1998
• Ogale et al. 2005
• Wang, Adelson 1994

Segmentation Method
(2.3 / 2.4)

Motion Estimation
(2.1)

Sequential

Fusion

• Ayer, Sawhney 1995
• Black, Anandan 1996
• Bouthemy et al. 1993
• Chang et al. 1997
• Lim et al., 2002
• Murray, Buxton 1987
• Stiller 1997
• Vasconcelos et al. 2001

None

Multi-Cue Integration
(2.5)

• Bober et al. 1998
• Depommier et al. 1992
• Khan, Shah 2001
• Kolmogorov et al. 2006

Figure 2.1: Sequential classification of existing approaches. The highlighted boxes represent

the properties of the system presented in this work. The numbers of the related sections are

given in parentheses.

[Horn and Schunck, 1981]: First, the “brightness constancy assumption” states that

the brightness of a particular point in a moving pattern is constant, in other words,

brightness changes in an image are due to motion. This assumption is violated by noise

and illumination changes in general, causing the necessity of invariants and robustness in

estimation. The assumption also fails for semi-transparent objects and in image regions

that are newly occluded or uncovered by a moving object. The resulting problems

will be discussed in Sect. 2.6.4. Second, it is assumed that motion varies smoothly

across the image. Without an assumption like this, two or higher dimensional motion

vectors cannot be computed, since images provide only one independent measurement

per pixel [Horn and Schunck, 1981].

Two main kinds of motion estimation can be identified: feature-based approaches that

provide a sparse estimate, and optical flow approaches that yield a dense estimate (see

Fig. 2.2). The choice of a method is of course crucial for a motion segmentation system.

It also determines, how motion information from more than two images of a sequence

can be included, if desired.
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2.1. MOTION ESTIMATION 7

(a) Sparse: Feature-based (b) Dense: Optical Flow

Figure 2.2: Sparse and dense motion estimation from two images. The red dots mark the

position of motion estimates, the lines attached to them resemble the motion vectors. The

motion estimates in (a) were obtained using the KLT feature selection and tracking algorithm.

The optical flow display in (b) shows the best SSD match for every fifth pixel.

2.1.1 Sparse: Feature-Based

If local motion is only estimated for some locations in an image (sparse estimate)

that show special characteristics, the estimation method is called “feature-based”. An

example is shown in Fig. 2.2a. Features are image patches or transformed image patches

extracted at image locations selected according to certain criteria. These criteria can

demand for example the occurrence of corners or more complex properties, e.g. “Good

features to track” [Shi and Tomasi, 1994]. Sophisticated feature selection aims for

special invariants, e.g. to rotation and scaling [Lowe, 2004]. The features taken from

an image frame are searched for in the next or previous frame of an image sequence.

Matching can be done in a similar way as for correspondence-based optical flow, which

is described further down. Also, more sophisticated feature tracking approaches can

be applied. With the selection of features, the search is reduced to small parts of the

image that seem especially promising for a correct and unambiguous matching result.

In [Xiao and Shah, 2005], Harris corners are used as features in combination with the

KLT tracking algorithm proposed in [Shi and Tomasi, 1994]. This tracking system has

also been used to obtain the motion estimate in Fig. 2.2a.

Feature-based motion is suitable for the tracking of moving parts across multiple image
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8 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

frames, thus computing a motion trajectory estimate. In [Debrunner and Ahuja, 1998]

a motion estimate is obtained by linking feature occurrences to probable paths.

If regions of coherent motion are the desired segmentation result although estimation

of motion is done sparsely, the segmentation process has to provide means for bridging

the gap between the estimates. In [Smith and Brady, 1995] regions are created by

computing the convex hull of tracked feature points with similar motion, and converted

into a “radial map” model that describes regions with the position of a centroid, and

radial distance measures to the boundary.

Smith et al. track color edges to estimate motion [Smith et al., 2004]. Boundaries are

controlled by sample points and interpolation between them. To update the sample

points, a search for the edge in a new frame is done for each sample point on a line

perpendicular to the edge. Thus, motion is estimated sparsely along the edges, and

regions without motion are assigned to the segments according to the boundaries.

In [Gu et al., 1996], spatially stable edge segments (SSESs) are used as features. They

consist of connected “stable points” with similar movement, located at positions with

high contrast and scale invariancy. Here the segmentation does not try to enclose

regions with moving edges to get a segmentation, the connected edges themselves are

taken as result.

A hybrid approach is presented in [Yang et al., 2002], where multi-frame sparse region

matching is combined with dense 2-frame pixel matching, in order to recognize hand

gestures of sign language with time-delay neural networks.

2.1.2 Dense: Optical Flow

If local motion is attempted to be estimated for each pixel (dense estimate), the

estimate is often called “optical flow”1. Optical flow is represented by a 2D vector field,

1There are different definitions for the term “optical flow” in the literature: in [Vega-Riveros and

Jabbour, 1989] it only refers to gradient-based methods with the argument that only these are based on

the brightness constancy assumption. This view is not commonly adopted, [Black and Anandan, 1996]

for example describe correspondence-based approaches as “the most direct way to use the brightness

constancy assumption”. Here the term is used for pixel-based approaches in general as commonly

done [Yang et al., 2002].
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with displacement vectors for each pixel, as shown in Fig. 2.2b. There are different

ways to compute the optical flow, the ones most widely used are either gradient-based

or correspondence-based. While the use of gradients provides more accurate estimates,

it is only applicable for very small displacements around 1 pixel per frame, unless

combined with a multi-resolution strategy as in [Black and Anandan, 1996]. For more

details and comparisons see the reviews in [Barron et al., 1994] and [Galvin et al.,

1998].

Correspondence-based approaches try to find pixels or patches in an image that corre-

spond to the same spots in another image. To estimate optical flow with correspondences

for one pixel at position (x, y) in the image I(x, y) at time step t, a rectangular image

patch called correlation window of size N ×N (odd N) with (x, y) being the center,

is extracted from the image. This patch is compared with image patches of the same

size extracted from image I ′(x, y) of the next or previous time step at the positions

(x + ∆x, y + ∆y), ∀∆x, ∆y ∈
[
−M−1

2
, M−1

2

]
, thus searching in an area called search

window of size M×M , with M > N . Without loss of generality, I ′(x, y) is here assumed

to belong to time step t + 1, and the brightness values of I and I ′ are assumed to be

scaled between 0 and 1. The comparison is done using a scalar metric that expresses

the similarity or difference of the brightness values in the image patches. Popular

choices are the sum of the absolute differences (SAD), sum of squared differences (SSD)

or a cross-correlation (CORR). With k = N−1
2

SAD(x, y, ∆x, ∆y) :=
1

N2

x+k∑
i=x−k

y+k∑
j=y−k

∣∣∣I(i, j)− I ′(i + ∆x, j + ∆y)
∣∣∣ (2.1)

SSD(x, y, ∆x, ∆y) :=
1

N2

x+k∑
i=x−k

y+k∑
j=y−k

(
I(i, j)− I ′(i + ∆x, j + ∆y)

)2

(2.2)

CORR(x, y, ∆x, ∆y) :=
1

N2

x+k∑
i=x−k

y+k∑
j=y−k

(
I(i, j) · I ′(i + ∆x, j + ∆y)

)
. (2.3)

This matching procedure has to be done for all pixels of the image, yielding a compu-

tational complexity of O(X · Y ·N2 ·M2), for an image of width X and height Y . For

practical implementation, uniformity, locality and the possibility of parallelization are
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(a) Correlation and search window
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(b) SSD surface

Figure 2.3: Computation of an SSD surface. In (a) the size of the correlation window is

marked with a dashed line. The patch of that size is moved within the boundary of the search

window (solid line), and matched using a similarity measure to calculate the supports for

the SSD surface (b). The resulting SSD surface has an ambiguous minimum, therefore the

motion estimate is ambiguous.

desired properties for these algorithms [Anandan, 1989]. Since the same local matching

operation is executed for all pixels, the computation of optical flow using correlation

has these properties.

Converting the similarity values for the different displacements into one resulting motion

vector is the critical part of the motion estimation process. As a first approximation,

the best matching patch according to the used metric is assumed to be the correct

corresponding image patch, and its displacement is used as local motion estimate.

Whenever there is not enough contrast in the image such that the similarity of the

correct match does not deviate significantly from the others, the selection of the correct

displacement vector matches becomes problematic. All matches could exhibit the same

similarity, or the correct match could be less similar than others, due to disturbances

or image noise. Even if there is a strong contrast in an image patch, the matching can

be ambiguous due to the aperture problem: if the brightness in the image patch varies

only in one direction, the matching is ambiguous. An example for such a case with

SSD matching is given in Fig. 2.3a. Instead of one distinct minimum that can be used

as the motion estimate, a number of displacements have the same or a similar low SSD

value and could be the true displacement.
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motion discontinuities

(a)

t+1t

covered region

uncovered region

(b)

Figure 2.4: Occlusions and motion discontinuities caused by object motion. Motion disconti-

nuities (a), marked with a dashed line, are boundaries between areas of different coherent

motions. If such a boundary falls into the correlation window of optical flow computation,

motion cannot be estimated correctly. Occlusions (b) are regions covered or uncovered by

a moving object, like the rectangle in the figure. For these areas the brightness constancy

assumption is violated, and correspondences for optical flow cannot be established.

An effective way to tackle this issue is to introduce confidence measures that are used as

weights for additional smoothing of the flow field [Stephan, 2001]. This way, uncertain

motion information is discarded. Other approaches use robust statistics [Ong and

Spann, 1999] or optimization (e.g. [Konrad and Dubois, 1990], [Sim and Park, 1998])

to achieve good results. [Lai and Vemuri, 1998] proposed to use SSD surfaces with

values for all displacements rather than just the best matches for motion estimation

in a minimization procedure. This way, the quality of the match can be weighed up

against smoothness constraints, and information from ambiguous matching surfaces is

used in a sensible way. The system presented in this work transfers this approach to

motion segmentation.

Using a correlation window with N > 1 brings in the local smoothness assumption

introduced above. However, finding the right size correlation window resembles a

problematic trade-off: in too large a correlation window the motion can vary within

the image patch, causing disturbed results. Too small a size will make the matching

ambiguous, rendering correct motion estimation impossible. Of course, the optimal

size depends on the actual size of coherent motion patches in the image data. This

problem has been discussed in [Szeliski and Shum, 1996].
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Another problem related to the use of a correlation window occurs at motion boundaries,

formed by foreground/background boundaries or where overlapping objects move in

different directions, as shown in Fig. 2.4a. Here the local smoothness assumptions is

violated and the extracted image patch contains multiple non-coherent motions, yielding

bad estimation results. Simple smoothing of the flow field is unsatisfactorial in this

case, since the mean of very different motion vectors is often an inappropriate motion

vector. Coarse-to-fine strategies in the matching can help to reduce the spatial extent

of this problem by using adaptive correlation window sizes or matching on different

image resolutions [Anandan, 1989]. Other approaches to this problem in the context of

optimization-based motion segmentation use explicit modeling of discontinuities in an

otherwise smooth segmentation (see Sect. 2.4.2). Such a discontinuitiy model can be

tied to additional cues as well, as discussed in Sect. 2.5.2.

Whenever an object moves, parts of other objects or the background behind the object

become occluded, and others are uncovered, as depicted in Fig. 2.4b. In these regions

the brightness constancy assumption is violated as well, since there is no correspondence

for these pixels in the following or preceding images and the change between two images

cannot be explained by motion alone. Accordingly, the similarity measures of the

matching process in this regions are defective and can yield bad motion estimation

results. Solutions to this problem in the context of motion segmentation are discussed

in Sect. 2.6.4.

Considering approaches to motion segmentation with a dense motion estimation scheme,

multi-frame motion and segmentation information can be integrated implicitly by

propagating estimation results to following frames for initialization of the computation

in the next time step. See for example [Black, 1992] and [Bouthemy and Francois,

1993] and the approach developed in this work.

2.2 Representation of Regions

Different segmentation techniques can use different ways to encode the location and

shape of the individual regions of a segmentation. Implicit representation with labeling,

explicit boundary description like active contours, and which combine properties of
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(a) Labeling (b) Explicit Contours (c) Level Sets

Figure 2.5: Methods for representing the position and shape of regions. Labeling (a) is a

flexible representation. Segments are formed by adjacent sites carrying the same label (color).

Explicit contour representations like snakes (b) have a fixed topology, but allow the use of

high-level smoothness constraints and enforce closeness of regions. Level Sets (c) represent

boundaries by the set of all locations with zero-value of a 2D surface. They combine topologic

flexibility with a more explicit boundary representation.

both have been used for segmentation. Figure 2.5 shows an example of a representation

of one region with all three methods. These methods are explained in further detail in

the following.

2.2.1 Labeling

Implicit descriptions define a labeling f(x, y) on all the sites (x, y) ∈ S of a 2D lattice

of size X × Y , which often is of the same size as the input images2. S is the set of all

coordinate pairs in the lattice

S = {1, . . . , X} × {1, . . . , Y } . (2.4)

The labeling assigns each site a label l from a label set L = {0, ..., L} by

f(x, y) = l . (2.5)

2The notation used here is based on [Li, 2001] and adapted to incorporate coordinate pairs for site

indexing.
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A region R with its position and shape is implicitly defined by the set of connected

sites that carry the same label:

Ri :=
{
(x, y) ∈ S | f(x, y) = i

}
. (2.6)

Note that this definition does not require the connectivity of all sites in a region. This

constraint can be imposed during evaluation of a segmentation, interpreting one region

as multiple unconnected segments. Labelings can be visualized easily as an image by

using a different color for each label as done in Fig. 2.5a. For motion segmentation, each

label l is associated with a parameter set Pl. This set contains prototype parameters,

e.g. a motion vector. These parameters act as motion models during the segmentation

process and resemble an approximation of the input data, e.g. optical flow, of all sites

(x, y) that carry the label l.

Implicit representations are very flexible: changes in the topology of regions such as

splitting and merging can happen in the same “implicit” way as changing their shape.

If the sites at the thin part of the black region in the center of Fig. 2.5a change their

label to white, the region can be split up into two. Representing regions with labelings

on a 2D lattice is widely used in segmentation. Examples of related previous work are

presented throughout the remainder of this chapter.

2.2.2 Explicit Contours

Another approach is to use explicit boundary representations to describe the individual

regions, e.g. snakes or other active contour models (see e.g. [Kass et al., 1988] or

[Blake and Isard, 1998]). All pixel that lie inside a closed boundary belong to the same

region, as shown in Fig. 2.5b. Here each boundary is defined by a spline curve with its

control points. The number of snakes used in the representation limits the number of

regions that can be described. This approach is limited in that the topology of the

regions is mostly fixed during the segmentation process: splitting and merging cannot

be achieved by adapting the control points, explicit routines would be necessary. On

the other hand, active contours come with certain constraints that can be of advantage

in segmentation applications: closed active contours naturally ensure connected regions,

and allow elegant higher-level ways of controlling the boundary.
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In [Cremers and Soatto, 2005] a closed spline curve with control points as shown in

Fig. 2.5b is used for motion segmentation. The control points are evolved with a

gradient descent scheme, minimizing a motion energy based on optical flow, and the

length of the contour as a smoothness constraint. In [Dubuisson and Jain, 1995], snakes

are applied for contour refinement and extraction as a post-processing step after the

actual segmentation, which outputs a “motion mask” defined by a labeling. The radial

map of [Smith and Brady, 1995] and the boundary model of [Smith et al., 2004] are

also approaches with explicit contour representations. A short description has been

given in Sect. 2.1.1.

In [Åström and Kahl, 1999] snakes are used to track brightness contours identified by

an edge detector. From the motion parameters of the individual regions, the self-motion

of the camera is estimated.

A different approach to explicit boundaries is to model separate boundary sections

instead of closed curves. As mentioned before, [Gu et al., 1996] track edge segments

with a feature-based approach. [Meygret and Thonnat, 1990] build similar “contour

chains” based on optical flow, searching for continuous motion gradients along the

contours. Combined with stereo vision, the authors obtain 3D segmentations.

In [Black, 1992] labeling is used in a way different from the method described in 2.2.1:

the output of the segmentation is a binary edge image, the not necessarily closed

boundaries of regions consist of connected pixels with the label that stands for “edge

present”. Thus the representation of boundaries is explicit, although labeling is used.

2.2.3 Level Sets

Level set methods combine the advantages of active contours with the flexibility of

implicit boundary representations. A 2D surface φ(x, y) is defined over all pixels (x, y),

and is adapted with an optimization scheme. The implicit contour C is defined as the

set of points (x, y) where the surface crosses the zero-level:

C =
{
(x, y) ∈ S | φ (x, y) = 0

}
. (2.7)

Figure 2.5c depicts such a surface, the zero-level and the resulting boundary. This

boundary splits the area in two regions, called “phases”, where the parts with φ(x, y) > 0
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are considered to be on the “inside” and parts with φ(x, y) < 0 considered to be on

the “outside” of the contour. In contrast to explicit contour representations, a contour

defined by a level set can consist of several boundaries: if the saddle point in the center

of the surface in the figure is lowered below zero, the contour splits up into two closed

boundaries. As with labeling-based representations, a region or phase defined by a

level set can consist of multiple unconnected parts, and the topology of regions can

change implicitly.

In [Cremers and Soatto, 2005], level sets are applied to motion segmentation. While one

contour can define only two possibly splitted regions of coherent motion with its two

phases, the authors use a bit-pattern-like combination of multiple boundaries to encode

regions, which allows to describe up to n regions with log2n surfaces. The surfaces are

adapted by minimizing an energy function with the target of homogeneous motion in

the phases, and a minimum length for the contours to enforce smoothness. The authors

compare the strengths of this implementation to the alternative with active contours.

[Vázquez et al., 2006] also use the boundary length as a measure for smoothness

of the boundary in their energy function. A second term takes the conformity of

estimated motion with image motion into account, and a third one the coincidence of

the boundaries with motion discontinuities. In [Mansouri and Konrad, 2003], an energy

function is defined that searches for the most probable transformation consisting of

motion parameters and motion segmentation, given a pair of images. Brightness edges

are included as an additional cue.

[Mitiche and Sekkati, 2006] proposed an approach for simultaneous estimation and

segmentation of motion and depth in 3D, with the goal of recovering the 3D structure

of a scene. The approach of [Yilmaz et al., 2004] to exploit shape changes of a level set

boundary to detect occlusions is discussed in Sect. 2.6.4.

2.3 Segmentation Method

So far, methods for estimating motion from images and different ways of representing

a segmentation have been discussed. This section provides the missing link with

approaches to how an actual segmentation can be obtained. The review is limited to
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systems that use an implicit representation with labeling as described in Sect. 2.2.1,

like the system developed in this work does. System with region representations based

on active contours or level sets are not covered in further detail, since they differ

significantly in their approach.

Many algorithms from classical image segmentation based on brightness, color or other

properties can be applied to motion segmentation. This section describes the main

approaches. Optimization-based approaches have become quite popular, since they

provide effective means to deal with noisy data3. These systems are presented in

Sect. 2.4.

2.3.1 Clustering

According to Haralick and Shapiro, segmentation is spatial grouping, for example in

an image. Clustering on the other hand is grouping in a value domain, e.g. brightness

or motion vectors [Pal and Pal, 1993]. Clustering can nevertheless be used for motion

segmentation. [Altunbasak et al., 1998] use K-means clustering [MacQueen, 1967] to

determine a small number of classes (labels), each associated with a set of affine motion

parameters from an optical flow field. Assigning each pixel the label with the best

fitting motion parameters yields an initial motion segmentation.

In [Ogale et al., 2005], a 2D translational flow field is obtained from phase correlation of

two images. The same phase correlation is used to determine one additional scale and

one rotational parameter field from log-polar transformations of the same images. From

this 4D motion field, the motion parameters for the background (depending on the

camera-motion) are estimated. Now, each pixel is assigned either the background label

or an object label, based on the discrepancy of the motion parameters and the optical

flow estimated for that pixel. [Wang and Adelson, 1994] also use a label assignment

procedure, where each pixel is assigned the best fitting label of a label set.

3The noisiness of motion estimates and types of disturbances have been discussed in Sect. 2.1.2.
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2.3.2 Region Merging

Region growing is a classical segmentation technique, where pixel adjacent to a region

are assigned to that region by changing its label, if the local data of that pixel, e.g.

motion vectors, are similar to the prototype data of the region. A region merging

algorithm processes whole regions in the way that two neighboring regions are assigned

the label and thus merged, if their prototype data is similar or equal. If this merging

process starts from single pixels, it can be similar to region growing with the additional

merging of larger regions.

[Choi and Kim, 1996] apply this method to motion segmentation in a multi-stage

algorithm: at first, neighboring pixels with similar 2D translational flow vectors are

grouped together to regions. In the second stage, the similarity of neighboring regions

is compared using an affine motion model. The third stage groups regions that are

similar according to a quadratic motion model. This way, the model complexity of the

motion estimate increases with each step during the segmentation process.

In [Moscheni et al., 1998], region merging is performed on a directed graph. Its nodes

represent the individual regions, the weighted edges represent the similarity of adjacent

regions according to a uni-directional measure which includes both temporal and spatial

properties.

[Weber and Malik, 1997] base region merging decisions on a cost function, which tries

to limit the number of labels while keeping the approximation error low. Although

this is actually an optimization process, it is different from the kind of optimization

approaches that is presented in Sect. 2.4, since it operates on regions rather than on

single pixels.

2.4 Segmentation by Optimization

This section covers optimization-based segmentation techniques that are based on

a labeling representation (see Sect. 2.2.1) and operate on individual pixels rather
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than on regions as a whole (cf. Sect. 2.3.2)4. The typical representatives for this

group of systems use statistical methods, especially Markov Random Fields (MRFs)

or Bayesian frameworks like Maximum Likelihood Estimation (MLE), Maximum A-

Posteriori (MAP) estimation or Expectation Maximization (EM). Despite the theoretic

differences, algorithms based on these frameworks are often very similar in the context of

motion segmentation. [Geman and Geman, 1984] combined MRFs and Bayesian MAP

estimation into MAP-MRF labeling (see [Li, 2001]), and several motion segmentation

systems are based thereon.

2.4.1 Markov Random Fields

In this work, Markov Random Fields (MRFs) are always defined on regular 2D lattices

of sites (x, y) ∈ S. There are other varieties (see [Li, 2001]), but of no relevance for

the system developed in this work and the prior art reviewed here. Figure 2.6 gives a

quick pictorial overview about MRFs, their components and the basic optimization

strategy in the context of image segmentation. The text of this section gives a more

mathematical description. The notation and description given here are adopted from

[Li, 2001], and tuned towards this constraint.

Representation by labeling of a 2D lattice has already been described in Sect. 2.2.1.

A neighborhood system is introduced that defines which sites are considered to be

neighbors of another site. The neighborhood of a site (x, y) is represented as the set

N (x, y) of neighboring sites. Different orders of neighborhoods can be defined. In this

work, only first and second order neighborhoods are used and discussed. These are the

typical 4- and 8-neighborhood systems used in image processing: The 4-neighborhood

N4(x, y) of a site (x, y) contains the four sites that are horizontally and vertically

adjacent to the site on a 2D lattice, while the 8-neighborhood N8(x, y) additionally

4Algorithms that use level sets or snakes, and algorithms that operate on whole regions are not

directly related to the system developed in this work, and a high-detailed background and review is

beyond the scope of this work.
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x,y

4-neighborhood of a site (x,y)

1 2 L

Label set

Prototype parameters

x,y

Site

(a)

Markov Random Field

(b)

Input data

Fidelity:
prefer label that fit the input data
according to prototype parameters

 Regularity:
prefer same label as neighbors

Optimization for each site

(c)

Figure 2.6: Markov Random Fields: an overview. (a) shows the different components, namely

sites, a neighborhood definition, and a label set with associated prototype parameters. The

optimization (c) visits each site and chooses a label whose prototype parameters are similar

to the local image data (fidelity), while trying to achieve a smooth labeling (regularity).

includes the diagonal neighbors

N4(x, y) =
{

(x+1, y), (x−1, y), (x, y+1), (x, y−1)
}

(2.8)

N8(x, y) =
{

(x+1, y+1), (x−1, y+1), (x+1, y−1), (x−1, y−1)
}
∪N4(x, y) . (2.9)

[Bouthemy and Francois, 1993] and [Lim et al., 2002] use a 8-neighborhood system,

and [Wang et al., 2006] consider even higher-order neighborhoods. All other systems

reviewed here employ the 4-neighborhood, including the system developed in this work.

A set of sites that is fully connected according to the neighborhood criterion is called a

clique according to graph theory. Different types of cliques are shown in Fig. 2.7: first

order neighborhoods contain single-site cliques (a), as well as horizontal and vertical

pair-site cliques (b). Second order neighborhoods also contain diagonal pair-site (c),

triple-site (d) and quadrupel-site (e) cliques.

The labeling of a lattice with its neighborhood system N is extended with statistical

properties: the event that a site (x, y) has a certain label is seen as a draw from a

random variable Fx,y associated with that site. P
(
Fx,y = f (x, y)

)
, or in short form

P
(
f (x, y)

)
, is the probability that the random variable Fx,y takes the label f(x, y).
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1-site 2-site 3-site 4-site

(a) (b) (c) (d) (e)

1. order (4) 2. order (8)
Neighborhoods Cliques

Figure 2.7: Neighborhoods and their cliques. A clique is a group of mutually neighboring

sites. The 4-neighborhood contains single-site (a) and horizontal/vertical pair-site cliques

(b). The 8-neighborhood also contains diagonal pair-site cliques as well as tripel-site and

quadrupel-site cliques (a-e).

The labeling of all sites is grouped in the matrix f , and all random variables are grouped

to a random field F as follows:

f :=


f(1, 1) f(2, 1) · · · f(X, 1)

f(1, 2) f(2, 2) · · · f(X, 2)
...

...
...

f(1, Y ) f(2, Y ) · · · f(X, Y )

 , F :=


F1,1 F2,1 · · · FX,1

F1,2 F2,2 · · · FX,2

...
...

...

F1,Y F2,Y · · · FX,Y

 (2.10)

The labeling of all sites, f , is called a configuration. The probability of a configuration,

P (f), is the joint probability of the labeling of all sites. The set F contains all possible

configurations.

The random field F is a Markov Random Field (MRF), if and only if these two

conditions are fulfilled:

P (f) > 0, ∀f ∈ F (2.11)

P
(
f (x, y) | fS−(x,y)

)
= P

(
f (x, y) | fN (x,y)

)
(2.12)

where fS−(x,y) is the set of all labels excluding f(x, y), and fN (x,y) is the set all labels

in the neighborhood of (x, y), not including (x, y) itself.

The positivity condition (2.11) implies that P
(
f(x, y)

)
> 0, ∀(x, y) ∈ S. The Marko-

vianity condition (2.12) demands that the probability for the labeling of any site (x, y)

is independent of the labeling of sites that are not in the neighborhood N (x, y) of that

site. This is the equivalent of the Markovianity in Markov processes, where the current

state depends on the last state but not on earlier states. The additional property of

homogeneity requires that P
(
f (x, y) | fN (x,y)

)
is independent of the location (x, y) in
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the lattice. This property is true by design for most motion segmentation approaches

reviewed here. For more details, see [Li, 2001].

In order to use an MRF for vision applications, the probability distribution of P (f) has

to be specified. It must be dependent on the input data, such that the desired outcome

modeled by the configuration of the field for a given set of input data is the one with

the highest probability. This is done in the design phase. In the application phase, an

optimization or search procedure has to determine the most probable configuration for

a given input, searching in the usually vast configuration space F .

The property of F being a Markov Random Field on S with respect to N is equivalent

to F being a Gibbs random field (GRF) on S with respect to N , according to the

Hammersley-Clifford theorem [Li, 2001]. Thus, the distribution of P (f) is a Gibbs

distribution and can be modeled as such:

P (f) = Z−1 · e−
1
T

U(f), with Z =
∑
f∈F

e−
1
T

U(f) . (2.13)

The normalizing factor Z is constant and can be omitted, if only the f that maximizes

P (f) needs to be determined, which typically is the case. T is the temperature constant

and is discussed in Sect. 2.4.4. For now, T = 1 is assumed. The energy U(f) is the sum

of clique potentials V with respect to the labeling f for all possible single-site cliques

(x, y) ∈ C1, pair-site cliques
(
(x, y) , (x′, y′)

)
∈ C2 and higher cliques if applicable:

U(f) =
∑
C1

V1 (x, y) +
∑
C2

V2

(
(x, y) , (x′, y′)

)
+ ... (2.14)

A minimal energy U(f) has the highest probability P (f), thus the optimization procedure

has to search for the configuration with the minimal energy.

Now the potential functions VC have to be defined. They can be dependent on the

labeling and the input data, or just the labeling. In a typical motion segmentation

application, the single-site potential functions would give low values for sites that have

labels associated with motion parameters similar to the input motion estimates for that

site. In [Black, 1992] and [Heitz et al., 1991], the “displaced frame difference” is used

in the single-site potentials. This difference, also called “motion compensation error”

is the brightness difference between a pixel (x, y) in an image It(x, y) of time step t
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and the same pixel displaced with a motion vector (∆x, ∆y) in the image It+1(x, y).

According to the “brightness constancy assumption” (see Sect. 2.1) this difference

should be zero for the correct motion vector. It is directly used in the single-site clique

potential function

V1 (x, y) =
(
It (x, y)− It+1 (x + ∆xl, y + ∆yl)

)2
, with l = f(x, y) . (2.15)

The motion vector (∆xl, ∆yl) is part of the prototype parameter set Pl, associated

with each label l5. It can either consist of just two displacement values as shown here,

or be based on a higher-level motion model, such as affine transformations. In the

single-site potential functions of many proposed systems, e.g. [Bober et al., 1998] or

[Bouthemy and Francois, 1993], these motion prototypes are compared to locate image

gradients to measure how well a label fits a site. In this work, SSD matching results

are used for this purpose.

Pair-site potential functions can be used to enforce a smooth labeling: if a low energy

is given for identical labeling of two adjacent sites, and high energy for differing labels,

a homogeneous labeling is preferred. This was done for example by [Bouthemy and

Francois, 1993], by defining

V2

(
(x, y) , (x′, y′)

)
= µ · δ̄

(
f(x, y), f(x′, y′)

)
(2.16)

where µ is a penalty constant and δ̄(a, b) the inverted Kronecker delta function

δ̄(a, b) =

1, if a 6= b

0, otherwise.
(2.17)

The system developed in this work uses a similar formulation.

2.4.2 Motion Discontinuities

If Markov Random Fields are used for segmentation, line processes (LPs) are often

used to model discontinuities in a field that is otherwise assumed to be smooth [Li,

5If an MRF is used for motion estimation without segmentation, the vector (∆x,∆y) is defined

depending on the site (x, y), and contains the motion estimate after convergence.
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2001]. A line process is modeled by a binary line field L
(
(x, y) , (x′, y′)

)
that provides

a binary value for each unordered pair of adjacent sites
{
(x, y), (x′, y′)

}
of an MRF.

These values can be either switched “ON” or “OFF”. An line that is active causes a

higher constant cost µc, but reduces the cost imposed by smoothing for adjacent sites

with a different label. In [Murray and Buxton, 1987] and [Zhang and Hanauer, 1995]

such a line process is applied to motion segmentation, modeling motion discontinuities

between segment boundaries:

V ′
2

(
(x, y) , (x′, y′)

)
=

µc if L
(
(x, y) , (x′, y′)

)
is ON

V2

(
(x, y) , (x′, y′)

)
otherwise.

(2.18)

By replacing V2 with V ′
2 in (2.14), the line field is included into the energy function

U(f), and its values are obtained from the same optimization procedure that determines

the labeling.

2.4.3 Bayesian Formulations

Many authors prefer to model the probability distribution of configurations or labelings

P (f) in a Bayesian framework, where the dependency on the observations o in form of

input data o(x, y) is described by the conditional probability P (f |o). Thomas Bayes

postulated in 1763 the theorem that is nowadays known as the Bayes rule:

P (f |o) =
P (o|f) · P (f)

P (o)
. (2.19)

The first term, P (f |o) is called the posterior distribution, P (o|f) the likelihood of

the data (observations) given a labeling, and P (f) is the prior distribution. Again,

the configuration f is sought that maximizes the posterior probability. This is called

Maximum A-Posteriori (MAP) estimate. The constant term P (o) in the denominator

does not effect this search and can be omitted.

If the prior P (f) is “flat”, i.e. constant, only the likelihood function P (o|f) needs to

be maximized, and MAP reduces to Maximum Likelihood Estimation (MLE). Such a

formulation has been proposed by [Khan and Shah, 2001]. The authors assume that

the possible labelings of the sites are of equal probability. The dependence on the input
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data is included in their direct formulation of the likelihood function that is maximized

through optimization. In other systems, the prior is used for smoothing with definitions

based on (2.16). [Vasconcelos and Lippman, 2001] proposed to estimate priors from

actual data, rather than just defining them in the design phase.

MAP and Markov Random Fields (MRF) can be combined [Li, 2001, Geman and

Geman, 1984]: The posterior distribution of an MRF is modeled as P (f |o), and the

likelihood and the prior are implemented in the clique potential functions. This has

also been applied to motion segmentation: a smoothing prior, which is not dependent

on the input data, can be implemented in the pair-site clique potentials. The likelihood

function, which ties the labeling to the data, is in most cases represented in the

potentials of the single-site cliques. The formulation of prior and likelihood function

provides an intuitive way to design a segmentation system. Consequently, the actual

definition of clique potentials is omitted by several authors, and for the system developed

in this work as well. [Murray and Buxton, 1987] follow this approach and formulate a

likelihood similar to (2.15) and a prior equivalent to (2.16), but with sums over sites

rather than over cliques. [Zhang and Hanauer, 1995] use the same formulation for the

likelihood, but extend the prior to model motion discontinuties with a line process.

2.4.4 Optimizing the Configuration

Approaches to design the prior distribution P (f |o) have been presented in the last

subsections. Finding the configuration f that maximizes this probability for a given

input o is a non-trivial task. The space of possible configurations F is vast and an

exhaustive search for the optimum is computationally intractable: for a labeling on a

lattice of the size X × Y with L labels there are LX·Y combinations.

Whether the prior distribution is defined via clique potentials or via a likelihood and a

prior, the segmentation process comes down to minimizing or maximizing a pre-defined

energy function, which is a sum of energies computed for each site. Since global

optimization is intractable, a local view on MRFs is adopted, which deals with per-site

energy optimization.

Simulated Annealing (SA) is a iterative optimization algorithm that operates locally
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and nevertheless reaches the global optimum if run for an infinite number of time

steps [Geman and Geman, 1984]. It regulates the global temperature parameter T in

(2.13) and incorporates it into local optimization. The optimization starts in step t = 0

with T = ∞, causing P (f) to be a uniform distribution. The temperature is gradually

lowered in each iteration cycle, computed by

T =
τt

log(t + 1)
(2.20)

where τt is a constant factor [Geman and Geman, 1984]. When T → 0 for t →∞, P (f)

is peaked at the optimal result.

In each iteration t, SA visits all sites of the lattice in a certain order6. The order can

be deterministic, randomized or even asynchronous, as long as no adjacent sites are

updated at the same time [Besag, 1986]. During each visit of a site (x, y), the label is l

is selected that maximizes this probability:

f ′(x, y) := arg max
l∈L

P
(
l | o (x, y)

)
(2.21)

= arg max
l∈L

(
P

(
o (x, y) | l

)
· P

(
l | fN (x,y)

)) 1
T

. (2.22)

Again, for T = ∞, this resolves to the uniform distribution. The lower the temperature

is, the more often the best match is picked. For T → 0, this is a greedy selection. The

labeling is updated instantly after each visit by setting f(x, y) = f ′(x, y).

Among others, [Murray and Buxton, 1987] and [Smith et al., 2004] applied SA to

motion segmentation. In theory SA reaches the global optimum, but in practical

implementations a lot of computation time is spent on the “burn-in” phase, where

labels are flipped randomly. [Besag, 1986] proposed the method of “Iterated Conditional

Modes” (ICM), which is equivalent to SA with T → 0 from the very beginning: in each

iteration, all sites are visited in a pre-defined order. During each visit of a site (x, y),

the site is assigned the label that maximizes (2.21) for T → 0. In contrast to SA it is

possible to apply ICM in a fully asynchronous mode, where the update f = f ′ of the

labeling is done after all sites have been visited.

6Applied to a discrete lattice, this algorithm is actually a Markov Chain Monte Carlo (MCMC)

sampler instead of the “true” SA [Besag, 1986].

Inv.-Nr.: 2006-11-02/121/IN00/2233



2.4. SEGMENTATION BY OPTIMIZATION 27

Since ICM is a purely greedy selection scheme, it is not necessary to define and compute

the likelihood and prior probabilities explicitly as probability distribution functions.

The design of an energy function E(x, y) that depends on the input data and the labels

of the site (x, y) and its neighbors is sufficient. Typically, this energy function needs

to be minimized by varying the label f(x, y), and the label that minimizes E(x, y) is

selected for that location.

ICM converges fastly, but can easily be stuck in local minima. Since there is no random

flipping in the beginning, the initialization of the field configuration and the label

parameters has a strong influence on the time needed for convergence, and on the

quality of the result, namely how different the resulting local minimum will be from

the global minimum. When images from a longer sequence are segmented, one can use

the resulting segmentation and motion parameters of one time step as initialization

for the next (e.g. [Bouthemy and Francois, 1993]). This way, information of more

than just two frames is implicitly used into the motion segmentation process. Other

authors propose to use other cues for this purpose. [Moscheni et al., 1998] initialize the

optimization (although a different algorithm) with a color segmentation. [Bober et al.,

1998] proposed to use a local robust Hough transform estimator.

ICM has been applied to motion segmentation by several authors, e.g. [Chang et al.,

1997, Depommier and Dubois, 1992, Vasconcelos and Lippman, 2001], and in this work

as well. [Lim et al., 2002] proposed to run ICM with more visits of sites with motion

discontinuities or high motion compensation errors in order to reduce computation time.

Other optimization schemes that have been used to improve results and/or to decrease

computation time in the context of motion segmentation are “Iterated Conditional

Probabilities” (ICP) [Vasconcelos and Lippman, 2001], “Highest Confidence First”

(HCF) [Bouthemy and Francois, 1993], “Incremental Stochastic Minimization” (ISM)

[Black, 1992], “Simultaneous Over-Relaxation” (SOR) [Black and Anandan, 1996] and

the mean field theory [Zhang and Hanauer, 1995].

Multi-scale optimization on a resolution pyramid as proposed by [Stiller, 1997] and

[Heitz et al., 1991] can also help to improve the performance. [Bober et al., 1998]

presented an approach for scaling the configuration and the cost function based on

“super-coupling”.
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2.4.5 Optimizing the Prototype Parameters

Except for the unlikely case that the prototype parameters Pl for each label l ∈ L are

given beforehand, they have to be estimated along with the configuration f . This is

a “chicken-and-egg” problem: based on the prototype parameters one can compute a

segmentation, and given a good segmentation one can determine the optimal motion

parameters.

This cyclic dependendy can be tackled with the iterative two-step Expectation-

Maximization (EM) algorithm [Dempster et al., 1977], which has successfully been

applied to motion segmentation. In the E-step, the joint probability P (f |P,o) of the

labeling, conditioned on the input data o and the current parameter estimate P is

computed. In the M-step, a new parameter set P ′ is determined, given the expectation

of P (f) conditioned on the input data o. [Vasconcelos and Lippman, 1997] and [Weiss,

1997] explicitly formulated their motion segmentation systems in an EM framework.

In general, the full determination of P (f) is computationally expensive. However,

optimization schemes can be used that alternate between configuration and parameter

estimation in the same way as the EM algorithm does, but avoid the computation

of P (f) by peaking the distribution as in ICM, thus performing a greedy selection

[Bouthemy and Francois, 1993, Murray and Buxton, 1987]. With this modification

and the assuming that P (P) as a prior is flat, and that the smoothing prior P (f) does

not depend on the parameter set P, the E’-step and the M’-step can be computed as

follows:

E’-step: f ′ := arg max
f∈F

P (f |P,o) = arg max
f∈F

(
P (o|f ,P) · P (f)

)
(2.23)

M’-step: P ′ := arg max
P

P (P|f ′,o) = arg max
P

P (f ′|P,o) . (2.24)

Several ways of implementing the E’-step have already been discussed in Sect. 2.4.3.

For the M’-step, a least squares fit of the motion parameters to the input data can

be used. This way an iterative search through the parameter space can be avoided.

[Bouthemy and Francois, 1993] proposed this method based on image gradients. In the

system developed in this work the motion parameters are fit with least squares to SSD

surfaces.
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2.4.6 Adjusting the Number of Labels

The number of labels gives the maximum number of different motions in a segmentation.

Note that this is not automatically the maximum number of segments, since different

disjunct segments can have the same label. If the number of objects present in an image

scene is known a-priori, the necessary number of labels can be derived. In most cases

these assumptions cannot be made, so there is a need for an estimate. A discussion

about ways to estimate the number of different motions from an image sequence is

given in [Kanatani and Matsunaga, 2002]. The authors evaluate different measures

based on the estimated rank of a matrix containing motion parameters of multiple

features tracked over multiple images. Other authors incorporate this adjustment into

the optimization process, for example in [Ayer and Sawhney, 1995] by optimizing a

MDL based cost-function that sets a trade-off between the encoding costs for the labels

and the encoding costs of the residual error. Weiss initializes his mixture estimation

framework with “more models than will be needed”, and merges them during the

estimation process [Weiss, 1997]. More details on this can be found in [Weiss and

Adelson, 1996].

Sometimes new labels have to be added during segmentation of a sequence, for example

when new objects or motions occur or become uncovered. [Bouthemy and Francois,

1993] introduce a special label with special potential functions, which is assigned to

regions that are uncovered according to linear motion prediction. In this work, the

initialization procedure is repeated in each frame to detect new motions.

2.5 Multiple Cues

Estimation of motion is critical if problems like occlusions occur or not enough variation

of brightness is present in an image region. The latter can easily be the case in interior

areas of objects. In these cases, or when more robustness needs to be achieved, the

integration of supplementary image information like gray-values, color, edges or stereo-

depth is appealing. Several authors proposed to combine different visual modalities

(cues) in different ways for motion segmentation, as visualized schematically in Fig. 2.8.
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Cue 1 Segment.

Cue 2
Post-proc.

(a)

Segment.
Fusion

Cue 1

Cue 2 Segment.

(b)

Segment.
Fusion

Cue 1

Cue 2

(c)

Figure 2.8: Combined vs. sequential multi-cue fusion and segmentation. Sequential approaches

use post-processing (a) or fusion of segmentations (b). When fusion and segmentation is

combined into one process as depicted in (c), the cues can supplement each other and

compensate failures.

2.5.1 Sequential Integration

Multi-cue integration in motion segmentation has mostly been done in a sequential

way [Khan and Shah, 2001]. In these cases there is no mutual interaction between

information from different cues, only uni-directional dependencies.

One method is to use additional cues for post-processing a segmentation based on pure

motion, as depicted in Fig. 2.8a. A first attempt was made in [Thompson, 1980], where

grayscale and motion information is combined during a region merging process. In that

approach, regions with the same (non-zero) motion vectors are merged. Additionally,

regions with ambiguous but non-contradicting motion are merged, if they have a similar

contrast. [Yang et al., 2002] try to recognize hand gestures of sign language in image

sequences. They apply skin color matching to their motion segmentation result in order

to select regions of interest. In [Smith and Brady, 1995] edges are used to refine the

boundaries of a segmentation result in a post-processing step. [Meygret and Thonnat,

1990] include stereo depth for 3D grouping of chains (boundary parts) that have already

been segmented in 2D. As already mentioned in Sect. 2.4.4, other cues have also been

used to initialize the motion segmentation process as a pre-processing step [Moscheni

et al., 1998].

Other approaches fuse information of multiple cues after segmentation has been done

on them individually, as displayed in Fig. 2.8b. In [Dubuisson and Jain, 1995], a motion

mask generated from difference images is combined with color/edge segmentation. The

color segmentation is generated independently of the motion segmentation by region

merging. It is refined using edges from a Canny edge detector [Canny, 1986]: existing

Inv.-Nr.: 2006-11-02/121/IN00/2233



2.5. MULTIPLE CUES 31

regions are split if they are broken by an edge. In the following step, regions are added

to larger ones if three conditions are fulfilled: their motion parameters are similar,

they have a sufficiently long mutual boundary and less than 40% of the pixels on

the boundary correspond to edges. Among the candidate regions, the best match

according to the first two criteria is selected for merging. The result is fused with a

binary motion mask. If more than 90% of a color region is inside the motion mask, it

is considered to be completely part of the moving object. If less than 20% is inside, it

is completely excluded. Otherwise the decision is left to a smoothing process which is

done with a snake. This provides contour refinement as well as boundary extraction

(see Sect. 2.2.2).

None of these approaches is based on optimization and labeling, therefore none appears

in the classification in Fig. 2.1. Multi-cue approaches that would fall into this category

use cue fusion for integration. Examples are given in the next section.

2.5.2 Combined Fusion and Segmentation

The approach of combining fusion and segmentation into one process, as shown in

Fig. 2.8c, is beneficial: the possibility of mutual interaction of information from the

different cues allows one cue to supplement the other, or to compensate for the failure

of another cue in a flexible way.

[Depommier and Dubois, 1992] proposed to couple line processes (LPs) to spatial image

gradients (see Sect. 2.4.2). According to their definition, an edge can be inserted into

the line field at a lower cost, if it correlates with an intensity step (high gradient) in the

image. [Bober et al., 1998] include edges from an edge detection module into motion

estimation without introducing an extra line field. When an edge is present between

two sites, a cost raised for deviating motion parameters of the sites is reduced. A

similar approach has been used in the system developed in this work.

[Kolmogorov et al., 2006] combine stereo matching results with color and contrast. All

cues are integrated into one cost function for foreground/background segmentation. For

color, Gaussian mixture models are learned from the labeling for both the foreground

and the background. The probability for a color to appear, depending on the selection
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of one of the two labels, is included in the cost function. Stereo matching quality is

used as a measure to identify areas of occlusion, the actual disparity values do not

contribute to the segmentation.

[Khan and Shah, 2001] use every pixel’s 2D position, 2D motion and YUV color

parameters as input data. The parameter sets Pl of each label l contain not only a

motion vector, but color and position parameters as well. All of these are included

in the cost function for label assignment. This way, regions are assumed to be not

only of homogeneous motion, but of a typical color and location in the image as well.

Adaptive weights for the color and motion information are used to suppress the motion

term at object boundaries where it is unreliable. The reliability is determined from

the fit value of the best matching motion parameter set. The system developed in this

work has a similar approach to multi-cue integration, although the adaptive influence

of the cues is formulated in a different way.

2.6 Other Properties

2.6.1 Motion Models

The implemented motion models range from simple 2D translational motion to 2D

affine [Jepson and Black, 1993] to full 3D rigid body motion [Mitiche and Sekkati, 2006].

Gu et al. propose to use a mixture of basic models like standing, moving with constant

velocity or constant acceleration [Gu et al., 1996]. In [Chang et al., 1997] motion is

represented as the sum of parametric 2D motion and a non-parametric residual field.

Choi and Kim estimate motion stage-wise with increasing complexity [Choi and Kim,

1996].

The motion model that is used for segmentation has a great impact on the results that

can be achieved: if big rotational motion is supposed to be segmented into regions with

coherent translational motion parameters, many small parts with different motion will

be created instead of a single patch with the correct motion parameters. To account for

small 3D motions from one frame to the other, 2D affine transformations are generally

good enough for segmentation purposes [Smith et al., 2004].

Inv.-Nr.: 2006-11-02/121/IN00/2233



2.6. OTHER PROPERTIES 33

2.6.2 Motion Segments vs. Motion Layers

As defined in the introduction, a segmentation of an image consists of non-overlapping

regions that together fully cover an image. These regions are usually assumed to

contain opaque objects or parts of objects that move in a coherent, rigid way. This

way, occluded parts of objects cannot be represented. In motion segmentation these

regions are often referred to as motion layers. In contrast to the regions of an image

segmentation, some authors use motion layers that actually do overlap. This is the case

for example in [Wang and Adelson, 1994] where the actual segmentation is obtained

by a compositing process using depth ordering and opacity information in form of a

binary alpha channel of the motion layers. Other examples are approaches where the

position and shape of occluded parts of objects is estimated and tracked over time, see

Sect. 2.6.4.

The relationship between motion segments and objects varies in different approaches.

Some authors want to achieve a segmentation that corresponds to the boundaries of

real objects. Others are interested in the number of motions, which can be smaller

if multiple objects are moving in the same way, or greater if objects are split up

into multiple regions of coherent motion. Besides from erroneous over-segmentation

(multiple segments for one object), the latter can be the case whenever the applied

motion model cannot account for the motion of an object as a whole. This is the case

if rotation is approximated by local translations, non-rigid motion occurs or if objects

with significant depth discontinuities are modeled in a 2D motion scheme, e.g. [Weber

and Malik, 1997]. In [Kanatani and Matsunaga, 2002] the problem of estimating the

number of different motions vs. estimating the number of different objects is discussed.

2.6.3 Dominant Motion vs. Clustering

In [Smith et al., 2004], two different groups of techniques for layered motion estimation

are distinguished: One is based on the estimation of “dominant motion”. Here the

dominant (background) motion is determined with robust estimators, and outliers are

either assigned to one single foreground layer or iterativly divided into multiple motion

layers by the same technique, layer by layer. The opposite are “clustering approaches”,
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which estimate all motion layers at the same time. Note that this use of the term

“clustering” differs from the definition used in the rest of this work (cf. Sect. 2.3.1). For

a further discussion of the advantages of both strategies see [Moscheni et al., 1998].

These authors make the same differentiation as above using the terms “top-down” and

“bottom-up”.

2.6.4 Dealing with Occlusions

In stereo algorithms research, occlusions have been of strong interest in the last two

decades [Brown et al., 2003]. In the context of motion segmentation this has been an

issue of importance for roughly 10 years. In the literature the term occlusion is used

in two different ways: On the one hand it refers to real object occlusion over longer

periods of time, which is relevant for tracking the real shape of objects, e.g. [Yilmaz

et al., 2004] or [Xiao and Shah, 2005]. On the other hand, occlusion (and disocclusion)

is used for newly covered or uncovered areas when advancing from one image frame to

the next [Lim et al., 2002, Ogale et al., 2005], as shown in Fig. 2.4b. Here the term is

used in the latter definition, since tracking in this work is done only implicitly. If a

patch of an image I(t) is compared with displaced patches of the next frame I(t + 1),

the problem occurs in form of areas that are newly covered in the new frame and do

not have a correspondent match. If the matching is done by searching matches for

areas in I(t) in the previous frame I(t− 1), the problem concerns uncovered areas that

have previously been occupied by an object.

As mentioned in Sect. 2.1, occluded areas cause bad matching results in correspondence

computation, thus yielding bad motion estimation results. The assignment of those

areas to the correct motion layer poses a problem in motion segmentation, independent

of the actual method used for motion estimation. The detection of occlusion makes

it possible to explicitly deal with them. On top of that, knowledge about areas of

occlusion can also help during motion segmentation or in a post processing stage for

depth ordering of the motion layers [Wang and Adelson, 1994, Bergen and Meyer,

2000].

Different methods have been presented to detect regions of occlusions. Stiller proposes
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to approximate covered and uncovered regions directly from the displacement field of

the previous image frame [Stiller, 1997]. If the displacements for two positions point

to the same pixel, occlusion is likely to occur. And, respectively, a pixel that has

a displacement vector different from zero but is not target of any displacement, is

considered to be part of an uncovered region. Of course, this assumes a correct motion

estimation for the previous frame in the presence of occlusions.

In [Zhang and Hanauer, 1995] the estimation of a binary occlusion field is included

into an energy minimization process of a Markov Random Field for motion estimation:

the motion-compensation error, which is the squared difference of the brightness of a

pixel and the brightness of the pixel regarded as the corresponding one is computed for

every pixel and summed up. Areas that are labeled as occlusion areas are excluded

from this summation, and are assigned a constant penalty in the prior energy. This

way, bad-matching areas will be labeled as regions with occlusions. A similar idea is

realized in [Kolmogorov and Zabih, 2001], where pixels that have no matching partner

according to a threshold are classified as occluded.

To detect both covered and uncovered areas, matching in both temporal directions

is necessary. Depommier and Dubois use a similar method as the above, but with a

tri-state field with different labels for occlusion, disocclusion, and “normal” fixed or

moving areas. The applied energy function contains the motion compensation errors in

respect to the previous and the following image frame [Depommier and Dubois, 1992].

This way, motion information from three images is used.

In [Lim et al., 2002] it is argued that a high motion-compensation error can also be

due to other problems in the matching (e.g. noise, illumination changes, motion within

the correlation window due to non-rigid motion or motion discontinuities), and low

motion-compensation errors can result from false matching in homogeneous background

regions. They propose to use matching forwards and backwards in time, as in the

approach presented above, but only on two image frames. Binary fields are used for

labeling uncovered areas backwards and forwards in time, which is the same as one

occlusion and one disocclusion field. They also employ two displacement vector fields

for motion estimation from forward and backward matching. These are only defined for

the areas that are not affected by occlusion or disocclusion. Again, for pixels labeled
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as occlusion there is a constant penalty. The authors claim that a higher robustness

can be achieved with their bi-directional optimization.

A very different approach is presented in [Yilmaz et al., 2004]. Here a boundary-based

representation of motion regions is used. The authors propose to classify covered and

uncovered regions based on abrupt changes in the boundary size or shape.

2.6.5 Limitations

All methods and algorithms that come to use underlie certain limitations like the number,

shape and topology of objects that can be represented, or the required computation time.

Some base on special restrictive application-specific assumptions, e.g. the planarity

of the background in aerial applications [Pless et al., 2000] or a simplified camera

model [Weber and Malik, 1997]. A considerable amount of publications concentrates

on segmentation with just two motion layers, namely for foreground/background

segmentation, e.g. [Kolmogorov et al., 2006]. Others search for a single moving object

[Dubuisson and Jain, 1995], which is a similar but not equivalent constraint.

2.7 Conclusion

This chapter presented previous work on motion segmentation, combined with back-

ground information. Several criteria have been identified that can be used to characterize

approaches to motion segmentation. A classification of the system developed in this

work is depicted in Fig. 2.1.

The selection of a motion estimation scheme (dense vs. sparse) has a great impact on the

segmentation task. If motion is estimated based on sparse but reliable features, multi-

frame trajectories can be used to estimate complex motion models. The segmentation

system has to provide means for region formation in between the feature points. If

motion estimates are given in a dense form like optical flow, the segmentation system

has to deal with noisy data and false estimates caused by occlusions and motion

discontinuities. Additional constraints like smoothing can help to obtain a good

segmentation.
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Optimization-based approaches allow balancing of several information sources and

constraints. Bayesian labeling and Markov Random Fields are suitable frameworks

for this purpose. The application of Markov Random Fields to motion segmentation

represented by labeling on a 2D lattice became popular with the work of [Murray

and Buxton, 1987]. In subsequent publications, the combination of motion with edge

information and line processes to model motion discontinuities has been proposed.

The integration of color and depth information into the optimization procedure as

discussed in Sect. 2.5.2 has been attempted more recently by [Khan and Shah, 2001]

and [Kolmogorov et al., 2006] and is subject of current research.

A big part of the current state of the art and recent publications regarding motion

segmentation employs level sets for boundary representation [Cremers and Soatto,

2005, Mitiche and Sekkati, 2006, Vázquez et al., 2006], as discussed in Sect. 2.2.3.

Level sets provide a combination of more explicit boundary representations with the

flexibility of labeling approaches. The advantage of optimizing a labeling with only

local interdependencies rather than a boundary or level set phase is the possibility of

parallelization. If real-time or near-real-time computation is an issue, this might be a

crucial factor.
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Chapter 3

Multi-Cue Motion Segmentation

The system developed in this work uses labeling on a 2D lattice to represent a seg-

mentation. The labeling is obtained by optimization on a Markov Random Field. The

approach to motion estimation proposed in [Lai and Vemuri, 1998] is adopted and

integrated into the segmentation procedure. Color, depth and edge information is

fused with motion estimates in one cost function during segmentation. False motion

estimates caused by occlusions and motion discontinuities are detected and excluded

from optimization.

This chapter describes the developed segmentation system. First, a description of the

general framework is given. Secondly the implementation for motion segmentation

is presented, followed by details on initialization. The approach is then extended to

integrate additional visual cues. At last, an algorithmic description is given.

3.1 Framework

The segmentation of an image is specified by a labeling called the “configuration” of a

Markov Random Field (MRF) with one label f(x, y) = l ∈ {1, ..., L} for each site (x, y).

Related background information is given in Sect. 2.2.1 and Sect. 2.4. The number of

labels L can change during optimization and from one frame to the other. Each label l

is associated with a prototype parameter set Pl. If the used information is restricted to

motion, Pl only contains a motion vector (∆xl, ∆yl). Thus, sites with the same label
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Figure 3.1: Schematic overview of the proposed system. Motion is used for initialization and

segmentation. Additional visual cues are integrated. The segmentation of each frame in an

image sequence is done with an iterational optimization that alternates between optimizing

the configuration and the label parameters. The data resulting from the segmentation in one

time step is used as initialization for the following.

are considered to show the same translational motion. As defined in (2.10), f is the

matrix of all labelings f(x, y). The group of motion parameters Pl of all labels l ∈ L is

called P .

To determine the labeling and the motion parameters of the labels, an energy function

is introduced which needs to be minimized in order to achieve what is assumed to be

the optimal segmentation. The global energy is the sum of local energies computed

for each site. These energy functions consist of two terms: first the “fidelity” FID,

which expresses how well the prototype parameters of a label l fit the local image

properties given by o(x, y) (e.g. motion estimates) at each site, as described in the next

section. Second a regularization term REG that brings in a smoothness constraint.

The fidelity corresponds to the likelihood, and the regularity to the prior probability

in a Bayesian framework (see Sect. 2.4.3). For each site (x, y) ∈ S, the regularization

assigns a penalty for each adjacent site (x′, y′) in the 4-neighborhood N (x, y) of (x, y)

that has a different label than f(x, y):

REG(x, y, l) :=
∣∣∣{(x′, y′) ∈ N (x, y) | f(x′, y′) 6= l

}∣∣∣ . (3.1)

With the inverted Kronecker delta function δ̄(a, b), which is 1 if a 6= b and 0 otherwise
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as defined in (2.17), it can be rewritten as follows:

REG(x, y, l) :=
∑

x′=x±1

δ̄
(
l, f (x′, y)

)
+

∑
y′=y±1

δ̄
(
l, f (x, y′)

)
. (3.2)

Minimization is achieved by varying both the configuration f and the label parameters P :

(f ′,P ′) := arg min
f ,P

∑
(x,y)∈S

FID
(
x, y, f (x, y) ,Pf(x,y)

)
+ αreg · REG

(
x, y, f(x, y)

)
.

(3.3)

The estimates f ′ and P ′ are used as the new configuration and prototype parameter sets

in the next time step. Finding the global minimum by doing an exhaustive search in the

configuration space and the label parameter space at the same time is computationally

intractable. Instead, the optimization process is split up in alternating phases: in step

(a) the configuration is optimized for given label parameters, and in step (b) the label

parameters are adapted given the current configuration. These steps are iterated until

convergence is reached, yielding an 2-phase optimization in a fashion similar to the

Expectation Maximization (EM) algorithm described by [Dempster et al., 1977].

This procedure is executed for each frame in an image sequence, corresponding to the

sequence shown in Fig. 3.1 and the algorithmic description in Sect. 3.4:

1. Initialize configuration and labels

2. Iterate until convergence or maximum step number is reached:

2.1. Optimize configuration (a)

2.2. Optimize motion parameters (b)

2.3. Remove unused and duplicate labels

3. Apply motion model for prediction

4. Output the configuration as resulting segmentation

The actual optimization steps employ a greedy local optimization scheme called iterated

conditional modes (ICM) as described in Sect. 2.4.4, which is identical to Simulated

Annealing with a minimal temperature from the very beginning [Besag, 1986].

The update for the configuration in each iteration is done for all sites in a random

order, always selecting the label for a site which minimizes the energy function for that
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site:

f ′(x, y) := arg min
l

(
FID (x, y, l,Pl) + αreg · REG (x, y, l)

)
. (3.4)

The update for the label parameters in each iteration is done by selecting the parameters

for each label that minimize the sum of the energies of all sites carrying that label.

Since the regularity term does not depend on the label parameters, it can be omitted:

Pl := arg min
P

∑
Rl

FID (x, y, l,Pl) . (3.5)

3.2 Segmentation Based on Motion Information

In this work, local image motion is estimated by analyzing correspondences with a

straight-forward similarity matching scheme broadly used for optical flow estimation.

As discussed in Sect. 2.1, the problematic selection of the “winning” match is deferred

to the segmentation process. Therefore, matching results for all displacements inside a

defined search window are obtained and included in the optimization framework, as

proposed in [Lai and Vemuri, 1998] for pure motion estimation.

Popular similarity measures for correspondence analysis are the sum of absolute

difference (SAD), sum of squared differences (SSD) and cross-correlation-based measures,

with different types of normalization. In principle, all of them can be used in the

segmentation system proposed in this work.

For the remainder of this work, the sum of squared differences (SSD) has been chosen

as the measure with both good performance in the presence of image noise and fast

computation time. This choice is based on experimental comparisons, the description

of the procedure and results of the experiments are given in Sect. A as part of the

appendix.

SSD surfaces directly resemble the motion fidelity

FIDmot(x, y, l) := SSD(x, y, ∆xl, ∆yl) . (3.6)

If no other cues are being used, the fidelity for the optimization is defined as

FID := αmot · FIDmot (3.7)

where αmot is a constant weight factor.
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3.2.1 Detection of Occlusions

To detect areas of occlusion where image changes cannot be explained by motion, the

minimum of an SSD surface is used as a measure for its validity. Only if there is a

low minimum in an SSD surface, the respective motion can account for the brightness

changes in the correlation window at that particular location. When the minimum is

higher than a threshold τocc, the matching is assumed to be bogus. Such SSD surfaces

are completely set to zero, thus they do not affect motion segmentation:

min
u,v
{SSD(x, y, u, v)} > τocc =⇒ SSD(x, y, ∆x, ∆y) := 0, ∀∆x, ∆y . (3.8)

3.2.2 Optimization of Labels

The motion parameters of the labels have to be updated along with the configuration

in each iteration step. For each label l the displacement values are chosen that belong

to the minimum in the sum of all SSD surfaces of sites with label l. Hence, the new

motion parameters are the least-squares fit for the involved motion estimates:

(∆xl, ∆yl) := arg min
(∆x,∆y)

∑
(x,y)∈Rl

SSD(x, y, ∆x, ∆y) . (3.9)

Labels that are not assigned to any site are deleted from the list. Labels with identical

motion parameters are unified. This way the total number of labels L can decrease

during iteration.

3.2.3 Initialization

Besides a generic background label with ∆x = ∆y = 0, the initial labels are determined

by searching for “good” motion estimates in the SSD surfaces. These have to meet

all of the following criteria: (a) Motion needs to be clearly present, which is indicated

by bad matching results for ∆x = ∆y = 0. This condition is considered to be fulfilled

at all positions (x, y) where SSD(x, y, 0, 0) > τmov with τmov = 5. (b) Occlusion areas

are excluded, they are detected as described by (3.8). (c) The correspondence matches

have to be unambiguous, which corresponds to a peaked minimum in an SSD surface.
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The configuration of the sites is initialized by randomly assigning labels to the sites.

When segmenting a sequence of images, the label parameters are carried over to the next

frame. To account for dramatic changes or new occurrences of motion, the initialization

procedure described above is recurred in each frame to include new additional labels.

The configuration is also used in the next frame as a prediction for the positions and

shape of the segments. The motion parameters of the labels are applied to each site,

yielding a linear predictive motion model:

∀x, y : ft+1(x + ∆xl, y + ∆yl) := ft(x, y), with l = ft(x, y) . (3.10)

3.2.4 Discussion

This section has presented a system for motion segmentation based on SSD matching.

By including full SSD surfaces instead of just the best match, uncertain information in

the case of ambiguities is integrated. Areas where no motion information is present

due to missing contrast cannot be assigned to the correct segment based on the fidelity

term alone. To a certain degree, the regularization causes a filling-in of those areas.

This is demonstrated experimentally in Sect. 4.2.1. This filling-in process is rather slow

– in the worst case the labeling propagates with only one site per iteration on the whole

field, depending on the update order. For large areas without motion, the filling-in can

fail completely. Also, if a moving objects stops its motion, the segmentation is lost for

the new frames. To deal with these problems and to achieve a higher general robustness,

supplementary visual cues carrying complementary information are introduced in the

next section.

3.3 Integration of Additional Visual Cues

All visual information that comes to use here besides motion estimation is assumed to

be provided on a low-level basis as raster images. Specifically, color information, edge

images, and disparity maps obtained from a stereo camera are integrated. However,

the approach is easily extentable to include further cues like for example gray level or

color edges.
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3.3.1 Categorization

Two different kinds of cues can be distinguished. The system developed in this work

is able to include the cues in each of the two categories in a uniform manner: “areal

cues” and “edge cues”. The properties and integration concept of these two classes is

presented in the following. The remainder of this section deals with the implementation

of concrete representatives of these classes.

Areal Cues

These cues are assumed to vary smoothly across the image, and have representative

properties for objects, e.g. color, motion and depth information. Cues in this category

are integrated into the fidelity term of the energy functions as additional summands,

with a factor α that controls their influence. For each cue, a prototype parameter

vector is added to the label parameter sets Pl. These parameters need to be adapted

during optimization. The prototype parameters for each label as a whole represent a

kind of basic object knowledge.

Edge Cues

These cues contain explicit information about discontinuities, which are expected to

indicate object boundaries. In relation to areal cues they are of a differential nature,

and can mostly be computed from corresponding areal cues, e.g. edges in grayscale,

color or depth maps. Edges are integrated in the regularity term of the energy functions:

the penalty for unequal adjacent labels is reduced at edges, since they are assumed to

be coherent with object boundaries, ergo with desired segment boundaries. Again, a

factor α controls the influence of each cue.

3.3.2 Color Information

Image data for this cue are given by hue and saturation values H(x, y) and S(x, y)

for each pixel (x, y). These data are assumed to be discretized into b = 10 equally

distributed bins. Prototype color parameters for each label are given by a normalized
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two-dimensional b× b color histogram cl(h, s) of hue and saturation values. Thus, sites

with the same label are considered to show similar coloring or a similar choice of colors.

For every pixel, the histogram value corresponding to the pixel’s color is subtracted

from the energy. This way, low energy is achieved for labels whenever the pixel’s color

falls into histogram bins with a high value. Thus, labels with typical color information

for that pixel are preferred when the configuration gets optimized:

FIDcol(x, y, l) = −cl (H (x, y) , S (x, y)) . (3.11)

When adapting the label parameters, a normalized color histogram cl(h, s) of any label

l is computed by accumulating the hue and saturation values H(x, y) and S(x, y) of all

sites in the region with label l:

cl(h, s) =

∣∣∣{(x, y) ∈ Rl | (H(x, y) = h) ∧ (S(x, y) = s)
}∣∣∣∣∣Rl

∣∣ . (3.12)

Here the numerator resembles the number of cells in the region Rl, with hue h and

saturation s. The denominator stands for the total number of cells in the region R
with the label l. This cue uses histograms instead of single float values as prototypes,

in order to accommodate color mixtures within one label. Otherwise, regions with

coherent motion could be split up into multiple segments, if they show different coloring.

For a first initialization, the histograms are set to be flat. This way, they are build up

after the first iteration, exploiting segmentation of coherent motion estimates. When

advancing to the next frame in a sequence, the color histograms are preserved with the

rest of the prototype parameters.

3.3.3 Depth Information

The distance measures for this cue are given by d(x, y). They are assumed to be

proportional to the distance from the camera to the object seen at each pixel. From

disparity values, these are obtained by simply computing the reciprocal value. Locations

(x, y) where no distance information is available, e.g. due to low brightness contrast in

stereo computation, are marked with d(x, y) := −1. For each label, a prototype distance
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dl is added to the parameter set. Like for all area cues, depth information is integrated

into the fidelity term by comparing the local image features to the prototypes:

FIDdep(x, y, l) =

(d (x, y)− dl)
2 if d(x, y) ≥ 0 and dl ≥ 0

d̃ otherwise .
(3.13)

The case selection in this equation has to account for two problems: first, if there is no

depth information present at a position (x, y), FIDdep(x, y, l) is the same for all labels

and does not make a difference in the minimization process. Second, there may be

labels l without a valid depth prototype, indicated by dl := −1. This is the case when

only sites without a valid depth estimate are assigned with these labels. For these,

FIDdep has to be set to a default value d̃ = 1, while it is the normal squared difference

for the others.

During optimization of the label parameters, the prototype distances dl are set to the

mean of the distance values of associated sites:

dl =

∑
(x,y)∈Rl

d(x, y)∣∣Rl

∣∣ . (3.14)

The distance prototypes of labels that have no sites associated with them are set to

dl = −1. As with the color and motion prototypes, the distance parameters in the

labels from one frame are carried over as initialization to the following frame. If the

depth cue is used, the distance parameters play a role in the pruning of labels as well:

only if the motion parameters of two labels i and j are equal and the absolute distance

of their depth prototypes is smaller than the threshold τd, the labels are unified.

3.3.4 Brightness Edges

Edge information is obtained with the Canny edge detector [Canny, 1986]. It is

represented with a binary edge map e(x, y), which shows 1 for ‘edge’, 0 for ‘no edge’.

The penalty for a neighboring site (x′, y′) is reduced if a brightness edge goes through

exactly one of the two sites with image coordinates (x, y) and (x′, y′) respectively. This

way, it is possible to favor diverting labels at edges where object boundaries are likely
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to occur. To include the edges, the regularization term is redefined as follows:

REG(x, y, l) =
∑

x′=x±1

δ̄
(
l, s (x′, y)

)
·
(
1− αedg · δ̄

(
e (x, y) , e (x′, y)

))
+

∑
y′=y±1

δ̄
(
l, f (x, y′)

)
·
(
1− αedg · δ̄

(
e (x, y) , e (x, y′)

))
. (3.15)

3.3.5 Discussion

Applicable visual cues have been categorized into areal and edge cues. Representatives

and the implementation of their integration from both categories, namely color, distance

and brightness edges, have been presented here. While the edge cues are included in

the regularity, the area cues are integrated via the fidelity term of the cost function:

FID = αmot · FIDmot + αcol · FIDcol + αdep · FIDdep . (3.16)

3.4 Algorithmic Description

This section gives an algorithmic description of the proposed system. The steps

correspond to the boxes in Fig. 3.1.

Input

/* Scalar parameters with typical values */

1 X = 160, Y = 120 // Image width and height

2 N = 5 // Correlation window size

3 M = 15 // Search window size

4 T = 30 // Maximum number of time steps

/* Image data of size X × Y */

5 SSD(∆x,∆y, x, y) // SSD surfaces of size M ×M ×X × Y

6 H(x, y), S(x, y) // Hue and saturation image, quantized into b bins

7 d(x, y) // Depth image

8 e(x, y) // Binary edge image

9 f(x, y) // Initialized labeling

/* Prototype parameters of labels */

10 ∆xl,∆yl // Initialized motion vectors

11 cl(h, s) // Color histograms
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12 dl // Depth values

13 τd = 0.02 // Similarity margin for depth values

Algorithm

Initialization

14 fh(l) = 0, for l = 1, . . . , L // Label histogram for pruning

15 E(l) = 0, for l = 1, . . . , L // Local energy

16 t = 0; // counting the time steps

/* Generate coordinate arrays zx and zy */

17 i = 0;

18 for x = 1, . . . , X

19 for y = 1, . . . , Y

20 zx(i) = x;

21 zy(i) = y;

22 i = i + 1;

23 end

24 end

/* Create array order with random permutation of indices for coordinate arrays */

25 order = rndpermute(1, . . . , X · Y );

Optimization of configuration

Label 1:

26 changes = false; // indicates changes for convergence test

27 for i = 1, . . . , X · Y // for all sites

28 x = zx

(
order(i)

)
;

29 y = zy

(
order(i)

)
;

30 for l = 1 . . . L // for all labels

31 FIDmot = SSD(∆xl,∆yl, x, y);

32 FIDcol = −cl

(
H(x, y), S(x, y)

)
;

33 if d(x, y) ≥ 0 and dl ≥ 0 // check for valid depth estimates

34 FIDdep =
(
dl − d(x, y)

)2
;

35 else

36 FIDdep = d̃; // d̃ = 1

37 end

38 REG = 0;

39 for x′ = x− 1, x + 1 // for both horizontal neighbors

40 REG = REG + δ̄
(
l, f(x′, y)

)
·
(
1− αedgδ̄

(
e(x, y), e(x′, y)

))
;

41 end
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42 for y′ = y − 1, y + 1 // for both vertical neighbors

43 REG = REG + δ̄
(
l, f(x, y′)

)
·
(
1− αedgδ̄

(
e(x, y), e(x, y′)

))
;

44 end

45 E(l) = FIDmot + αcol · FIDcol + αdep · FIDdep + αreg · REG;
46 end

47 lnew = arg minl E(l), with l = 1, . . . , L;

48 if f(x, y) 6= lnew

49 changes = true; // label of a site has changed

50 end

51 f(x, y) = lnew;

52 fh(l) = fh(l) + 1; // count the label assignment

53 end

Optimization of parameters

54 dl = 0; // Reset mean depth values

55 cl(h, s) = 0; // Reset color histograms

56 for i = 1, . . . , X · Y // for all sites

57 x = zx

(
i);

58 y = zy

(
i);

59 l = f(x, y);

60 for ∆x = −k, · · · , k // Accumulates the SSD surfaces

61 for ∆y = −k, · · · , k

62 SSDcum(∆x,∆y, l) = SSDcum(∆x,∆y, l) + SSD(∆x,∆y, x, y);

63 end

64 end

65 dl = dl + d(x, y); // Accumulate depth value for mean

66 h = H(x, y);

67 s = S(x, y);

68 cl(h, s) = cl(h, s) + 1; // Accumulate for histogram

69 end

70 (∆xl,∆yl) = arg min(∆x,∆y) SSDcum(∆x,∆y), with ∆x,∆y = −k, . . . ,+k;

71 dl = dl/fh(l); // Divide by number of members to compute mean

72 cl(h, s) = cl(h, s)/fh(l), for h, s = 1, · · · , b; // Normalize histograms

73 end

Prune labels

74 u = 0; // counts unused labels

75 s(l) = 0, with l = 1, . . . , L; // stores label numbers for substitution

76 dupe = false; // indicates detection of a duplicate label
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/* find unused and duplicate labels */

77 for i = 1, . . . L

78 if fh(i) == 0

79 u = u + 1; // label i is unused

80 else

81 for k = 1, . . . , i− 1 // check for duplicates

82 if lh(k) > 0 and ∆xi == ∆xk and ∆yi == ∆yk

83 if αdep == 0 or abs(di − dk) < τd

84 u = u + 1;

85 s(i) = s(k); // plan to substitute label i with label k

86 dupe = true;

87 break;

88 end

89 end

90 end

91 end

92 if dupe == false

93 s(i) = i− u;

94 end

95 dupe = false;

96 end

97 if u > 0

98 changes = true;

99 end

/* update prototype parameters */

100 k = 0;

101 for i = 1, . . . , L− u

102 while s(k) < i

103 k = k + 1;

104 end

105 ∆xi = ∆xk;

106 ∆yi = ∆yk;

107 di = dk;

108 end

109 c′
l(h, s) = 0, for h, s = 1, · · · , b; // new color histograms

110 f ′
h(l) = 0, for l = 1, . . . , L− u;

111 for i = 1, . . . , L

Inv.-Nr.: 2006-11-02/121/IN00/2233



52 CHAPTER 3. MULTI-CUE MOTION SEGMENTATION

112 if lh(i) > 0

113 f ′
h

(
s(i)

)
= f ′

h

(
s(i)

)
+ fh(i);

114 c′
s(i)(h, s) = c′

s(i)(h, s) + fh(i) · ci(h, s), for h, s = 1, · · · , b; // cumulate histogr.

115 end

116 end

117 for i = 1, . . . , L− u

118 ci(h, s) = c′
i(h, s)/f ′

h(l), for h, s = 1, · · · , b; // Overwrite and normalize histograms

119 end

120 L = L− u;

/* update labeling */

121 for i = 1, . . . , X · Y // for all sites

122 x = zx

(
i);

123 y = zy

(
i);

124 f(x, y) = s
(
f(x, y)

)
;

125 end

126 t = t + 1;

127 if changes == true and t < T

128 GOTO 1;

129 end

Apply motion model

130 f ′(x, y) = 0, for all (x, y);

131 for (x, y)

132 dx = ∆xf(x,y);

133 dy = ∆yf(x,y);

134 if f ′(x + dx, y + dy) == 0

135 f ′(x + dx, y + dy) = f(x, y);

136 end

137 end

Output

138 f(x, y) // Labeling

139 f ′(x, y) // Prediction of labeling

140 ∆xl,∆yl // Motion parameters of labels

141 cl(h, s) // Color histograms

142 dl // Depth values
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Chapter 4

Analysis and Experiments

This section presents experiments evaluating the performance of the proposed system.

The influence of regularization and occlusion handling on the result is shown, and

the advantage of including additional cues is demonstrated. The system is tested on

rendered images, stereo camera images and standard video sequences.

The rendered images have been generated by the author of this work. They show

colored objects moving in front of a structured background. Ground truth data is

available in the form of a reference segmentation output by the render system. Besides

the availability of ground truth information, rendered images have the advantage of

being controllable: the amount of contrast in the image and velocity of motion can be

easily adjusted.

Camera images are used to test the system’s performance under real-world conditions.

The images have been taken by the author using a stereo camera system1 that computes

disparity maps at 25 frames per second in hardware on the camera.

To allow comparison with other systems, commonly used standard video sequences

from an MPEG encoding benchmark set are used as well2. These sequences do not

provide ground truth information.

1Videre Design STH-DCSG-STOC (STereo On a Chip), 640× 480 pixels, monochrome or color
2available at http://videonet.ece.missouri.edu/download.htm
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4.1 Quantitative Evaluation of Segmentations

In most publications on motion segmentation, the empirical evaluation of algorithms

consists of subjective judgement of segmentation results, e.g. [Altunbasak et al.,

1998, Bober et al., 1998, Cremers and Soatto, 2005, Khan and Shah, 2001, Moscheni

et al., 1998, Ogale et al., 2005, Sim and Park, 1998, Yilmaz et al., 2004]. For general

image segmentation there exist databases with images and ground truth data, e.g. the

Berkeley Segmentation Dataset3, but these databases only contain still images. To

obtain comparable results, several MPEG reference sequences4 are used for evaluation

without ground truth data, e.g. more recently by [Khan and Shah, 2001, Lim et al.,

2002, Smith et al., 2004, Vasconcelos and Lippman, 2001, Xiao and Shah, 2005].

To compare the performance of different approaches and to empirically determine

good parameter settings, an automatic quantitative evaluation of segmentation results

is desirable. A review and characterization of different quantitative methods for

evaluation of general image segmentation systems has been presented by [Zhang, 1996]

and updated in [Zhang, 2001]. A theoretical analysis of segmentation algorithms can

provide information about their computational complexity and convergence behaviour.

Further, the author distinguishes two types of data driven evaluation: empirical

goodness methods that rate actual segmentation results, and empirical discrepancy

methods that compare segmentation results to ground truth data. These two groups

are discussed in the remainder of this section, and an empirical discrepancy method is

introduced that is used for the experiments in this work.

4.1.1 Empirical Goodness Methods

The group of empirical goodness evaluation methods comprises quantitative measures

that evaluate segmentation results for given test data. In [Zhang, 1996], intra-region

conformity, inter-region contrast and region shape are proposed. These measures are an

integral part of most optimization-based motion segmentation systems and are usually

not used for evaluation of the same.

3available at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping
4available at http://videonet.ece.missouri.edu/download.htm

Inv.-Nr.: 2006-11-02/121/IN00/2233



4.1. QUANTITATIVE EVALUATION OF SEGMENTATIONS 55

To compare results with different parameter settings for one segmentation system,

the global energy after optimization can be used as a quality measure. This method

is appropriate if different initialization or optimization strategies are compared. If

however the design or parameterization of the energy function itself is evaluated, the

use of this method is of course problematic.

[Vasconcelos and Lippman, 1997] used the convergence time to evaluate their segmen-

tation results for different parameter settings. Of course this has to be combined with

other quality measures, the convergence time alone is not sufficient if the segmentation

results vary for different parameter settings.

4.1.2 Empirical Discrepancy Methods

Evaluating the empirical discrepancy means to compare segmentation results to ground

truth data. In the context of motion estimation systems, ground truth data is often

integrated in the form of error values for 2D or 3D rotation and translation, obtained

with an electromagnetic tracker or from known motor actions. This evaluation system

has been applied to motion segmentation in cases where the number of motion layers is

small, for example in combination with feature-based motion estimation in [Debrunner

and Ahuja, 1998, Huang et al., 1995, Veenman et al., 2001, Wang and Duncan, 1996]

and level set representations [Mitiche and Sekkati, 2006].

If ground truth motion information is not available, the quality of a motion estimate

can be judged by the image reconstruction error. To compute this measure for a motion

estimate, a prediction image Ît+1(x, y) based on an image It(x, y) of time step t and

the corresponding motion estimate is generated, as defined in (3.10). The quality is

determined by the mean square error MSE of the prediction:

MSE =
1

X · Y
·

X∑
x=1

Y∑
y=1

(
Ît+1 (x, y)− It+1 (x, y)

)2
. (4.1)

This measure has been applied to motion segmentation by [Lim et al., 2002] in the

form of a peak signal-to-noise ratio defined by

PSNR = 10 · log10

1

MSE
. (4.2)
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Performance measures based on the image reconstruction error only give information

about the quality of the corresponding motion estimate. To evaluate motion segmenta-

tion this alone is not sufficient, since the congruence of segments with real entities is

not taken into account.

To evaluate the actual segmentation quality, reference labelings can be used as ground

truth data. For synthetic data these labelings can be generated automatically, for real

images they have to be created by human experts. The latter introduces a subjectivity,

since different experts will most likely create different segmentations. [Unnikrishnan

et al., 2005] proposed an approach to evaluate segmentations using multiple reference

labelings.

From a segmentation f(x, y) ∈ {1, . . . , L} and the corresponding ground truth data

g(x, y) ∈ {1, . . . , Lg}, a confusion matrix Ci,j can be constructed

Ci,j :=
∣∣∣{(x, y) ∈ Ri | g(x, y) = j

}∣∣∣ . (4.3)

This matrix contains in each cell (i, j) the number of sites with segmentation label i

and ground truth label j.

If the mapping m(l) from ground truth labels to segmentation labels is known, the

percentage of mis-classified sites q(l) for each ground truth label l is a straightforward

measure, and can be computed directly from the confusion matrix as discussed in

[Zhang, 1996], by summing over the columns with

q(l) := 100 ·

(
L∑

i=1

C(i, l)

)
− Cm(l),l

L∑
i=1

Ci,l

(4.4)

where the mapping m(l) provides the segmentation label corresponding to the ground

truth label l. Equivalently, the percentage of misses for each label can be computed by

summing over the rows.

In many cases, however, this method is problematic: if the segmentation is based on

optimization and the prototype parameters of the labels are not given a-priori, the

mapping m(l) is not known and has to be determined manually or with heuristics for

each resulting labeling individually.
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Input

1 Ci,j with i = 1, . . . , L and j = 1, . . . , Lg // Confusion matrix

2 X, Y // Size of the segmentation

Algorithm

3 m(l) := 0, for l = 1, . . . , Lg; // mapping array

4 q′ := 0;

5 while
∑
i,j

C(i, j)>0

6 (i′, j′) := arg max
i,j

C(i, j);

7 q′ := q′ +
∑
i

C(i, j′) +
∑
j

C(i′, j)− 2 · C(i′, j′);

8 Ci′,j := 0, for j = 1, . . . , Lg;

9 Ci,j′ := 0, for i = 1, . . . , L;

10 m(j′) := i′;

11 end

12 q = q′/(X · Y );

Output

13 m(l) // mapping

14 q // number of mis-classified sites

Figure 4.1: Evaluation of segmentation quality based on the confusion matrix Ci,j .

The algorithm in Fig. 4.1 determines such a mapping m(l) and computes the relative

number of mis-classified sites q for a given confusion matrix Ci,j. It chooses the cell

(i′, j′) with the maximum value in Ci,j and assumes that label i′ corresponds to the

ground truth label j′. The sum of all values in the row and column of the cell (i′, j′)

excluding (i′, j′) itself is the number of sites with label i′ that have a different ground

truth label than j′ plus the number of sites that have the ground truth label j′ but

carry a different label than i′. This sum is added cumulatively to yield the total number

of mis-classified sites q′, which is divided by the number of sites X · Y to obtain the

relative number of mis-classified sites q. The values of row i′ and the column j′ are set

to zero because they have already been identified either as correct or wrong, and the

process is repeated until the matrix is empty.
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(a) Frame 6 (b) Frame 9

Figure 4.2: Two example images from the rendered test sequence “seq1” used for tests with

regularization (Fig. 4.3) and occlusions (Fig. 4.4).

This algorithm is equivalent to reordering the rows and columns of Ci,j to bring the

highest values onto the main diagonal5, and summing over all cells excluding the main

diagonal.

The normalized number of mis-classified sites q is used to quantitatively evaluate the

segmentation performance in the experiments.

4.2 Experiments with Rendered Images

In this set of experiments, segmentation is done using motion alone. The prototype

parameters of the labels contain a 2D translation vector, and the fidelity term of the

energy functions only includes SSD surfaces, as described in Sect. 3.2. A fixed weight

αmot = 100 is used to bring the SSD values up to scale. All other cues have been

disabled. The SSD surfaces are obtained using a 5× 5 pixel correlation window, and a

15× 15 pixel search window.

In each experiment with quantitative evaluation, results are averaged over 10 trials.

In each trial, the system is run on a rendered sequence, 10 frames in a row. For each

frame, the segmentation error q, i.e. percentage of mis-classified sites, is computed

when optimization has converged. Two images from the sequence are shown in Fig. 4.2.

5If Ci,j is not quadradic, the main diagonal here is the set of cells Ck,k with k = 1, . . . ,min(L,Lg)

anyway.
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4.2.1 Regularity

This experiment tests the system’s performance for different amounts of regularization,

which is controlled by varying the weight parameter αreg. All other cues and occlusion

handling are disabled. The results for this experiment are presented and discussed in

Fig. 4.3.

4.2.2 Occlusions

In this experiment, segmentation performance is tested with different settings for the

occlusion detection threshold τocc (see Sect. 3.2.1). The regularity weight αreg has

been set to the value with the best performance in the last experiment, αreg = 0.5.

The results of this experiment are presented and discussed in Fig. 4.4.

4.2.3 Color Cue

In this experiment the influence of the color cue on segmentation is analyzed. To

demonstrate the ability of the color cue to compensate for the failure of the motion

cue, the system is tested using images of a second sequence, where the textures of the

moving objects in the scene have been removed. The result of this experiment is shown

and discussed in Fig. 4.5.
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Figure 4.3: Segmentation performance depending on the amount of regularization controlled

by the weight αreg. Values are averaged over 10 trials with 10 frames each. The error bars

show the standard deviation over the trials.

The segmentation error (a) decreases as regularization becomes stronger up to the point

where αreg = 0.5. For higher weights the error steps up again because “over-smoothing”.

The example segmentations document the system’s behaviour: without regularization (c),

no smoothness is enforced on the labeling. The label of every site only depends on the

motion data. If the motion estimate is ambigous, arbitrary labels are chosen. As a result,

the segmentation looks “grainy” in the lower contrasted object on the left. With αreg = 0.4,

the segments are smooth (d). If the regularization is stronger than the fidelity, the labeling

spreads across object boundaries (e). With regularization the convergence time increases

(b), since label changes based on smoothing propagate through the field with one site per

iteration. For the following experimens, αreg = 0.5 is used.
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Figure 4.4: Segmentation performance depending on occlusion handling, controlled by the

occlusion threshold τocc: if the minimum value in a SSD surfaces is greater than τocc, the

SSD surface is excluded from the cost function. The graph (a) shows the segmentation error

depending on the parameter choice for τocc. Values are averaged over 10 trials with 10 frames

each. The error bars show the standard deviation over the trials.

If the threshold τocc is too high to be reached (c), the occlusion handling does not work. With

adequate settings 3 ≤ τocc ≤ 5, the false segments at the front border of the moving objects

are supressed. If τocc is too low, good motion estimates are discarded and the segmentation

deteriorates. For the next experiments, τocc = 4 is used.
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Figure 4.5: Segmentation performance depending on integration of a color cue, controlled

by the weight parameter αcol. This experiment was conducted on image sequence “seq2”,

which is identical to “seq1” except that object textures have been removed from this one (c).

Without the color cue, i.e. αcol = 0, the segmentation error is significantly higher compared

to the segmentation error with object textures (see Fig. 4.3). This is due to the falsely

labeled parts in the homogeneous interior area of the object surfaces (d), where no motion

can be estimated. If the weight of the color cue is raised to αcol ≥ 1, the equality of color

of the interior homogeneous area and the contrast regions at the boundary allows correct

segmentation (e). Note that the labeling of the right object, which has two colors, is not

split at the color boundary. This is possible due to the color mixture model in the form of

histograms. The use of the color cue increases the convergence time. This can be explained

with the higher number of prototype parameters that need to be estimated along with the

configuration.
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4.3 Real Image Sequences

Real image sequences are used to further evaluate the performance of the system, and

to reveal problems that did not occur in the segmentation of clean rendered images.

Results for standard sequences are shown and discussed in Fig. 4.6 and Fig. 4.7, and

for a sequence of self-recorded camera images in Fig. 4.8. The experiment of Fig. 4.9

demonstrates how the depth cue can compensate for the failure of the motion cue. The

weight parameters have been set to the values determined before. The segmentations

are displayed as contourplots overlayed over the actual images. In these plots the red

contours resemble the segment boundaries of the labeling.

(a) Frame 77 (b) Frame 78 (c) Frame 79 (d) Frame 80

Figure 4.6: Segmentation of the “foreman” sequence from the MPEG benchmark set. Here

the 3D rotation of the head is approximated with homogeneous 2D translation of the regions.

In the projection, the edge of the ear and the helmet is not moving. Thus the motion in these

parts does not match the translational motion model.

(a) Frame 7 (b) Frame 8 (c) Frame 9 (d) Frame 10

Figure 4.7: Segmentation of the sequence “ttenis” from the MPEG benchmark set. In each

frame a false segment appears in the location that will be covered by the moving ball in the

next frame. The background has low contrast in the vertical direction, and a downwards

displacement of the segment does not yield high matching errors in the SSD surfaces. Thus

this area is not detected as an occlusion area, the ball “pushes” the segment downwards.
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(a) Frame 107 (b) Frame 108 (c) Frame 109 (d) Frame 110

Figure 4.8: Segmentation of camera images from the sequence “walk3”. The system failed to

associate each of the moving persons with one region. Instead, different parts of the bodies

have been assigned with different labels. Even with a more complex motion model, this

problem would still remain: the arms move in different directions than the bodies and clothes

move in an unrigid way. In the top left corner, the movement of the person in the mirror has

been detected.

(a) Frame 109, αdep = 2 (b) Frame 109’, αdep = 2 (c) Frame 109’, αdep = 0

Figure 4.9: Influence of the depth cue. In this experiment a duplicate of frame 109 of the

“walk3” sequence has been used to replace frame 110. Thus, absolutely no motion occurs from

frame 109 to 109’. The system was started in frame 107. If the depth cue is used, disparity

information is stored in the prototype data and integrated into segmentation. This is a basic

kind of object knowledge aquired from the frames where motion has been present (a). If the

motion stops, a pure disparity-based segmentation remains (b). If the depth cue is not used

(c), segmentation fails completely if motion disappears.
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Chapter 5

Discussion

This chapter discusses various aspects of the proposed system and suggests possible

extensions. Parallels and analogies between this technical system and biological vision

systems are outlined, and a conclusion summarizes the contributions of this work.

5.1 Towards Real Time Application

The motion segmentation systems reviewed in this work are in general not yet suitable

for real time application. Computation times vary between several seconds and several

hours per frame, depending on the image resolution.

The system developed in this work is currently implemented with MATLAB. For the

computationally intensive parts, MEX functions have been generated from C functions.

On 160x120 images, the motion estimation for one frame takes around 5 seconds, and

the optimization procedure needs 0.5–8 seconds, depending on the number of integrated

cues and the number of labels. Another 1–2 seconds are spent on loading images,

preparing the data, initialization, applying the motion model and other minor tasks,

yiedling a total time of 6.5–15 seconds per frame.

To speed up the motion estimation process, resolution pyramids could be used with

a coarse-to-fine strategy as previously done by [Anandan, 1989]. This would allow

to reduce the number of unsuccessful matches attempted during motion estimation.

Hardware solutions are appealing as well, the computation of the SSD surfaces can
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be parallelized and distributed across multiple processors. The current optimization

scheme visits all sites in each iteration. A more selective strategy can be chosen to

reduce computational effort, as mentioned in Sect. 2.4.4.

Currently, motion is estimated by estracting a patch from an image at time step t and

searching for the corresponding patch in the following image from time step t+1. Thus

the motion estimate and the segmentation corresponds to the image at time step t and

not to the most recent one. For real time applications, it might be desirable to search

backwards in time to obtain a segmentation for time step t + 1 instead.

5.2 Moving Camera and Complex Motion Models

The motion segmentation system presented and tested here was designed with the

assumption of the camera to be stationary. The label l = 0 is interpreted as background

label with ∆x = ∆y = 0. If ego-motion of the camera is present, this is not applicable

anymore.

Rotation of the camera around its vertical axis in the nodal point merely induces

a homogeneous translation of the background in the image. In this case any label

other than l = 0 can take over the role of the background label, or one could abandon

the constraint of having a zero-motion background label. If the camera translates

horizontally, the direction of all background motion in the image is the same, while the

velocity depends on the distance of objects from the camera. In all other cases, e.g.

the camera moving forwards, the direction and the velocity of background motion in

the image depend on both the location in the image and the distance.

To correctly represent this non-homogeneous background motion with only one label,

the underlying motion model of the prototype parameters needs to be enhanced. As a

first step, a new special background label with a 3D camera motion model could be

introduced, while keeping the general motion model unchanged. To estimate camera

motion from local motion estimates in the presence of moving objects without knowledge

of a segmentation, an approach is needed that can deal with a high number of outliers

caused by object motion. Robust estimators with high break-down points [Sim and

Park, 1998] or the RANSAC method [Fischler and Bolles, 1981] can be used for this
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purpose. Kalman filtering [Kalman, 1960] or condensation [Isard and Blake, 1998] can

be applied to smooth the camera motion estimate, and to integrate odometry data if

available.

The general use of a more complex motion model is a possible extension to the

present system as well. Full 2D affine motion parameters will help to compute good

segmentations if large rotations or distance changes occur. The use of full motion

space surfaces in the fidelity term would probably have to be replaced with fitting of a

motion model, since the time needed to compute the supports of the surfaces grows

exponentially with the dimensionality of the motion model. Estimating the labels’

motion parameters can still be done with a least squares estimate.

5.3 Neural Analogies

The system presented in this work was not explicitly designed to be biologically plausible

or to model biological processes. Nevertheless, parts of the system and its ways of

computation are similar to structures found in human or mammal brains.

One example is the integration of edges into the segmentation process. In technical

applications, the fusion of motion and object boundary information has been a strong

focus of research [Moscheni et al., 1998].From a general segmentation perspective, edges

can help to determine a correct filling-in of regions. This has also been investigated in

the neuro sciences: [Cohen and Grossberg, 1984] proposed a perceptual model for the

primary visual cortex that realizes the filling-in of surface areas by spreading of neural

activity. This diffusion process stops at boundaries marked by brightness edges. The

system developed in this work shows a similar behaviour. Distinctly assigned labels

spread to sites with ambiguous motion estimates because of the regularization term.

At brightness edges the smoothing is reduced or disabled, thus the filling-in stops at

these locations.
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5.3.1 Motion Detection and Estimation

Sensitivity to motion can be found in different parts of the vision system of mammals,

namely the retina, the Lateral Geniculate Nucleus (LGN), and the visual cortex. The

motion selectivity in the retina and LGN does not provide detailed spatial resolution,

and is assumed to be responsible for triggering eye motion, e.g. the vestibo-ocular

reflex. In the primary visual cortex V1 (striate cortex), directional and spatial selective

neurons obtain their selectivity independently from the motion detection systems in

the retina and LGN [Squire et al., 2002].

Simple cells in the V1 show excitatory on and inhibitory off responses for stimuli

in different areas of their receptive fields. Their receptive fields are not rotationally

symmetric with an on-center and off-periphery or vice versa, but are tuned to only

respond to brightness edges with a certain orientation [Hubel, 1995].

Complex cells are also selective to orientation, but mainly respond to moving brightness

edges. They are assumed be excited by simple cells with the same orientation selectivity

and slightly displaced receptive fields. Different theories explaining the selectivity of

complex cells for motion have been proposed. One of them employs intermediate cells

as delay element, another one supposes delay phenomena caused by varying positions

of simple cells’ synapses on the dendrites of complex cells. Both theories assume that

a complex cell responds to a moving stimuli, if the phase differences of simple cell

responses correspond to the delay times [Hubel, 1995], such that multiple responses

fall together temporally.

An SSD surface as used for motion estimation in this work (see Fig. 2.3b) can be

seen as the equivalent of responses of a population of complex cells, tuned to different

directions and velocities. If correlation is used as similarity measure, the values of

a similarity surface correspond to the correlation of a pattern appearing at slightly

different positions in two time steps, which is considered to be stimulating the response

of complex cells as well.
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5.3.2 Labeling and Optimization

A labeling of sites assigns each site a label from a set of labels, and all sites with the

same label are implicitly grouped together to a region. Classical concepts of firing

rates of neurons in topology preserving maps are not sufficient to encode a multi-class

labeling, since different magnitudes of activation typically represent one fitness value,

e.g. the strength of affiliation with one label, rather than a 1-in-n coding for multiple

labels.

Simultaneous recordings of individual cells in mammal brains provided insights in

the phenomena of neural synchrony [Castelo-Branco et al., 2000]. In the context of

perceptual grouping it has been found that besides outputting electrical spikes at

different frequencies (firing rates), neurons can synchronize their spike patterns. The

effect of neural synchrony appears between spatially close neurons as well as between

neurons in different areas of the brain, and seems to occur if neurons encode the

same perceptual event or object. This suggests that the actual spike patterns encode

additional grouping information. To what extend this actually happens is subject of

a scientific debate and still part of ongoing research. However, the interpretation of

different spike patterns as labels and neural synchrony for grouping of neurons creates a

plausible analogy between labeling representations and neural effects found in mammal

brains.

The segmentation in the system presented in this work is achieved by optimization on a

Markov Random Field. The optimization of the configuration is a local process, the sites

are laterally connected for smoothing and the fidelity of each site only depends on local

image properties. This architecture is similar to Neural Field Dynamics [Amari, 1977],

but again the implementation of multi-class labeling requires additional representation

concepts.

5.4 Conclusion

This work presented a systematical review of existing approaches to motion segmentation

by analyzing proposed systems using characteristic properties. As main criteria,
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the method of motion estimation, represention of regions, the kind of the actual

segmentation algorithm and the approach to include multi-cue information have been

selected.

A motion segmentation system framework has been proposed that is able to integrate

multiple cues in a consistent way. A general classification of cues into edge and area

cues has been presented. Cues of these types can be integrated in the specified way.

In general, cue fusion and segmentation is combined into one optimization process.

This way, individual cues can compensate for the failure of others and contribute to

the general robustness of the system. In the current implementation of the system,

motion, color, depth and brightness edge information has been used. The advantage of

integrating the individual cues has been demonstrated in experiments.

Motion information is included in the form of SSD matching surfaces, rather than

optical flow that only provides the best matches. This way, data from evenly good

matches in ambiguous cases is not discarded. The same SSD surfaces provide useful

information for the initialization of the optimization process. The importance of

occlusion handling in the context of motion estimation has been shown.

The choice of a similarity meausure has been based on experimental comparison of

different metrics under varying amounts and types of noise. This experiments revealed

that SSD outperforms SAD in matching performance, and the computation of SSD

is faster than SAD on a modern CPU. It also showed that cross-correlation-based

measures function only when normalization is applied.

Color prototype information in the system is represented by 2D hue-saturation his-

tograms that resemble color mixture models. This way, regions are not split erroneously

at intra-object color boundaries, as demonstrated in an experiment.

Despite the flexibility of multi-cue integration and the good segmentation results, the

current system is limited in some ways. Motion is represented as local translational

motion. The use of 2D affine or 3D motion models would improve the performance in

cases where large rotations, changes in distance or non-rigid body motion take place.

The general approach with its special characteristics however is suited to employ other

motion models.
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Appendix A

Comparison of Similarity Measures

Various metrics have been defined to express the similarity or the difference of image

patches. Especially for cross-correlation based measures several definitions can be

found in the literature, with differences in the details of normalization. SSD measures

exist in different normalized versions as well. This section compares the matching

performance and computational requirements of different similarity measures under

noisy conditions, i.e. in the presence of Gaussian sensor noise and global brightness

offsets due to illumination changes.

A.1 Definition of Measures

The similarity measures compared here are split into two different groups. The first

group consists of measures that are based on the sum of absolute differences (SAD)

or the sum of squared differences (SSD). The best match according to these measures

is the one with the minimum value. The second group is based on cross-correlation

(CORR), here the best match is the one with the maximum value.

To normalize a measure, the sum of the brightness values are computed for the compared

image patches. The normalized derivate (Nx) of a measure x ∈ {SSD, CORR} divides x

by the square-root of the product of both patch-sums. The square-normalized versions

(N2x) use the squares of the patch-sums. The square-normalized zero-mean versions

(N2Zx) compute the (N2x) on mean-free image patches
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SAD, SSD and CORR have already been defined in (2.1-2.3). In the following, the

different forms of normalization are given for CORR. The derivates of SSD are computed

respectively. Constant normalization factors like 1
N2 are omitted, they do not influence

the optmization. All sums in these equations are computed over the correlation window

as in (2.3):

CORR(x, y, ∆x, ∆y) :=
∑(

I(i, j) · I ′(i + ∆x, j + ∆y)
)

(A.1)

NCORR(x, y, ∆x, ∆y) :=

∑(
I(i, j) · I ′(i + ∆x, j + ∆y)

)
√∑

I(i, j) ·
∑

I ′(i + ∆x, j + ∆y)
(A.2)

N2CORR(x, y, ∆x, ∆y) :=

∑(
I(i, j) · I ′(i + ∆x, j + ∆y)

)
√∑

I(i, j)2 ·
∑

I ′(i + ∆x, j + ∆y)2
(A.3)

N2ZCORR(x, y, ∆x, ∆y) :=

∑(
Ĩ(i, j) · Ĩ ′(i + ∆x, j + ∆y)

)
√∑

Ĩ(i, j)2 ·
∑

Ĩ ′(i + ∆x, j + ∆y)2

(A.4)

where Ĩ is a zero-mean image patch

Ĩ(i, j) = I(i, j)−
∑
i,j

I(i, j) (A.5)

and Ĩ ′ respectively.

A.2 Matching Performance

The matching performance of the similarity measures defined in Sect. A.1 is evaluated

by experimental comparison in several trials. In this experiments, similarity surface are

computed, as described in Sect. 2.1.2. In each trial t an independent and identically

distributed (i.i.d.) random image It(x, y) ∼ N(µ, σI) of size M × M (M = 15) is

generated, with mean µ = 0.5, standard deviation σI = 0.1 and x, y ∈ {−8, . . . , 8}.
From this image, a patch of size N ×N with N = 5 is extracted from the center and

combined with additive noise of different types:

I ′t(x, y) := It(x, y) + nt(x, y), ∀x, y ∈ {−2, · · ·+ 2} . (A.6)
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Figure A.1: Performance of similarity measures under noisy conditions, indicated by the

percentage of correct distinct best matches. In (a) additive Gaussian noise is used to model

sensor noise. In (b) a constant offset is added to model illumination changes. N2ZCORR

performs best under all conditions, followed by N2ZSSD and N2CORR. NSSD and N2SSD

have no advantage over SSD, which yields better results than SAD. CORR and NCORR

perform unacceptable even without noise.

This image patch is compared to the original image using each of the similarity measures.

The performance of a similarity measure is rated by the percentage of trials where the

correct match (i.e. ∆x = ∆y = 0) is the distinct best match.

The same experiments have been done with equally distributed noise images as well.

The results are similar to the results presented here, both in quality and quantity, if

the contrast c = max
(
I(x, y)

)
−min

(
I(x, y)

)
of the brightness values is chosen to be

c = 3σI = 0.3.

To model sensor noise, the term nt(x, y) is chosen to resemble i.i.d. Gaussian noise

N(0, σ). Figure A.1a shows results for different standard deviations σ. Each data

point is the average hit rate over 10000 trials. CORR and NCORR show unacceptable

performance with hitrates below 10% and 30% respectively, even without noise at

σ = 0. The performance of the other measures is very good up to σ = 0.1, which is

equal to the standard deviation σI of the Gaussian noise generating the original image,

or 1/3 of the contrast if equally distributed noise is used to generate the images. SAD

and N2ZSSD perform slightly worse than the rest. The hit rates of all measures is

affected by the additive Gaussian noise.
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Global illumination changes in this test are modeled with a constant brightness offset

nt(x, y) := δ. Figure A.1b shows results for different levels of this offset. Each data

point is the average hit rate over 10000 trials. Again, CORR and NCORR show

unacceptable performance. The performance of the measures N2ZSSD and N2ZCORR

that operate on mean-free image patches is not affected by the global brightness offset.

SSD, NSSD and N2SSD perform similarly good up to the offset δ = 0.1 which is equal

to the standard deviation σI for Gaussian noise images or 1/3 of the contrast for equally

distributed noise images. Their performance decreases for greater offsets, while the hit

rate of N2CORR is longer at 100%. The performance of SAD decreases earlier and

faster than the SSD hit rate.

A.3 Computation Time

In this section, the computational performance of the similarity measures defined in

Sect. A.1 is compared. All of them have been implemented in seperate MEX functions

(C-Code), and executed 106 times on random image patches of the same size as in the

previous tests for all possible displacements. A dummy measure without any actual

computation has been implemented to measure the overhead time spent in the function

for parameter fetching and initalization of variables. If the code of a metric is directly

integrated in a C program, this time will decrease.

The MATLAB profiler has been used to measure the computation time, the test has

been run on a IBM Thinkpad with a Pentium M Processor with 1.4 GHz.

The results for this experiment are shown in Fig. A.2. The computation time of a

similarity measure clearly depends on the type of normalization that comes to use.

The unnormalized measures SAD, SSD and CORR are the fastest, the normalized and

square-normalized measures NSSD, N2SSD, NCORR and N2CORR need 2.5 times as

long, and the measures operating on mean-free image patches N2ZSSD and N2ZCORR

take 3.5 times longer.

Some authors prefer to use the sum of absolute difference (SAD) over the sum of

squared difference (SSD) measure for performance reasons: the operations to compute

the absolute value in the SAD equation are assumed to be computationally cheaper than
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Figure A.2: Computation time of similarity measures for 106 iterations. The dark parts

of the bars depict the functions’ approximate overhead time of 6.29 s as measured with a

dummy metric. This time is included in the numeric results. The normalized measures NSSD,

N2SSD, NCORR and N2CORR need around 2.5 times the CPU time of the unnormalized

measures SAD, SSD and CORR, and the mean-free measures N2ZSSD and N2ZCORR need

around 3.5 times as long. SSD is slightly faster than SAD.

the multiplication needed for the SSD. This might be true for older CPUs and smaller

processors used in embedded systems, that cannot execute floating point multiplications

in one clock cycle. The results in Fig. A.2 show that SSD is faster than SAD on a

modern Pentium CPU. Although the unnormalized CORR is even faster, it is not

suitable for use due to bad matching performance.

A.4 Conclusion

Nine similarity measures have been tested on their performance under additive Gaussian

noise and additive brightness offsets. The CPU time requirements have been anaylized

as well.

Unnormalized correlation (CORR) and the normalized correlation (NCORR) are not

usable for correspondence matching, since their ability to detect the correct best match

is under 30% even without noise. The sum of squared differences (SSD) metric performs

better than the sum of absolute differences (SAD), plus it takes slightly less time to

compute on modern CPUs.
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The metrics operating on mean-free image patches N2ZSSD and N2ZCORR are not

affected by constant brightness offsets. N2ZCORR performs slightly better than

N2ZSSD in the presence of Gaussian noise. With the invariance to constant offsets,

these measures are assumed to be more robust to abrupt illumination changes. This

advantage has to be paid for with significantly higher computation cost.

The square-normalized zero-mean cross-correlation N2ZCORR (also called covariance

measure) is appealing to be used for the proposed system because of the good perfor-

mance under noisy conditions. The sum of squared differences (SSD) performs equally

good under Gaussian noise and can deal with a considerable brightness offset as well.

Also, its requirements of computation time are significantly lower. Therefore SSD has

been selected for the system developed in this work.
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Thesen

• Bei der Bewegungsschätzung zeigt das SSD-Maß bessere Performance als SAD

bei verrauschten Bildern.

• Auf modernen Hauptprozessoren wird SSD schneller berechnet als SAD.

• Kreuzkorrelationsbasierte Ähnlichkeitsmaße bedürfen einer Normalisierung.

• Regularisierung ermöglicht das korrekte Segmentieren innerer Teile von homoge-

nen Flächen.

• Wenn visuelle Merkmale (Cues) in einem Segmentierungsprozess fusioniert wer-

den, können sie Ausfälle von anderen Merkmalen, z.B. Bewegungsinformation,

kompensieren.

• Visuelle Merkmale (Cues) können in Kanten- und Flächen-Cues unterteilt werden.

Merkmale der gleichen Klasse können auf einheitliche Weise in den Segmen-

tierungsprozess eingebunden werden.

• Die Einbindung und Nutzung von mehrdeutigen Ergebnissen einer Bewe-

gungsschätzung verbessert die Segmentierungsleistung.
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