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Zusammenfassung

Zusammenfassung

Für sinnvolle Anwendungen im Bereich der autonomen Robotik sind Objekt-

informationen und -modelle der Gegenstände, mit denen interagiert werden

soll, eine Grundvoraussetzung. Um die zeitaufwändige, manuelle Bereitstel-

lung solcher Daten zu vermeiden, ist ihre autonome Generierung ein aktuel-

les Forschungsthema.

In dieser Arbeit wird ein Ansatz vorgestellt, der es einem Roboter ermög-

licht die Objekte in seiner Umgebung durch autonome Interaktion zu seg-

mentieren. Hierfür werden Objektkandidaten aus den Daten eines RGB-D

Sensors extrahiert. Für die tatsächlich beweglichen Objekte wird dann ein

3D Modell generiert und segmentierte Farbbilder erstellt. Diese Daten kön-

nen dann (nach Verarbeitung in weiteren Verfahren) die Grundlage sinnvol-

ler Interaktion bilden.

Um zu prüfen, ob ein Objektkandidat beweglich ist, schlägt diese Arbeit die

Interaktion mit dem Objekt durch Schieben vor. Die Interaktion mit dem Ob-

jekt wird außerdem zur Erzeugung von Änderungen in den Sensordaten ver-

wendet. Diese Änderungen ermöglichen es, zu schlussfolgern, welche Teile

der Sensordaten zum jeweiligen Objekt gehören. Durch wiederholte Planung

und Interaktion wird das Objektmodel vervollständig. Wendet man diese Vor-

gehensweise auf alle Objektkandidaten an, erhält man für jedes bewegliche

Objekt ein 3D Modell und die zugehörige Segmentierung.

Das vorgestellte Verfahren wird mit einem Roboterarm und einem RGB-D

Sensor in einer echten Umgebung mit alltäglichen Objekten ausgewertet.

Die Resultate zeigen, dass unser Verfahren in der Lage ist, akkurate Model-

le von Objekten zu erzeugen. Des Weiteren zeichnet sich unsere Segmen-

tierung durch eine hohe Genauigkeit aus. Unsere Experimente zeigen, dass

eine zuverlässige Manipulation von Objekten durch Schieben möglich ist.

Zusammenfassend erlaubt das in dieser Arbeit vorgestellte Verfahren eine

autonome Erfassung von Objekten in der Umgebung als Grundlage sinnvol-

ler Anwendungsszenarien.
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Abstract

Abstract

To perform any meaningful task autonomous robots need to be provided

with information and models about the objects they should interact with. To

overcome the tedious task of supplying these models by hand, autonomously

acquiring such knowledge is an area of active research.

In this thesis we propose an approach that enables a robot to segment

objects of interest from a working surface through autonomous interaction.

The approach selects object candidates from a RGB-D sensor view. For the

candidates found to be actual movable objects it generates a 3D model and

segmented views of color images that can then be employed in further sys-

tems.

We propose to interact with object candidates through push actions to de-

termine whether an object candidate is a movable object. These push actions

are also used to generate changes in the sensor view that in turn serve to

infer, which parts of the sensor view constitute the object of interest. By

planning successive push actions on the current model, we iteratively im-

prove the model of the object. Applying this method to all object candidates,

we retrieve a 3D model and a segmentation of each movable object.

We evaluate our approach using a robotic manipulator and a RGB-D sensor

in a real environment with everyday objects. Our results show that the pro-

posed approach is capable of accurately modeling the objects. Furthermore,

our segmentation is in high accordance to the ground truth. Our experiments

show that the proposed pushing algorithm allows a robust manipulation of

objects. Overall, our system enables an autonomous exploration of objects

in the environment.
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1
Introduction

In the current state of the art in service robotics 3D models and segmented

images play an important role. They are the key to enable autonomous inter-

action of robots with its environment. They are needed for, e.g., grasping or

detecting objects. The object model helps to find suitable grasps, while the

segmented images can be used to train an object classifier or detector. Often,

manual segmentation is used to obtain such training data. The process is su-

pervised, and thus time-consuming and therefore also expensive. The object

model is also not readily available for many real-world objects. It must be

generated manually using a CAD software or with a 3D scanner, e.g., RGB-D

sensors or laser scanners.

Example applications, where object detection and manipulation plays a

fundamental role, are found in the household service context. Think about a

robot that needs to carry out household activities like setting up or cleaning a

table or fetching items. Without knowledge of its environment, the robot has

to be capable of learning how objects in the environment look like. Figure

1.1 shows a scene with different objects. An interaction task, e.g., tidying

up the table, requires information about them. For carrying out household

activities it is also important to decide whether an object can be moved or

if it is rigidly connected to the environment. A simple manipulation is often

enough to decide if they are movable. Furthermore, object detection is a

basic skill for household robots, e.g., for searching an object that is to be

fetched.

We present an approach to autonomously acquire such enabling informa-
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1. Introduction

(a) Scene with segmentation (b) Reconstructed 3D model of the lower
left object in Figure (a).

Figure 1.1.: For further processing of the objects, as grasping or object de-
tection, it is advantageous if the objects are known in-depth.
Our approach is designed to autonomously extract a three-
dimensional object model and a segmentation of the color im-
age for each object. Furthermore, since we manipulate objects,
we can be sure that the objects are movable and not rigidly con-
nected to the scene.

tion. The problem is divided into two components. First, we propose how to

model objects and how to segment them from the environment, and second

we present our approach for manipulating objects.

Our object modeling algorithm is based on motion of the objects. Such

motion causes a change in the sensor readings that were taken from the

scene. We denote these changes as change set. The changes belong to the

object if the assumption holds that only one object is moved between two

consecutive sensor readings of the scene. Using the changes we can compute

the motion of the object, i.e., the transformation, which allows to combine

several change sets into a single three-dimensional object model. In addition,

if no changes were detected in the sensor data, the object has not moved.

Thus, the corresponding object is assumed to be not movable and can be

neglected in further processing. By iteratively performing the above steps,

we get a more and more complete object model. Furthermore, we project

the object model into the corresponding color image of the current view to

2 Daniel Kuhner
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retrieve the segmentation of the color image.

To allow an autonomous exploration of the objects in the environment

an active manipulation is required. There are various ways for a robot to

manipulate the scene at hand, where grasping is the most popular one. It has

the advantage that it allows to lift up an object from the scene and transport

it to another location, e.g., from a table to a book shelf. Furthermore, it is

a good technique for reconstructing objects since they can be rotated by the

manipulator in front of the sensor to scan the complete surface.

However, grasping is not applicable if the objects are too heavy or too large

for the manipulator. It is also problematic if no object model is given to com-

pute the grasping points. Another possible way for manipulation is pushing.

Pushing has some advantages over grasping. It allows to manipulate larger

and heavier objects. Additionally, the hardware that is required for pushing

is typically cheaper and less complex compared to grasping hardware. For

example, the manipulator can consist of a single finger, whereas grasping re-

quires at least two movable fingers or some special hardware (e.g., vacuum

based). Aside from this, pushing is mostly a two-dimensional planning prob-

lem, since pushing is done on a surface – the manipulation planning is thus

less involved when compared to grasping, which is done in 3D.

Nevertheless, stable pushing is not an easy to solve problem. For a perfect

motion prediction we need the support distribution (how friction acts in a

location dependent way) between the object and the working surface. It is

needed to compute the center of rotation. Its location is highly dependent on

the support distribution. For instance, an object that has a buckling bottom

surface has another center of rotation than an object with a flat surface.

Unfortunately, support distributions are hardly available. This means that we

cannot predict the motion perfectly – we need to rely on some approximating

assumptions.

It becomes apparent that the geometric center is a sufficient approxima-

tion in our setup. Our approach describes how the manipulation is planned

to avoid collisions with other objects. Furthermore, we suggest to execute

translational and rotational push actions separately. This allows a robust

interaction with the objects.

Daniel Kuhner 3
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1.1. Contribution

In this thesis we propose an approach that enables a robot to autonomously

segment objects of interest from a working surface through active interac-

tion. In particular, we introduce

• a set of rules to infer which of the changes in RGB-D sensor readings

caused by a displaced object belong to the object itself,

• an approach to merge a number of such changes for an object into a

consistent 3D model and color image segmentation,

• a method to displace an object by a desired amount through a push

interaction,

• and a coordinating framework that without prior knowledge detects

object candidates on a working surface and subsequently plans and

executes manipulations to incrementally build 3D models and segmen-

tations for the actually movable objects.

1.2. Organization of the Thesis

The remainder of this thesis is organized as follows. After we discuss related

work, Chapter 2 gives an overview of the proposed system. Then, in Chapter

3 we introduce the object modeling and segmentation. The object modeling

is based on changes between point clouds. They are the result of an au-

tonomous manipulation of the scene. The manipulation is done by pushing

and is described in Chapter 4. Afterwards, Chapter 5 evaluates the proposed

approach by a series of real-world experiments. Finally, Chapter 6 concludes

the thesis.

1.3. Related Work

In the context of autonomous training data generation, i.e., object modeling

by manipulation and object manipulation by pushing, very recently, a few
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papers were published. Hermans et al. [19] propose an approach that uses

object manipulation by pushing for separation of object clusters. Unlike our

approach, they extract visual edges to detect objects. The visual edges are

used as an initial push location. ICP (Iterative Closest Point) [52] is then

used to determine the motion of an object. Each object cluster is assigned to

an orientation histogram containing n bins. Such a histogram keeps track of

already executed pushing actions in the corresponding direction. As soon as

every bin is nonzero, an object is assumed to be separated from others. If a

cluster is split by pushing, two new clusters are generated with new orienta-

tion histograms. We also use ICP and changes in point clouds to estimate the

motion after the manipulation. However, we are not only interested in sep-

arating objects. We also want to generate a three-dimensional model in an

autonomous way. Therefore, the pushing actions must be planned because

we need to get a view from each side of the object.

The segmentation of a pile of objects was recently done by Katz et al.

[25]. A segmentation algorithm based on edge detection in the depth im-

age and normal discontinuities provides an initial guess about objects. This

guess is then verified by manipulation and a subsequent check if this seg-

mented patch in the old scene can be detected in the scene again by a set of

features, e.g., SIFT, color histograms, etc. Finally, reliably detected objects

are removed from the scene. In this thesis the tracking step is done by ICP.

Our aim is object modeling and segmentation for generating training data.

Thus, we need to compute a transformation between different object views

to merge them.

Another closely related approach was proposed by Krainin et al. [27]. They

describe how a robot with a manipulator can be used to model a grasped

object. By rotating the objects in front of a depth sensor a three-dimensional

mesh is generated. The approach selects the next view position by sampling

positions around the object. Each candidate is then evaluated considering

the view quality and the actuation costs. Due to occlusions that are caused

by the manipulator the robot has to put the object on the table and computes

a new grasping position to map the whole object. For mapping they propose

a probabilistic method based on signed-distance functions. Their approach

Daniel Kuhner 5
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is only applicable, if the object is graspable. To allow processing of non-

graspable objects, we propose manipulation by pushing. We also do not need

to consider filtering out the manipulator, since the manipulator can leave the

scene before taking a sensor reading.

In the following, the related work in the area of object modeling, manipu-

lation and segmentation is discussed.

3D Reconstruction Based on different object views we build a 3D object

representation based on point clouds. Most of the related object modeling

algorithms are based on the setup of a moving camera and a static scene. In

our approach, the setup is the other way round. The camera is static and

a single object is moved in the scene. In this thesis, the computation of the

transformation between two object views is done by ICP. Each view is then

integrated into a model that is represented by a point cloud.

A high fidelity approach for 3D reconstruction – named “KinectFusion” –

was proposed by Izadi et al. [23]. The Kinect depth sensor from Microsoft is

moved around to create a three-dimensional model of an indoor scene. The

depth data is used to track the sensor position. The views are combined to

retrieve an accurate object model. To allow a real-time computation, Kinect-

Fusion is implemented on the GPU (graphical processing unit). It also allows

augmented reality applications such as virtual interaction with the scene or

physical particle simulations (see Figure 1.2).

A similar approach was published by Henry et al. [18]. They use RGB-D

features (SIFT) to estimate correspondences between views. Then, RANSAC

is used to filter out bad correspondences. Finally, ICP aligns the views using

the transformation that is estimated from the visual features. Their approach

is however not capable of modeling a single, segmented object as we do.

Object Manipulation The robotic manipulation of an object can be done

in different ways. The most common is grasping. Rao et al. [37] propose an

approach to grasp novel objects for cleaning a cluttered table. They segment

the image by examining depth information. A supervised learning classifier

decides whether a segment in the image is suitable for grasping. The pro-
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Figure 1.2.: KinectFusion: A related approach for precise 3D reconstruction
in real-time. It also allows an augmented particle simulation
[23].

posed approach uses the three-dimensional point cloud to plan an antipodal

grasping motion (i.e., the fingers of the manipulator are placed on opposite

points of an object).

Saxena et al. [42] also present a method to grasp unknown objects. Op-

posed to the approach by Rao et al. they do not rely on a three-dimensional

model of the object. Potential grasp points are located in two or more im-

ages of the object. A triangulation of these points obtains the 3D location for

grasping. They use a supervised learning algorithm to identify grasp loca-

tions in the images.

Hsiao et al. [20] analyze how an object can be grasped to deal with uncer-

tainty. They conclude that grasping human-designed objects is often possible

by starting from above or from the side of the object. Then, the manipulator

is aligned with the principal axis of the object. Finally, the manipulator tries

to grasp the object around its center. In addition, tactile sensors can be used

to compensate uncertainty while grasping.

One problem with grasping is that it cannot be applied to objects too large

or heavy for the employed manipulator. Grasping also requires a quite good

understanding of the object’s shape to be accurate. However, if we only want

to move objects on a planar surface, e.g., a table, pushing and pulling are

alternatives to grasping.

Daniel Kuhner 7
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Pulling has disadvantages in the hardware context. It requires to grasp the

object or it needs some special hardware to maintain contact with the object

during motion, e.g., using a rope that connects the object and the robot. On

the other hand, pushing is feasible with less complex hardware. We argue

to use pushing because we assume that objects are unknown and can be too

heavy for lifting them or too large to be grasped by a gripper.

One of the first works in the context of robotic pushing was presented by

Matthew Mason in the 1980s. He studied the physical basics of object push-

ing [30, 31]. Mason assumed that the motion of the object is quasi-static,
i.e., there is always a contact point between the object and the manipulator

– this can be achieved by slowly pushing. It turns out that the complete pre-

diction of pushing is only possible if the support friction between object and

environment surface is known.

Peshkin and Sanderson [35] explain how the center of rotation can be de-

termined if the support friction is known. Lynch and Mason [29] show how

to push objects without knowledge of the support friction if multiple contact

points are available, e.g., when using a gripper with two fingers. They search

for pushing directions, where the object remains fixed to the manipulator,

namely the stable pushing directions. We approximate the center of rotation

since the support distribution is unknown for many real-world objects.

Mataric et al. [32] use two communicating robots to accomplish box push-

ing. Both robots push cooperatively to retrieve more stable and faster results.

The combination of pushing and grasping is advantageous if objects are lo-

cated side by side in a setup with high sensor noise. Dogar and Srinivasa

[12] present an approach to resolve situations in which direct grasping is

not possible. The manipulator is used to push the object into free space un-

til grasping is possible. A similar approach was presented by Omrcen et al.

[34] (see Figure 1.3). Their publication describes an algorithm to learn how

objects will react to manipulation. There, a robot executes many different

pushing manipulations and observes the object after each manipulation. In

doing this, their approach takes at least 50 steps to get adequate results.

Using this learned model, an object that cannot be grasped directly can be

pushed to another location for grasping.

8 Daniel Kuhner
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Figure 1.3.: Pushing an object to enable grasping: Since the manipulator
is not able to grasp it directly, the robot pushes it to the edge
of the table for grasping. The physical parameters are initially
unknown and learned by a series of manipulations [34].

Segmentation Many approaches that were presented in the last years de-

scribe different techniques to segment images. Segmentation approaches can

be based on variational methods. They use energy minimization to find the

segmentation. Examples of such methods are built with level sets or graph

cuts. Level sets are three-dimensional functions whose zero pass describes

the segmentation of the two-dimensional image [28, 53]. Shi and Malik [45]

propose a segmentation algorithm based on a graph partitioning problem.

They use normalized cuts, which is a global measure for both the dissimi-

larity between different groups (differently labeled areas) and the similarity

within a group.

There exist statistical approaches for segmentation, too. These can be re-

garded as estimating the most probable contour in the image [6, 26]. There

are various other techniques to segment an image, including contour-based

segmentation [4] or simple thresholding.

Segmenting an image is often ambiguous, since the segmentation can only

use the data of one image, e.g., contours, colors and so on. In many cases,

this results in a poor segmentation quality. When motion comes into play,

i.e., in a video sequence, segmentation gets more accurate, since coherently

moving areas in a sequence of images are more likely to belong to a single

Daniel Kuhner 9
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object. Thus, we also rely on motion in this thesis to model and segment

objects.

In the field of motion segmentation, which is based on time dependent two

dimensional data, Brox and Malik [9] propose an unsupervised approach

using long-term point trajectories. Such point trajectories are obtained using

an optical flow based tracker on a video sequence. The trajectories are then

labeled by a clustering algorithm. Occlusions can also be handled. Due

to computational reasons point trajectories are sparse. Using a hierarchical

variational approach, the sparse segmentation can be turned into a dense

one [33]. Based on optical flow many other approaches were proposed [10,

44, 48, 51].

By building a three-dimensional model from all changes, the segmentation

of the color image can be done using a projection from the 3D space into

the image space. While the above mentioned motion dependent approaches

need to track points in the image, our approach uses ICP for matching three-

dimensional point clouds from different views. Furthermore, our approach

actively triggers the motion itself.

10 Daniel Kuhner



2
Overview and Background

First, we give an overview over all components of the proposed system and

how they are combined. Subsequently, the notation, which is used through-

out this thesis is introduced. Finally, we discuss the mathematical prelimi-

naries and basic algorithms.

2.1. Object Modeling and Segmentation by
Pushing

The key idea of the approach is to use a manipulator to examine an unknown

scene by pushing objects. Therefore, we place a manipulator in front of the

objects that have to be explored. A statically mounted RGB-D sensor pro-

vides a point cloud and color image of the scene. Based on this, the system

decides, which parts of the point cloud are movable object candidates using

a heuristic. The object candidate is then pushed by the manipulator to gener-

ate a motion. Before and after each push action, the RGB-D sensor provides

new data. By analyzing two consecutive point clouds we can check if a mo-

tion took place. Motion causes a change of depth in the new point cloud,

where depths are the distances from the points to the sensor. The changes

are used to compute a change set, which contains points of the moved ob-

ject. The rules for computation are later on described in details. Based on

the information of the change set, the segmentation and modeling is done. If

a motion took place, we know that the object candidate is movable and can

Daniel Kuhner 11
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2. Overview and Background

Figure 2.1.: System overview: A manipulator is used to push objects on a
planar surface. By pushing and sensing the changes induced by
a moving object we can segment it from the background and
estimate a 3D object model.

be further explored. On the other hand, if the object did not move, we can

conclude that it either belongs to the background, it is blocked by another

object or it is too heavy. Furthermore, it is possible to combine the point

cloud parts that have changed into a three-dimensional object model. Itera-

tively, the quality of the segmentation and object model can be improved by

incorporating the results of new push operations. Once the object is regarded

as fully known, the next movable object is considered. Figure 2.1 shows how

the approach is designed.

We do not need to know the object’s pose and 3D model before executing

the first push operation. Nevertheless, we assume that
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• the objects are located on a planar surface, e.g., a table,

• the objects that have to be segmented are reachable by the robot ma-

nipulator (other objects are ignored),

• the objects are rigid,

• only one object is pushed at once and

• the RGB-D sensor’s point of view is constant over time (but it is not

necessary to continuously acquire sensor data).

Whenever an object is moved, a change between consecutive point clouds

can be detected by sensing the scene before and after every pushing action.

This change has two consequences that we are interested in:

1. The object has moved, which implies that the object is not rigidly con-

nected to the background, i.e., the working surface.

2. The change between two successive point clouds can be regarded as

part of the pushed object. We explain this in more detail in Section 3.1.

In conclusion, the iterations of pushing and sensing result in a segmenta-

tion and a 3D model of the corresponding object. If an object is regarded as

fully known, the next potential object will heuristically be determined from

the unknown scene until all objects are known. Thus, after all objects have

been processed, it is possible to segment the complete scene into background

and reachable, movable objects.

2.2. Notation

We will write position vectors as bold lowercase (e.g., x), while direction

vectors are written with an arrow on top of the letter (e.g., ~n). Matrices are

bold uppercase letters (e.g., R). Sets will be denoted as script letters, e.g., C.
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2. Overview and Background

We use the L2-norm for vectors x ∈ Rn denoted by

‖x‖2 =

√√√√ n∑
i=1

x2i . (2.1)

Furthermore, we use the L1-norm (Manhattan distance) between x ∈ Rn and

y ∈ Rn

‖x− y‖1 =
n∑
i=1

|xi − yi| (2.2)

for distance computation in a grid world.

In the following, we define the basic data we use in the remaining chapters.

A point cloud is given as a set of n points pi ∈ R3

P = {pi | 0 ≤ i ≤ n}. (2.3)

A change set contains the points which appear or disappear between two

views (see Section 3.1).

The normal of a point pi in P is the vector

ni ∈ R3, ‖ni‖2 = 1 (2.4)

of length one. Its direction is orthogonal to the surface of P at pi. In practice,

the normal is estimated on a surface patch around pi. Section B.1 explains,

how the direction of the normal is determined.

Furthermore, the geometric center of a point cloud is estimated by the

arithmetic mean over its points:

µ =
1

|P|
∑
p∈P

p. (2.5)
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2.3. Mathematical Background

Before the approach is introduced, we give a short overview over the math-

ematical background and algorithms that we use in the thesis.

Principal component analysis (PCA) is a tool for converting a set of values

into linearly uncorrelated values. The principle components are orthogonal

and in the direction of the largest variance of the data. We use PCA to esti-

mate the size of an object, and with it the distance an object must be moved

during manipulation. The PCA can be solved using a singular value decom-
position. It describes a decomposition of a matrix into three special matrices

and is closely related to the eigenvalue decomposition.

We need to know the normals of point clouds to predict how an object must

be manipulated to move it to a defined goal. Since manipulation by pushing

is basically done on a surface (i.e., the object is not lifted up), we assume

that the objects are placed on a planar surface. Thus, the planning and

movement prediction requires the estimation of the working surface (e.g.,

the table). We use the RANSAC algorithm to estimate it.

Given the working surface a planning step is needed for manipulation. It is

performed via the A* algorithm in the configuration space of the object. The

configuration space contains all possible object configurations (i.e., repre-

sented by its location (x, y) ∈ R2 and the rotation θ ∈ [0, 2π)) on the working

surface. Using A*, a collision free path can be planned to manipulate the

objects.

Each configuration of the configuration space is assigned to a score that de-

scribes the quality of the corresponding configuration. We model the scores

with potential fields consisting of potential values. Finally, the tracking of

objects is done via the iterative closest point algorithm. It estimates a trans-

formation to align two point clouds.

For a more detailed presentation of the algorithms and concepts men-

tioned above we refer the reader to Appendix A and B.
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2. Overview and Background

Summary

We use a robot to manipulate objects by pushing. A three-dimensional object

model is determined based on the change in the point clouds caused by the

manipulation. The object model also allows to estimate the two-dimensional

segmentation of the color or depth image.
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3
Object Modeling using Changes in Point Clouds

We base our object modeling and segmentation algorithm on motions, and

thus changes in the scene. Therefore, we actively manipulate objects. Before

and after each manipulation a RGB-D sensor provides a point cloud of the

environment. Due to the motion, the object causes changes in consecutive

point clouds, which are used to track the object with the ICP algorithm.

Furthermore, a three-dimensional object model can be built by combining

the changes in the point clouds. Finally, the projection of the 3D model into

the color image also allows a 2D segmentation.

3.1. Change Sets

Motion is a helpful tool for both segmentation and object modeling. In the

context of point clouds that are produced by a statically mounted RGB-D

sensor, the changes between two consecutive point clouds are influenced by

motion. Under the assumption that only one rigid object moves between two

consecutive point clouds, we consider the change to belong to this object.

We use the set of changes for object modeling and also segmentation. In

Chapter 4 we discuss, how an object must be moved to get a suitable change

set between two point clouds. Figure 3.1 shows an example of such a change.

More formally, we have two point clouds P (old view) and Q (new view).

A change set contains the changes between two point clouds, where a change

is measured between two corresponding points in P andQ. Since the RGB-D

sensor is assumed to be static, corresponding points can easily be determined
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3. Object Modeling using Changes in Point Clouds

(a) View before motion (b) View after motion

Figure 3.1.: The figure shows the change sets between two consecutive
frames. In the old view the disappearing points are marked
(blue), while new view contains the appearing points (red).

by their location in the depth image. In the following, two corresponding

points are denoted as p and q. We define the z-coordinate pz of a point p as

the depth of the point, i.e., its distance to the sensor center. Finally, we get

two change sets. The first one, C−, contains the points that belong to the old

view (disappearing change set), while the second one, C+, contains the points

of the new view (appearing change set).

There are three possible options if we only regard the structure of the

scene, i.e., its depth:

pz = qz: p and q are equal. Thus, such points do not contribute to a change

set, since we assume that no sensible motion happened.

pz > qz: The depth of the new point is lower than the corresponding old

depth. The membership of points in a change set is determined in the fol-

lowing way:

• New point q: The new point is closer to the camera. In this case the

new point can always be added to the change set of appearing points

18 Daniel Kuhner
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Old
New

Background

q2

p2

p1

q1

(a) We have to take care of old points
(p1, p2). They need not to be part of
the moved object (p1) – they also can
belong to the background (p2).

Old
New

Background

qi
pi

(b) An old point pi can be added to
the disappearing change set if it al-
ready belongs to the object in the old
view. A new point qi is always part of
the appearing change set.

Old
New

Background

qi

(c) If the old point pi does not belong
to a known object, we cannot be sure
if the old point is background or not.
Thus, it is not accounted for in the dis-
appearing change set.

Figure 3.2.: The figure illustrates how we perform the change set compu-
tation between two point clouds if the new depth of a point is
lower than the corresponding old one. All points with a new
depth that is lower than the old one belong to the object, and
thus they are added to the appearing change set. If we look
at the corresponding old points we have to distinguish between
points belonging to the background and points, which are part
of the moved object. If the object never moved before, we can-
not be sure whether the old point is part of the object or belongs
to the background.
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3. Object Modeling using Changes in Point Clouds

Old

New

Backgroundq2

p2 p1

q1

(a) We cannot distinguish if a point
in the new view belongs to the back-
ground or to the object (q1 versus q2).

Old
New

Background

C+

C-

(b) Only the old points pi (blue) are
added to the disappearing change set.

Figure 3.3.: If the old depth of a point is lower than the corresponding new
one, only the point of the old cloud can be added to the dis-
appearing change set. No points are added to the appearing
change set, since we cannot distinguish between background
and object in the new view – it is still unknown. Whether a
point belongs to the object will be determined later in the ICP
step (see Section 3.2).

Old
New

Background

C-

C+

(a) In this example, all visible points
of the old view belong to the dis-
appearing change set (blue). From
the appearing points (red) only those
are part of the appearing change set,
whose depth is lower than the old one.

Old
New

Background

C+

C-

(b) All points can be considered.

Figure 3.4.: Examples of change sets: Blue corresponds to disappearing
points and red points appear in the new view.
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C+. Figure 3.2 visualizes these points (marked with qi).

• Old point p: The old point needs more differentiation (see Figure 3.2

(a) for an illustration). The old point can also be part of the back-

ground. Since we are interested in modeling a single object and re-

move the background from it, the old point belongs only to the change

set of disappearing points if p was already a part of the object in the

old view. Thus, if the old point belongs to the object we can be sure

that it is not part of the background. All other points do not belong to

C− (see Figure 3.2 (c)).

pz < qz: The new point lies farther away from the sensor than the old point.

The corresponding points are added to the change sets as follows (Figure

Figure 3.3):

• New point q: Whether a point in the new view belongs to the back-

ground or the object will be estimated later by ICP. Therefore, such

points are ignored in the change set computation. They are not part of

the appearing change set.

• Old point p: The old point is closer to the camera. It can always be

added to the change set of disappearing points C−. (see Figure 3.3

(b)).

If depth is equal, it is also possible to add visual changes (e.g., color). In

doing so, the change set’s size will increase. Thus, it is getting easier to match

the change set against a point cloud with ICP (see Section 3.2). However, in

practice, there are problems with light changes and shadows. We can avoid

this problem by taking the depth-only change set and make sure to move the

object far enough (see Chapter 4). Two examples for change sets are shown

in Figure 3.4.
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3. Object Modeling using Changes in Point Clouds

Old
New

Background

Figure 3.5.: The disappearing change set is matched against the new view.
Based on this transformation we update the object model.

3.2. Object Tracking and Modeling

Tracking an object means to estimate its motion. There are various methods

to track an object. It can be done with the ICP algorithm, which calculates the

transformation between two point clouds. As mentioned, we move a single

object in a scene. Between each motion a point cloud of the current scene

is provided by a RGB-D sensor. Based on two point clouds we compute the

change sets (see Section 3.1). These can be used to estimate the motion, i.e.,

the transformation of the object between two views. Figure 3.5 illustrates

the transformation.

In our approach we use ICP to estimate the transformation of a change set

to a point cloud. Let P and Q be two points clouds, where P is assumed to

be the older one. Then, the change sets are given by C+ and C−. C+ contains

a subset of points of Q, whereas C− is a subset of P.

There are two possible ways to estimate the transformation. Either C+ is

matched against the old view P or vice versa – matching C− against Q. In

practice, we can compute both transformations to have a simple indicator to

discard incorrect estimated transformations. They should be inverse to each

other. However, it is advantageous to estimate the transformation from the

disappearing change set C− to the new view Q. In general, compared to C+,

C− contains more points for matching (see Section 3.1).

Let T ∈ R4×4 be a homogeneous transformation matrix that contains the
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estimated translation and rotation of the object. Since T is homogeneous,

the points in the following equation are considered to be homogeneous, too,

i.e., p = (x, y, z, 1). We compute the three-dimensional model On of the

object by combining the change sets and the current model.

Therefore, let

PT =
{
T · p1,T · p2, ...,T · p|P|

}
(3.1)

be a transformed point cloud. After n object movements we get the new

object model by

On = OT
n−1 ∪ CT− ∪ C+. (3.2)

The more geometric features the object has, the better ICP will work. How-

ever, there is a problem whenever the change set contains too few points.

Such a small change set can lead to a transformation estimation of poor

quality. To avoid this, we can compute an enlarged change set by consider-

ing other views. For example, if the appearing change set C+ between the old

view n and new view m is required, we can choose an arbitrary view as the

old view (i.e., replacing view n by some other view) to compute C+. Hence,

the change set size can be maximized to improve transformation estimation

and the object model quality.

Furthermore, it is also possible to maximize all change set sizes at the end

of the registration process to optimize the final result.

3.3. Preprocessing of Point Cloud Data

Before beginning to map objects in the scene we need to prepare the data

provided by the RGB-D sensor. This section is subdivided into the following

problems:

1. Filter the point cloud P to remove sensor noise.

2. Use RANSAC to detect the surface plane: As mentioned in Section 2.1
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3. Object Modeling using Changes in Point Clouds

Figure 3.6.: Noisy points of a point cloud: The red dots correspond to points,
which have an above-average variance in depth across several
sensor readings. We ignore these points in further computation
steps to avoid false positives in the change sets.

the objects are assumed to be placed on a planar surface. We use the

RANSAC algorithm (see Section B.2) to detect this surface in the point

cloud. As a result, we get a two-dimensional plane in the 3D space.

The estimation is necessary, since the following planning and pushing

problem is solved in 2D on this plane.

Noisy points in a point cloud can be a problem since they are wrongly

added to the change sets. They occur on object edges, where sensor readings

jump between different depth values. Figure 3.6 shows an example of such

points. Pushing an object results in the expected change in the point cloud

plus some noise at edges of other objects. If we do not account for these

points the assumption that only one object was moved simultaneously cannot

be fulfilled anymore – we may have changes at every object.

Assuming a statically mounted RGB-D sensor, corresponding points in dif-

ferent point clouds can be determined by their location in the depth image.

To address the sensor noise we measure the variance in depth at each point

over a number of frames. The variance in depth is an adequate measure to

detect the jumping sensor readings. Theoretically, the depth of each point
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should not change if the scene is static and the RGB-D sensor does not move.

Hence, the depth variance is under a threshold ε if the point does not change.

We are interested in computing the mean depth and the variance of all

depth values of n collected point clouds. They can be determined using the

following estimator [50] of the expected value:

µ =
1

n

n∑
i=1

zi, (3.3)

where zi ∈ R is the depth of a point in the i-th view. The estimator for the

corresponding variance is then given by

σ2 =
1

n− 1

n∑
i=1

(zi − µ)2 . (3.4)

All points, which have an estimated variance σ2 > ε are rejected from further

consideration.

3.4. Image Segmentation

Segmenting an object from the background is important for generating train-

ing data for, e.g., an object detector. The 3D object model, which is gener-

ated from each view can be regarded as a three-dimensional segmentation

into object and background (every point of the scene, which does not belong

to the object is background). Just as segmenting in the three-dimensional

space, we can segment the color or depth image that is also provided from

the RGB-D sensor. Applying a projection of the current 3D object model into

the images yields the two-dimensional segmentation. Figure 3.7 shows an

example of the resulting segmentation of the color image.

Using the simplest camera model, namely the pinhole camera model [17],

the projection of a point X = (X, Y, Z) to a point x = (x, y) on the image
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3. Object Modeling using Changes in Point Clouds

Figure 3.7.: The projection of the current object model into the color image
yields the segmentation of the image.

X

x

Y

X

y
x

p
C

Image Plane

Principle AxisCamera Center

(a) Pinhole camera model

Y

C Zp

f

fY / Z

(b) The projection depends on the focal
length f

Figure 3.8.: The pinhole camera model describes the projection of a 3D
point to a plane.

plane is done by

x = f · X
Z

and y = f · Y
Z
. (3.5)

Figure 3.8 (a) and (b) illustrate how the projection works.

To allow a better approximation of reality additional parameters are con-

sidered for the projection. They are named intrinsic camera parameters: the

location of the principle point p (location of the center in the image plane),

the size ratio of a pixel denoted by mx and my and the skew parameter s,

which is zero for most cameras.
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Based on the above camera model a more general projection matrix P can

be defined by

P = KM, (3.6)

where

K =

mx · f s px
0 my · f py
0 0 1

 (3.7)

is the intrinsic camera matrix, which contains the internal camera parame-

ters. Furthermore, the matrix

M = (R | t) (3.8)

describes the pose of the sensor in relation to a global coordinate system,

where R ∈ R3×3 and t ∈ R3 are the rotation and translation, respectively.

Based on Equation (3.6) the object model O can be projected into the color

or depth image, which yields the 2D segmentation:

x = P · p. (3.9)

Summary

We use motion to segment objects from the background in a point cloud and

color image provided by a RGB-D sensor. When moved, the object causes a

change in the point cloud. We denote the appearing and disappearing points

as appearing change set and disappearing change set, respectively. They are

computed using the presented rules. We build a three-dimensional object

model by combining several change sets. The object’s transformation be-

tween two views is estimated by ICP. Due to sensor noise it is important to

filter out points, which have a high variance in depth. These points mostly

occur on edges, where points jump between different depth levels. Further-

more, the planar working surface is estimated by RANSAC, which is nec-
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3. Object Modeling using Changes in Point Clouds

essary for the following planning of manipulation actions. Finally, the 3D

object model can be also used to do a 2D segmentation of the color and

depth image using a projection.
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Pushing Objects

Autonomous object modeling and segmentation by scene manipulation needs

a manipulator that is able to push or grasp items. We propose manipulation

by pushing since accurate grasping requires in-depth knowledge about the

object, e.g., a spatial object model. Based on the idea to start exploration

without any prior knowledge of the scene it is therefore easier to use push-

ing than grasping. Pushing also allows removing the manipulator from the

scene before acquiring sensor data. Hence, we do not have to filter out the

manipulator from the sensor data.

There are different ways and purposes for manipulating objects. We dis-

tinguish between an initial manipulation and an informed object interaction.

The initial object manipulations are used to determine movable object can-

didates using a heuristic. Then, the robot tries to manipulate the object

candidate. If no moving object is detected, we assume that it belongs to the

environment, is too heavy or is blocked by another object or by the environ-

ment. On the other side, if motion takes place, we can regard the object as

movable, i.e., the object candidate will be further explored. Based on the

manipulations, we build a 3D object model using the algorithm presented

in Chapter 3. Therefore, the robot manipulates the object in such a way

that complete object modeling is possible. The planning and pushing algo-

rithms use the continuously updated object model to improve the quality of

the manipulations. Finally, we show how to execute an intended pushing

manipulation with a robotic gripper. We use a two-finger-gripper to allow

stable manipulations.
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4. Pushing Objects

4.1. Using an Object Model for Manipulation

In an unknown scene, we only have partial information – there is only what

we can see in the camera image. We also do not know if some part of the

scene is an object or background. The parts of the scene that are occluded

cannot be used to decide which operation to do next. By regarding all views

collected so far, we can build a 3D representation of an object (see Chapter

3) using the object’s motion. Each object manipulation improves the model

by insertions of new views. We will first consider the case where a partial

object model is already given, i.e., we know where the object is. Afterwards,

in Section 4.2, we discuss, how object candidates can be found in the scene.

The object model is used to plan the manipulations. The planning step

computes the next preferred pose of the object based on the object model

generated so far. We plan a collision free path from the current pose to the

goal pose to avoid collisions with other objects or the scene.

We set up a configuration space, which contains discretized object config-

urations. A* searches a path from the current object pose to the goal pose in

the configuration space of the object.

4.1.1. Object Configuration Space

In the described setup we push objects on a planar surface. This implies that

the necessary transformation is a three-dimensional one. A configuration

c = (x, y, θ) (4.1)

is therefore given by its location x, y and the orientation θ.

Let the configuration space of an object be given by

C ∈ R2 × [0, 2π), (4.2)

where each configuration c corresponds to a potential value. The intuition

behind the potentials is that they describe the quality of an object configu-

ration. Thus, configurations with a high quality are the preferred ones in
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0

1

Figure 4.1.: Example for a combined, attractive and repulsive 2D potential
field. It was clamped to a maximum value for illustration.

the path planning algorithm. We plan a path from the current pose to the

goal pose using the potentials. The planning algorithm uses the potentials

as a cost function. The configuration with the lowest potential corresponds

to the current goal configuration. Finally, the manipulator executes the com-

puted path. A formal definition of potential fields can be found in Appendix

B.3. Figure 4.1 shows an example of a potential field.

The potential function U(c) assigns a potential value to a configuration

c. It is computed by summation over the repulsive and attractive potential.

The repulsive potentials correspond to configurations, which are more likely

to be blocked (e.g., a configuration that is out of reach of the manipulator

gets a high potential). On the other hand, attractive potentials correspond to

possible goal configurations. We will now show how the potential field U(c)

is defined in our setup.

Repulsive Potential: Working Area of the Robot and Objects A robot

normally has a constrained working area. In general, each configuration

of the regarded object that lies outside of this working area (on the planar

surface) has to be neglected as a potential goal configuration. We set the

potential of those configurations to a high constant value which results in a

repulsive potential.
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4. Pushing Objects

Additionally, all objects in the working area of a robot must be accounted

for. These are all objects, which are visible in the current point cloud. For

the potential we assume that all points, which lie above the working surface

belong to an object. But we also have the information about known objects,

which the robot already has moved and partially modeled. The known object

models may contain more information about the occluded areas. Thus, they

are completely considered as a repulsive potential.

Consequently, we define the potentials of inadmissible configurations by a

high value dmax. All other configurations get a potential depending on the

inverse distance to the closest repulsive potential:

U−(c) =

dmax, c not possible

dmax − d, else
, (4.3)

where d is the Euclidean distance between c and the closest configuration

that is not admissible. The effect of U−(c) is that inadmissible configurations

get a high potential and will not be used in the planning step. On the other

hand, admissible configurations get a lower potential and can be used for

path planning. The larger the distance to an inadmissible configuration is,

the lower and better the potential will be. Hence, the planning algorithm

prefers configurations that correspond to locations at the center of the work-

ing area of the manipulator. It also avoids configurations that are in conflict

with other objects.

Attractive Potential: Favored Translation and Rotation For the goal con-

figurations we design an attractive potential. Hence, the configurations that

correspond to the preferred distance and angle get an attractive potential.

How far an object should be pushed depends on its size. A large object has

to be pushed further than a small one to get a suitable change in the point

cloud. If the change is too small, we cannot use ICP to match the change set

against the point cloud of the current view, which means that the estimated

transformation can be of poor quality (see Chapter 3). Thus, we need to

determine the size of an object to find an appropriate distance for pushing.
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We define the size as the object extents in the directions of the first two

principle components (see Figure 4.2 (a) for an illustration). Let these axes

be given by the direction vectors ~o1 ∈ R2 and ~o2 ∈ R2. The origin of the axes

is the geometric center m ∈ R2 (see Section 2.2). Based on the two axes,

we can compute the length of the object in the corresponding directions.

Projecting all object points onto both axes gives the size estimation. The

projection is given by

P1 =

{
(pi −m) · ~o1

~o1 · ~o1

· ~o1

∣∣∣∣ 0 ≤ i ≤ n

}
and (4.4)

P2 =

{
(pi −m) · ~o2

~o2 · ~o2

· ~o2

∣∣∣∣ 0 ≤ i ≤ n

}
. (4.5)

The size in each direction is then the maximum distance between two points

on the axes:

l1 = max
pi,j∈P1

{
‖pi − pj‖2

}
and (4.6)

l2 = max
pi,j∈P2

{
‖pi − pj‖2

}
. (4.7)

Depending on the angle between push direction and the axes we can

choose

d∗1 = ξ1 · l1 or d∗2 = ξ1 · l2 (4.8)

as the push distance. ξ1 and ξ2 are weighting parameters. Setting ξ1 to 0.5

would mean pushing 50% of the object extent in the direction of the first axis.

To allow more flexibility in planning, d∗i is the mean of a normal distribution

with a user defined standard deviation of σ:

Udist
+ (c) = − 1

σ
√
2π

exp

{
−1

2
·
(
d((x, y), oi)− d∗i

σ

)2
}
. (4.9)

d((x, y), oi) is the orthogonal distance between the configuration position and

the corresponding axis oi. Figure 4.2 (b) illustrates how the potential is

constructed around the object using Equation (4.9).
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(a) We apply PCA to a point set to estimate
the extent of the corresponding object
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(b) Attractive potential field of pushing dis-
tance: dark gray corresponds to the lowest
potential, i.e., preferred goal positions

Figure 4.2.: The two principle components of an object are used to estimate
its extent. Based on the extent we compute the attractive po-
tential field of the preferred pushing distance. A larger change
set improves the transformation quality of ICP.

To map all sides of the object the robot also needs to rotate it since the

camera is assumed to be static. We decided to rotate the object by a user

defined value θ∗. θ∗ is the mean of a normal distribution with a standard

deviation of σ, too:

U rot
+ (c) = − 1

σ
√
2π

exp

{
−1

2
·
(
θ − θ∗

σ

)2
}
. (4.10)

θ = 0 means no rotation of the object.

Summing up all potentials yields the final potential for a configuration,

which is used for path planning.

4.1.2. Planning a Collision Free Path

In the context of small object movements path planning plays a minor role,

since most of the push operations can be performed directly without any
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intermediate step. Nonetheless, in general, a complex movement with inter-

mediate steps is possible. To avoid a local minimum as a goal configuration

we do not use gradient descent based planning (see Appendix B.3 for de-

tails). Instead we use A* for planning (Appendix B.4).

First, we need to choose a goal configuration from C. Attractive potentials

are low and thus appropriate goal configurations. It makes sense to use the

configuration with the minimum potential value as the goal configuration.

The distance function between two configurations is given by

d(c1, c2) =

∣∣∣∣∣∣∣∣(x1y1
)
−
(
x2
y2

)∣∣∣∣∣∣∣∣
1

· U(c2) (4.11)

Our heuristic

h(c) = ||c− cgoal||1 · U(cgoal) (4.12)

is admissible, since in a grid the Manhattan distance is admissible and U(cgoal)

is the minimum of all potential values.

4.2. Exploration of Unknown Objects

So far, we only considered the case where an object model is already given

for manipulation planning. Unknown objects require an initial manipulation

to get a first object model, which is then used for further processing (see

Section 4.1).

Whenever the robot needs to explore unknown parts of the environment it

carries out initial push operations. As there is no in-depth information about

the objects in the scene, we use the point cloud data to find possible object

candidates and locations where the manipulator can push them. To avoid

that the robot slips off the object at edges resulting in difficult to predict

object movements, it should push objects at the center points of surfaces.

The normals of the point cloud are used to find potential pushing loca-

tions in the scene. We use a region growing algorithm to detect appropriate

surface patches where the robot can push. As a result we get regions with
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homogeneous normals. The region growing algorithm works as follows:

1. Compute the normals ~ni of the current point cloud P = {p1, ...,pn}.

2. Choose an arbitrary point pi and its normal ~ni as a start point.

3. Find the set of neighbors Pi and corresponding normals Ni of pi.

4. To be more robust against outliers we compute the mean of the neigh-

bor normals:

~µ =
1

|Ni|
·
∑
~n∈Ni

~n. (4.13)

5. Recursively, find neighbors and compute in each case the angle be-

tween ~µ and the normals in the neighborhood. The point belongs to

the region, seeded by pi, if the angle between ~µ and a neighbor normal
~np is lower than a threshold ε:

arccos

(
~µ · ~nq

‖~µ‖2 · ‖~nq‖2

)
≤ ε. (4.14)

The recursion stops if no more neighbors can fulfill Equation (4.14).

6. Repeat the steps 2) to 5) until all points were processed.

To find a suitable surface where the robot can push we choose the largest

region (number of points belonging to it). However, we must account for the

normal direction. Regions with normals that are orthogonal to the working

surface normal are more suitable to push than normals pointing upwards.

Thus, we choose the largest region but neglecting regions with normals par-

allel to the working surface normal. The center of the selected region is then

used for pushing. Since there is no in-depth information of the object the

direction is set in such a way that the robot pushes the object in the inverse

normal direction. Both location and direction are used to execute a linear

push operation as explained in the next section.
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4.3. Object Manipulation

Finally, we present how the objects can be moved if the goal location has

been decided. We assume that the robot’s gripper consists of two fingers. In

the planning step they are regarded as points. Rotational and translational

movements are considered separately to allow more accurate movements.

The planning problem is considered to be a two-dimensional one. Both trans-

lational and rotational manipulation requires the projection of the 3D object

model to the working surface. Afterwards, the concave hull of the projected

points is computed. This can be done using α-shapes (see Appendix B.6 for

details). Let the concave hull be given by an ordered set of line segments

H = {(s1, e1) , ..., (sn, en)} , (4.15)

where si ∈ R2 is the start point and ei ∈ R2 the end point of the correspond-

ing line segment.

4.3.1. Physical Assumptions

It is not possible to compute the motion of an object without knowledge of

the support friction S(x). The support friction is the location-dependent fric-

tion between object and working surface. Both translational and rotational

movement are strongly dependent on it because the center of rotation will

differ if the support friction changes. In real applications it is difficult to

estimate S(x).

For a known support friction the center of rotation can be computed [35].

It is also possible to learn how an object will move given a set of push actions

as proposed by Omrcen et al. [34]. However, their learning approach needs

approximately 50 push actions for convergence. We approximate the center

of rotation by the geometric center. In doing so, the rotational push actions

will always cause a translational movement. However, in our setup it is

adequate to use this approximation, since we need to map the whole object.

In the experiments it will be shown, that the executed rotational push action

approximates the planned rotation quite well.
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c

d

s

Figure 4.3.: The robot places the gripper at the push point s and pushes the
object in the direction ~d. c is the geometric object center. The
rectangle illustrates the object.

Furthermore, all pushing forces lie in the horizontal plane and the gravity

acts in vertical direction. Both the manipulator and object move in the hor-

izontal plane. The friction is uniformly distributed over the support plane

between object and working surface. In addition, pushing motions are exe-

cuted slowly enough such that inertial forces can be neglected. This is called

quasi-static assumption, i.e., pushing forces are balanced by the frictional

forces in the support plane.

4.3.2. Translational Manipulation

The push point of a translational push action is set in such a way that the

force is acting into the direction of the center of rotation. As denoted earlier,

we approximate the center of rotation by the geometric center. The push

direction and distance are determined in the planning step that is explained

in Section 4.1 and 4.2.

Let the push direction be given as ~d ∈ R2. We have to find the intersection

of the object border with the line that is defined by the geometric center

c ∈ R2 and the opposite push direction to get a stable push action. Figure

4.3 illustrates the computation of how the push point s ∈ R2 is computed.

Based on this point the object can be pushed (see Figure 4.4 (a)). Such
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(a) Non-stable manipulation
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s

Gripper Position

(b) Stable pushing manipulation

Figure 4.4.: To allow a more stable motion of the object we propose to move
the gripper to a position where the gripper fingers are placed
orthogonal to the pushing direction ~d. c is the geometric object
center.

push actions can cause a drift between gripper and object – the object may

move in the wrong direction. We propose to place the gripper in such a way

that it is orthogonal to the pushing direction. Therefore, it is necessary to

move the push point on the edge of the object to find an adequate position

(see Figure 4.4 (b)).

The full algorithm consists of the following steps:

1. Project all object points onto the working surface given by RANSAC.

2. Compute the concave hull H, i.e., the shape of the object (α-shapes).

3. Find the intersection of the opposite pushing direction (a line segment

that starts at the geometric center and has the opposite pushing di-

rection) with the shape. Since there can be multiple points in con-

cave objects that has an intersection with this line, we choose the one,

which has the largest distance to the geometric center. This is reason-

able because the other intersection points may lie at difficult to reach

positions. This intersection is the pushing point.

4. The pushing point can be moved to find a better position, which leads
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c

s

Gripper

(a) Rotational pushing

c

n1 n2

s1 s2

(b) Where should the rotational pushing
start? s1 is the favored pushing point.

Figure 4.5.: The rotational pushing is done by moving the gripper on a on an
arc around the geometric center. The pushing starts at a point
where the normal and pushing direction point in preferably op-
posite directions to avoid drifting between object and gripper.

to a more stable movement. Therefore, the point is moved on the bor-

der until a position is found that allows the gripper to be placed orthog-

onally to the pushing direction. Also, both fingers have to be in contact

with the object at this location. The maximum distance for moving the

pushing point is bounded by a threshold. Otherwise, it is not moved.

5. For execution we move the gripper to the pushing point and then lin-

early in the pushing direction until the required distance is reached.

4.3.3. Rotational Manipulation

Rotating an object is important for object modeling. It is done by placing the

gripper at a location on the edge of the object. Then, the gripper is moved

on an arch around the geometric center (Figure 4.5 (a)). To reduce drifting

between object and gripper, the pushing direction and object normal should

point in opposite directions (Figure 4.5 (b)). In this example, s1 is preferred

over s2. In contrast to s1, s2 is a bad pushing point since pushing on an arc

around the geometric center is difficult at this location.

The algorithm for rotational pushing consists of the following steps:
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1. Project all object points onto the working surface given by RANSAC.

2. Compute the concave hull H, i.e., the shape of the object (α-shapes).

3. Based on the ordered set of the line segments of the concave hull we

compute the shape normals ~ni ∈ R2.

4. Choose the point with the largest angle between the normal and push

direction. The push direction is assumed to be perpendicular to (c− s)

at the beginning. To avoid that the gripper slips off the object at corners

a minimum distance to the end of the corresponding line segment in H
is enforced.

5. Finally, the execution of the rotation is done by moving the gripper on

a circular path around the geometric center of the object that starts at

s.

Summary

We use a robotic manipulator for manipulating objects on the working sur-

face. Therefore, the object modeling algorithm, which we describe in Chap-

ter 3 computes a 3D model of the object using its motion. Based on the

projection of this model to the working surface we construct a configura-

tion space that contains possible configurations of the object. Potentials are

assigned to each configuration that correspond to the quality of a configura-

tion. There are two types of potentials: repulsive and attractive potentials.

The repulsive potentials correspond to configurations that are not suitable

(e.g., out of reach of the manipulator or colliding with other objects). On the

other hand, attractive potentials describe preferred goal configurations. The

final potential is the sum over both potential types. Then, the A* algorithm

is used to find a path in the configuration space from the current pose to

the pose with the lowest potential resulting in rotational and translational

push actions. At the beginning, no object model is available. Thus, we do an

initial manipulation. Region growing on the normals gives a set of regions
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with uniform normals. They are used to find an initial pushing point. Finally,

we divide the manipulation in a translational and rotational pushing action

resulting in robust pushing.
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5
Evaluation

First, we describe the experimental setup. We shortly present the hardware,

i.e., the manipulator, the RGB-D sensor and the robotic platform. Addition-

ally, the implementation is presented. Afterwards, we evaluate and charac-

terize the approach in a number of experiments.

5.1. Experimental Setup

We use the robotic platform omniRob from KUKA with a mounted manip-

ulator, namely the Light Weight Robot (LWR). For stable push operations,

a Schunk WSG gripper is mounted as an end-effector. For acquiring point

clouds and color images we use the ASUS XtionPRO LIVE RGB-D sensor. We

implemented our software using the Robot Operating System (ROS) and the

Point Cloud Library (PCL).

We placed the objects on a table in front of the robot. The robot uses

its manipulator to move the objects. Furthermore, we mounted the RGB-D

sensor on the gripper. The sensors location remained static when taking new

point clouds, i.e., after each manipulation the gripper returned to its sensor

location. The manipulator is accurate enough that the assumption of a static

placed sensor holds. Figure 5.1 (a) shows the setup. We use the ARToolkit

in some experiments to detect marker poses [2].
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(a) Experimental setup (b) omniRob from KUKA

Figure 5.1.: We use an omniRob from KUKA with a mounted Light Weight
Robot. The objects are placed on a table in front of the robot.

5.1.1. KUKA omniRob with Light Weight Robot

To perform the experiments we used a omniRob research robot from KUKA
Laboratories GmbH, Augsburg (Germany). Figure 5.1 (b) shows an image of

the robot. The platform itself has dimensions of 1.15 m × 0.86 m and a total

weight of approximately 250 kg. It is equipped with two laser range finders.

Four independently powered omniMove wheels allow an omni-directional

movement. We use the platform only for controlling the manipulator – it

was not moved for the experiments. In our experiments the mounted Light
Weight Robot (LWR) is used for pushing the objects. It has seven degrees

of freedom. The manipulator is capable of measuring the torques in each

joint and therefore the external forces acting on the end-effector. A tool, for

example a gripper or a hand can additionally be mounted to the LWR.

5.1.2. Schunk WSG Gripper

A gripper was mounted as an end-effector of the manipulator for the push

operations. We used a WSG 50 gripper from SCHUNK GmbH & Co. KG,

Germany (see Figure 5.2 (a)) [43]. It has two fingers with integrated force

sensors. The force sensors allow a sensitive grasping of objects. A grasping

force of 80 N allows to elevate objects with a maximum weight of 0.8 kg.
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(a) Schunk WSG 50 [43] (b) ASUS XtionPRO LIVE [22]

Figure 5.2.: The gripper allows stable pushing of objects. The RGB-D sensor
from ASUS provides point clouds, color and depth images.

The maximum distance between both fingers is 105 mm. We only use the

two fingers of the gripper to allow a stable push action. The force sensors

were not used in our experiments.

5.1.3. ASUS XtionPRO LIVE

We use an ASUS XtionPRO LIVE RGB-D sensor to acquire point clouds and

color images [21, 22]. Figure 5.2 (b) shows the RGB-D sensor, which is used

for the experiments. An advantage of this sensor is its small size. Further-

more, no external power supply is needed. The operating range lies between

0.8 m and 3.5 m, while the angles of aperture are 58◦, 45◦ and 70◦ (hori-

zontal, vertical, diagonal, respectively). Beside color and depth images the

camera can record audio signals via a stereo microphone.

5.1.4. Software

The software was implemented in C++ on the basis of the Robot Operating
System (ROS) [38]. ROS is an open source library, which includes many use-

ful tools for implementing software in the robotics context. Amongst others,

it handles the communication between different ROS nodes (i.e., executa-

bles running based on ROS). We use the Point Cloud Library (PCL) [41] for
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Figure 5.3.: User interface of our implementation

processing the point clouds generated by RGB-D sensor data. Additionally,

the RoboticsAPI from KUKA is used for controlling the manipulator. Finally,

we developed a graphical user interface that contains a 3D-viewer for visu-

alization of the environment and the objects (see Figure 5.3).

5.2. Experiments

We evaluate the different aspects of our approach by a series of experiments.

First, the quality of the object models is examined visually. Beside the vi-

sual results, we determine the accuracy of our model-based segmentation

in a quantitative way. Afterwards, we present the results on the quality of
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(a) Shoe (b) Book (c) Cutlery box

(d) Cereal box (e) Cup (f) Beaker

Figure 5.4.: Objects used in the experiments

our push manipulations. We also show, how the number of objects on the

working surface influences the table estimation. Finally, the last experiment

motivates and analyzes the filtering of jumping points in consecutive, static

point clouds. Figure 5.4 shows the objects that were used in the experiments.

5.2.1. Quality of the Object Model

The presented approach is designed to generate training data for, e.g., object

grasping by manipulating the objects in the scene. Figure 5.5 shows three

views of resulting 3D object models. Objects with enough geometric features

are modeled quite accurately.

For predominantly rotationally symmetric objects, like the cup or the beaker

shown in Figure 5.6, ICP does not match the handle in the correct way. The

point cloud of these objects does not contain the complete surface. For in-

stance, the point clouds of a cup acquired diagonally from above do not

contain points from the left and right side of the cup. Thus, ICP will match

a new view with respect to the missing side points and neglect the points of
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(a) Shoe

(b) Book

(c) Cutlery box

(d) Cereal box

Figure 5.5.: Some examples of the resulting point clouds that represent the
3D object models generated by our approach.
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(a) Cup (b) Beaker

Figure 5.6.: ICP cannot match the single change sets of rotationally sym-
metric objects. In these two examples the handle was wrongly
matched.

the handle, because of the comparatively low number of points of the han-

dle. Nevertheless, despite of suboptimal matching, such an object model can

be helpful when trying to grasp objects.

5.2.2. Segmentation Quality

We project the object model into the color image to do a segmentation in each

view. This experiment shows how the segmentation of an object evolves over

time and analyzes the matching between ground truth and our segmentation.

We recorded the point clouds and color images of the scene over a number

of frames. Each color image was labeled by hand into background and object.

Then, we projected the object model generated by our approach into the

color image to retrieve the segmentation.

Figure 5.7 contains two examples for the segmentation. The first image in

each case is the segmentations after the first manipulations. In the beginning,

the areas at the edge of the object are missing in the segmentation. After

each manipulation the segmentation becomes better. In the third image of

the shoe we can see one of the problems of such a segmentation. Despite

the object was seen several times in this direction, the segmentation cuts off

some area of the object at the bottom. This is caused by holes in the point

cloud. Since the sensor was mounted above the table at a 45◦ angle, the

sensor is not able to compute the depth information on the concavity of the

Daniel Kuhner 49



TACTILE EXPLORATION FOR SEGMENTATION OF OBJECTS

5. Evaluation

(a) Segmentation of a shoe after the views 1, 12 and 21

(b) Segmentation of a book after the views 1, 6 and 9

Figure 5.7.: We use a projection of the object model into the color image to
do the segmentation. The two examples show the segmentation
after a different number of manipulations.

shoe. Thus, no points are available in this area, which results in holes in the

segmentation, too.

Figure 5.8 shows how the segmentation accuracy evolves over the number

of manipulations. The plots on the left side in Figure 5.8 show the num-

ber of pixels, which are correctly detected as belonging to the object in the

current view (ground truth was labeled by hand). The correspondence be-

tween segmentation and ground truth reaches 95% after six manipulations.

As mentioned above, the point clouds can contain holes due to the mounting

angle of the sensor. Thus, it may happen that it cannot sense concavities

or areas that have normal nearly perpendicular to the viewing direction of

the sensor. This is the reason why the curves in Figure 5.8 can decrease,

e.g., when the current view contains more of such points shadowed from the

sensor’s field of view.

Additionally, the plots on the right side in Figure 5.8 show the number of

pixels that belong to the background and were wrongly labeled as object.
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(b) Book

Figure 5.8.: The plots show the accuracy of the segmentation. It is given in
percent of pixels of the ground truth segmentation.

The curve is rising due to ICP errors that accumulate over time.

The segmentation has a high accuracy if the RGB-D sensor scans the scene

without holes. Figure 5.7 (b) shows a book, where the point clouds does not

contain holes. The segmentation is almost complete. The remaining missing

areas are due to implementation issues. For getting the change sets we need

to use a threshold to compare the depths. This threshold yields the missing

segmentation area.

Furthermore, we can project the change sets only after each manipulation.

This yields a very accurate partial segmentation, since the change sets consist

of points that belong to the object. Figure 5.9 (a) and (b) displays the partial

segmentations for two objects. The mean errors of correctly labeled pixels

of the partial segmentations for the shoe and book are 97.8% and 95.4%,

respectively.

Our segmentation could be used to initialize a color image based segmen-

tation algorithm as a post-processing step to improve the accuracy.
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(a) Shoe

(b) Book

Figure 5.9.: If we project the change sets only, we get very accurate partial
segmentations, since the change sets contain only points that
belong to the object. These partial segmentations could be also
used for training an object classifier.

5.2.3. Accuracy of the Manipulations

We use pushing for manipulating objects. We propose to split the manipu-

lation into rotational and translational pushing operations. This experiment

shows the resulting accuracy of our push operations. The results base on

experiments that were done with five different objects and were repeated

twenty times per object (the object model improves over time, thus it was

not reset after each manipulation). We examine the mean error and stan-

dard deviation of the manipulations. We compute the error by taking the

difference between planned and executed manipulation. To assess the real

motion of an object, we used an AR-marker that was attached to the center

of the object and parallel to the table plane. Figure 5.10 (a) shows an object

with a marker on it.

The Figures 5.10 (b) and (c) display the resulting errors and the corre-

sponding standard deviations for rotational and translational push actions.
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(c) Translational error

Figure 5.10.: We used AR-markers in the experiments to estimate the real
motion of an object. The plots show the mean errors and stan-
dard deviations of the push actions.

Figure 5.10 (b) shows the rotational errors, while 5.10 (c) contains the trans-

lational errors for all action types.

The mean angular error of the rotational manipulations is approximately

5.5◦ with a standard deviation σ = 4.5◦. The translational error of the ro-

tational manipulations is 0.05 m. We assumed that the center of rotation

is equal to the geometric center (see Section 4.3.1 for more details). This

approximating assumption causes the translation of the object.

The translational manipulations have an average error of 0.02 m. Although

no rotation should take place, we get a mean rotational error of 11◦. This
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(a) Scene with three objects (b) Scene with seven objects

Figure 5.11.: A typical scene containing a number of objects. We need to
estimate the working surface. By performing the RANSAC es-
timation with different numbers of objects we analyzed the
influence on the estimation. The AR-marker were used to esti-
mate the real table plane.

error results from the partial object model. A partial model may result in

planning a suboptimal push action, since parts of the object are missing from

the model so far.

Our rotational manipulations are currently not well suited for round ob-

jects, like cups. We are not able to move the gripper on a circular path around

the geometric center to cause the rotation. Such objects require further work,

e.g., performing the rotational manipulations by pushing the handle.

In conclusion, the pushing actions work for many objects. The physi-

cal assumptions have influence on the accuracy. Nonetheless, for modeling

and segmentation the executed manipulations yield the necessary motion to

model the whole object.

5.2.4. Table Plane Estimation

We also examined the influence of the number of objects on the RANSAC

estimation of the planar surface, i.e., the table. Therefore, we placed three

AR-markers on the table, which are used to determine the real table plane

orientation. Figure 5.11 illustrates the setup. The data was generated with

an increasing number of objects on the table. We rearranged the objects ten
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Figure 5.12.: The plot shows, how the number of objects on the working
surface influences the plane estimation (RANSAC). Therefore,
we compare the RANSAC plane normal and the normal that
was determined using three AR-markers. The experiment was
repeated ten times for each number of objects. We rearranged
the objects after each plane estimation.
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times for each number.

We compared the plane normal from RANSAC with the normal that can be

computed based on the locations of these three markers. Furthermore, we

computed the mean distance at each marker position to the plane estimated

by RANSAC. Figure 5.12 shows the resulting plots. In Figure 5.12 (a) we

plot the mean angular error and its standard deviation between RANSAC es-

timation and the AR-marker orientation. We retrieve a low error of approx-

imately 1.35◦ for the tested number of objects. The second plot in Figure

5.12 (a) displays the mean distance error between the marker positions and

their orthogonal projections onto the RANSAC plane. The mean distance er-

ror is around 0.02 m. This error is mainly caused by the ARToolkit [3]. In

conclusion, the experiments show that our RANSAC-based working surface

estimation is suitable for a practical number of objects.

5.2.5. Filtering Point Clouds

As mentioned in Section 3.3, there are points in the point cloud that vary

in depth between consecutive frames. We are interested in removing these

points because they would cause the change sets to contain points of other,

not moved objects. This experiment analyzes, where these points appear and

what threshold we can use to filter them out. Therefore, always ten depth

images were recorded in a row. Then, we computed the standard deviation

at each pixel over these ten depth images. The Figures 5.13 (a) - (d) show

different objects. In each figure, we have marked the points with a standard

deviation higher than a threshold εstd = 0.005 m. They occur at the edges of

objects because there points can jump between different depth levels due to

sensor noise.

Figure 5.13 (e) shows the distribution of the standard deviations in a his-

togram. It was generated from various object views of four objects. We can

see that most of the points (nearly 100%) have a standard deviation of zero

or close to zero. Thus, using a threshold of εstd = 0.005 m yields the marked

points in the Figures 5.13 (a) - (d).
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Figure 5.13.: Noisy point cloud points: The red dots in the upper four fig-
ures correspond to points, which have an above-average stan-
dard deviation in depth. These points are neglected in further
computation steps to avoid false positives in the change set of
two consecutive point clouds. The histogram shows how often
such points occur in point clouds. We filter them out using a
threshold of εstd = 0.005 m.
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5.2.6. Parameters

There are three key parameters in the approach proposed in this thesis. The

first one is the preferred angle in the planning step of the next manipulation.

Setting this parameter too high may result in strange behavior of ICP (due to

the large angle ICP may prefer another but wrong transformation). A too low

number results in high execution times due to a large number of rotations

required to model the full object. By experience, angles between 30◦ - 45◦

are the best ones to allow accurate ICP transformations and a relatively low

execution time.

ξ1 and ξ2 were used to set the pushing distance in the corresponding object

extents. A value of ξ1 = 0.5 and ξ2 = 0.5 are suited for many objects. Due

to a bounded working area it is not recommendable to use higher values.

Low values may result in insufficiently small movements, for which ICP has

problems in matching the change sets.

Summary

With a series of experiments we evaluated the approach. The object models

are accurate as long as ICP can match the change set with the view’s point

cloud. For rotationally symmetric objects there might be problems with ICP,

e.g., the handle of a cup is wrongly matched. The segmentation of the color

images is based on the object models. Therefore, the quality of the segmen-

tation depends on the quality of the object model. We found out that the

segmentation corresponds to the ground truth segmentation if the mounting

angle of the RGB-D sensor allows for depth measurements for all areas of

the object. Otherwise, there can be areas of the object that are missed by the

segmentation. The overall quality of the object models and the segmentation

of the color images are well suited for many meaningful tasks in robotics.

The manipulation is done by pushing. Therefore, we used the manipula-

tor and a gripper with two fingers to allow for stable pushing operations.

We divided the manipulations in rotational and translational pushing opera-

tions. The rotational manipulation always causes a translation of the object,
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too, because we assume that the center of rotation is equal to the geometric

center. On the other hand, the translational manipulations can also cause a

rotation, since planning is done with a partial object model.

Our pushing and planning algorithm require a planar working surface

since it is done in 2D. We examined the influence of the number of objects

on the estimation of the plane. It turned out, that a suitable number of ob-

jects has no influence on the accuracy of the plane estimation. Finally, we

evaluated the filtering process. It is needed to remove points at object edges,

which jump between different levels in the point cloud. Hence, they are spu-

riously part of the change sets of other objects. The points can be filtered out

by checking the standard deviation over a number of point clouds at each

point.
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6
Conclusions

In this thesis we propose an approach that is used for autonomous explo-

ration of objects in the environment. We present solutions for three key

problems: First, we present an algorithm that iteratively models and seg-

ments objects based on their motion in the point clouds provided by a RGB-D

sensor. Second, we show how a robotic manipulator can be used to move the

objects in the scene. And third, we propose an algorithm for combined ob-

ject modeling and manipulation to achieve a full three-dimensional object

model and segmentation for each movable object in the reachable environ-

ment. The extracted 3D object models can be used for, e.g., grasping, while

the segmented color image can be employed to train an object detection al-

gorithm.

Moving an object in the scene creates changes in the point clouds, which

we call change sets. Using these change sets we can decide, which part of the

point cloud belongs to the moved object using a set of rules we introduced.

Applications of the rules yields two change sets: one containing disappear-

ing object points and one containing newly appearing object points. We

use ICP to match the disappearing points against the current view to esti-

mate the transformation of the object between two views. By combining the

change sets using the estimated transformations we incrementally build a 3D

model of the object. This procedure is advantageous, since we add only those

points, which are certain to belong to the object. Thus, sensor readings of the

background are reliably excluded from the model. Furthermore, we segment

object and background in the color images by projecting the acquired object
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model or change sets into the image.

Besides object modeling the manipulation is an important component in

the context of autonomous object exploration. We propose to manipulate

object candidates by pushing. It allows interacting with objects that might

be too heavy or large for grasping. The actual pushing operations require

knowledge about the center of rotation and the friction distribution between

object and working surface. Since both are not available in most practical ap-

plications, we suggest using the geometric center to approximate the center

of rotation. This assumption is justified for many objects as has been shown

in our experiments. For stable manipulations, we propose to use an end-

effector equipped with two fingers. As there are two contact points between

the end-effector and the object it prevents tilting of the object. Additionally,

our approach divides the manipulation into rotational and translational push

operations, which are executed separately.

We propose a framework that detects object candidates on a working sur-

face and employs planning algorithms to incrementally generate 3D models

and segmentations for the actually movable objects. It accounts for colli-

sions with the scene and respects the limits of the manipulator workspace.

Thereby, it ensures that models can be generated for the initially unknown

objects employing the above methods.

In the experiments we evaluated the different aspects of our approach. We

are able to retrieve accurate object models without any manual interference.

On average, the segmentation reaches 95% accuracy after 6 manipulations.

By projecting the change sets into the corresponding color image, we retrieve

a partial segmentation of the object. The segmented area belongs with a

probability of approximately 96% to the object. The geometric center has

been confirmed to be a reasonable approximation of the center of rotation

in our application. The resulting push operations are sufficiently accurate to

explore the environment and allow robust pushing. Rotating an object causes

a mean error of 5 degrees. The translational manipulation has a mean error

of only 0.02 m.

In conclusion, our approach enables a robotic system to autonomously

interact with initially unknown objects on a working surface to acquire accu-
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rate 3D models and color image segmentations suitable for classifier training.

Future Work

We had some problems with the bounded working area of our manipulator.

There are two possible solutions to overcome these limitations. On the one

hand, the manipulator can be mounted in another way, e.g., above the table

to reach more objects. On the other hand, we could use the robotic platform

to move the manipulator around the objects.

Additionally, learning an object model takes some time if we use only one

RGB-D sensor. Relaxing the assumption of a statically mounted RGB-D sen-

sor, the modeling can be performed emulating several statically mounted

sensors at different view points. By mounting the sensor on the end-effector

of the manipulator we are capable of moving the camera to these view points

distributed around the object. Using the inverse kinematics or a RGBD-SLAM

based approach we can compute the transformations between each sensor

pose. Thus, we retrieve point clouds of the object from different view points.

After a single manipulation of the object the new data is collected from all

sensor view points. Computing the change sets in each sensor view would

allow building a (full) 3D model without ICP. In addition to the reduced

number of interactions necessary, the segmentations would be more accu-

rate compared to the ICP-based model.
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A
Mathematical Background

A.1. Eigenvectors and Eigenvalues

We introduce eigenvectors and eigenvalues for a better understanding of the

related singular value decomposition, which will be explained in the following

section. An eigenvector ~x ∈ Rn of a matrix A ∈ Rn×n is a vector that differs

after multiplication with A only by a multiplicative scalar λ ∈ R:

A · ~x = λ · ~x. (A.1)

This scalar is the corresponding eigenvalue λ. It is obvious that all vectors

that have the same direction as the eigenvector are also eigenvectors. Only

the zero vector is not considered to be an eigenvector.

Equation (A.1) can only be fulfilled iff

det(A− λI) = 0, (A.2)

where det(·) is the determinant of a matrix and I ∈ Rn×n the identity matrix.

The eigenvalues of A are the roots of the characteristic polynomial

χA(λ) = det(A− λI). (A.3)

After expanding Equation (A.3) we get a n-th degree polynomial in λ. Thus,

there are n eigenvalues, which have not to be distinct. Depending on χA(λ)

there can be eigenvalues corresponding to the same root.
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Finally, the eigenvectors are computed by solving a system of linear equa-

tions:

(A− λI) · ~x = 0. (A.4)

Solving the eigenvalue problem is difficult for high dimensions. There

are various algorithms to solve the problem numerically including the QR
algorithm and the Jacobi eigenvalue method. Further details can be found in

[36].

A.2. Singular Value Decomposition

The singular value decomposition (SVD) [7] is a widely used technique. Ex-

ample applications are image processing, statistics or physics. It is a decom-

position of a matrix in three matrices – two unitary matrices containing the

singular vectors and a diagonal matrix containing the singular values. We

use the SVD for solving the principle component analysis, which in turn is

used to compute an extent estimation of an object (see Section A.3).

The SVD of a matrix A ∈ Rm×n of rank r can be written as

A = UΣV∗, (A.5)

where V∗ is the conjugate transpose of V and Σ ∈ Rm×n is a diagonal matrix

Σ = diag(σ1, σ2, ..., σr), σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0, (A.6)

composed of the singular values σi of A. U ∈ Rm×m and V ∈ Rn×n are

unitary matrices that contain the left and right singular vectors of A:

U = (u1, ...,um), V = (v1, ...,vn). (A.7)

The relationship to the eigenvalue decomposition is as follows. The columns

of U and V are the eigenvectors of AA∗ and A∗A, respectively. Furthermore,

the singular values σi are the positive, nonzero eigenvalues of AA∗ and A∗A.
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Figure A.1.: The two principle components of an object are used to deter-
mine the extent of an object.

A.3. Principal Component Analysis

The principle component analysis (PCA) [24] converts a set of observations

into linearly uncorrelated values (principle components) using an orthogonal

transformation. Typically, a data set consists of n elements with p measured

properties. Hence, there are n elements in a p-dimensional space. The main

aim of PCA is to reduce the number of measurements to a sub space Rq with

q ≤ p without losing too much information. Each of the principle compo-

nents is orthogonal to the others. The first principle component corresponds

to the direction of the largest variance. PCA can be implemented as an eigen-

value decomposition of the data covariance matrix or as a singular value

decomposition of the data matrix.

In this thesis, we use it to estimate the two axes with the largest variance

of a two-dimensional object that is represented by a set of points. Projecting

all points on the axes allows roughly computing the dimensions of an object.

Figure A.1 shows the two principle components of an object given by a set
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of points. The estimated extent of an object is needed when planning push

operations to manipulate it (see Chapter 4).
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Algorithmic Basics

B.1. Normal Vector Estimation

The normal vector is an important property of a surface. We need to know

about normals to compute push operations. How an object behaves when it

is pushed at some location depends, amongst others, on its surface normal.

We can approximate the problem of normal estimation by a tangential plane

on the surface. The computation of such a plane is a least-square plane fitting

problem in the neighborhood of the query point.

Let the neighborhood of a point pk be the set Pk, |Pk| = n. The neigh-

borhood can be computed via kd-trees or octrees [16]. Estimating the plane

is done in the least-square sense. Rusu [40] proposes to take the arithmetic

mean of all points in Pk

x =
1

n
·

n∑
i=1

pi (B.1)

as the position x and setting up the covariance matrix C ∈ R3×3 as follows:

C =
1

n

n∑
i=1

(p− x)(p− x)T , C · ~vj = λj · ~vj, j ∈ {1, 2, 3}. (B.2)

Then, the consideration of the eigenvectors ~vj and eigenvalues λj of C al-

lows the computation of ~n. The normal ±~n is given by the eigenvector cor-

responding to the smallest eigenvalue.
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The sign of the direction cannot be uniquely determined. Therefore, the

direction of the normal must be flipped if it points away from the camera’s

point of view c. Every normal must satisfy the condition

~ni · (c− pi) > 0. (B.3)

Otherwise, we have to take the inverse direction:

~ni ← −~ni. (B.4)

B.2. RANSAC

The RANSAC algorithm (random sample consensus) is used to estimate model

parameters. Example applications of the algorithm are “feature-matching”

(e.g., the combination of single images to a big panorama image [8]) or the

recognition of geometrical primitives as planes or spheres. It was introduced

by Fischler and Bolles [15]. We use RANSAC to estimate the surface plane

on which the objects are placed and manipulated.

Let D = {xi | 1 ≤ i ≤ n} be a set of observations. Each observation is a

vector xi ∈ Rd in the d-dimensional space. Depending on what we want to

do with the algorithm we have to define an appropriate model M . Since we

want to detect a planar surface we choose

M : ax+ by + cz + d = 0, (x, y, z) ∈ R3, a, b, c, d ∈ R, (B.5)

which describes a two-dimensional plane in the 3D space. The vector θ con-

tains the minimal number of parameters that are necessary for a unique defi-

nition of M . Using the model in Equation (B.5), we have a four dimensional

parameter vector θ = (a, b, c, d) ∈ R4.

In the first step the algorithm computes a subset Dmin ⊂ D, which is suffi-

cient to describe M . Dmin is chosen in a random and uniform way. Thus, θ is
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given by

θ = fM(Dmin), (B.6)

where fM(·) computes the corresponding parameter vector θ based on the

minimal subset Dmin (i.e., it fits a plane through three points).

Next, the quality of θ is analyzed on D using an error function e(·). We

define the error function as follows:

eM(x, θ) = dist(x,Mθ). (B.7)

dist(·) is a distance function which computes the distance between an ob-

servation x and the concrete model Mθ. In the context of plane fitting the

orthogonal distance between x and the plane given by Mθ can be used.

Now, the set of inliers is computed by

IMθ
= {x ∈ D | e(x,Mθ) ≤ ε} , (B.8)

where ε gives the maximum allowed error. Inliers are observations that are

conform with θ in M . Regarding the plane estimation, IMθ
contains the

points, which are close to the plane defined by θ.

By repeating this process, we get a set of possible parameters and inliers,

which are in accordance with the model. Finally, we have to decide, which

parameter vector to use. We choose the parameter vector θ̂ that has the most

inliers. Thus, we get

θ̂ = argmax
θ

(|IMθ
|) (B.9)

as the final parameter vector.

An important parameter of the RANSAC algorithm is the number of iter-

ations. If the number is too low the resulting concrete model Mθ will be of

poor quality. If we use more iterations the runtime will increase.

More information about the algorithm can be found in the original paper

[15] or in [47].

Daniel Kuhner 71



TACTILE EXPLORATION FOR SEGMENTATION OF OBJECTS

B. Algorithmic Basics

B.3. Potential Fields

Potential fields are often used in planning. Theoretically, a potential field is

a n-dimensional grid containing a potential, i.e., a scalar value in each grid

cell. For example, the grid can be two dimensional where each grid cell is

the location on a floor of a room. Obstacles and walls can then be modeled

using the potential values. A low value corresponds to free space, while a

high value stands for an obstacle. If we search a path between two points,

we can use the potential field as costs for path planning.

Mathematically, we can regard a potential [46, 49] as a function of the

type

U : C → R, (B.10)

where C is the configuration space. A low potential represents an attractive

potential (Figure B.1 (a)), while a high potential is repulsive (Figure B.1

(b)). To retrieve the final potential of each configuration both the attractive

and repulsive potentials are summed up:

U(c) = U+(c) + U−(c), (B.11)

where c ∈ C is a configuration.

Basically, an attractive potential implies free space, and thus configurations

that are preferable. We choose the new goal configuration as the configura-

tion with the minimum potential value. Then, we use the potential values as

a cost function to find a way from the current configuration to the configu-

ration with the lowest potential.

Typically, a force is computed at each configuration to find a path through

the configuration space. A force

F (c) = −∇U(c) (B.12)

is the gradient of the differentiable function U(c). Therefore, the path plan-

ning is based on a gradient descent method and stops if a minimum is
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Figure B.1.: Attractive and repulsive potentials: They are used to represent
the configuration space of an object.

reached. Since this method can stick to a local minimum the A* search

algorithm can be applied to find a global solution.

In this thesis, we use the potential fields for planning the object motion on

the working surface. More specific, the potential field represents the config-

uration space of an object, i.e., it contains all reachable transformations of

it on a plane and assign a potential value to each to them. Finally, a path

planning algorithm is used to find a way from the current object’s pose to the

pose with the lowest potential value.

B.4. The A* Algorithm

The A* algorithm [39] computes a path between two nodes in a graph. We

use A* for moving an object from one location to another in a collision-free

way. It uses a heuristic h(·) to estimate the costs from the current search

node to the goal node. A* is complete (it finds a solution if one exists) and

optimal if an admissible heuristic is used. A heuristic is admissible if

h(x) ≤ d(x, y) + h(y), (B.13)

where d(x, y) corresponds to real costs between node x and y. This means,

that the heuristic never overestimates the costs to the goal node. h(·) either

matches with the real cost function or underestimates it. An example for an
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Figure B.2.: The iterative closest point algorithm is used to align two point
clouds [1].

admissible heuristic is the Manhattan distance in the context of finding a way

through a maze, which is represented by a grid.

B.5. Iterative Closest Point

The iterative closest point algorithm (ICP) [52] is employed for aligning two

point clouds (see Figure B.2 for an example). We use it to find the transfor-

mation between two object poses by fitting the change set against the current

point cloud (see Section 3.2 for more details).

Given two point clouds X and P and a threshold ε, which gives the maxi-

mum error between both point clouds, we want to find a rotation R ∈ R3×3

and a translation vector ~t ∈ R3 to minimize the error function

E(R,~t) =
1

|P|

|P|∑
i=1

∥∥∥xi − (Rpi +~t
)∥∥∥2

2
, (B.14)

where xi and pi are corresponding points.
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The algorithm consists of five steps:

1. Associate corresponding points between X and P. The simplest as-

sociation is based on nearest neighbors. Another method for corre-

spondence estimation is normal shooting, where a projection along the

normal is used to find the intersection with the other point cloud.

2. Estimate the rotation R and translation ~t between X and P using the

point correspondences. The estimation can be done in closed form

using a SVD [5].

3. Apply the estimated transformation to X .

4. Compute the error E(R,~t) between the transformed point cloud X and

P.

5. If E(R,~t) was decreased and E(R,~t) > ε iterate the above steps. Oth-

erwise the final transformation is found.

B.6. Concave Hull Estimation

A concave hull is similar to a convex hull with the difference that it also can

model concavities. It can be regarded as the estimation of the shape of an

object. The hull borders the data more tightly. In contrast to the convex hull,

the concave hull is not unique.

We use the concave hull to find positions to push the object. Since we plan

the manipulations on a 2D plane the concave hull is computed around the

projected points on this plane. In general, a convex hull is not sufficient for

many objects.

One way to estimate the concave hull consists of a Delaunay triangulation
followed by a merging step of the triangles. The merging can be done with

the alpha shape (or α shape) algorithm.

Let the data be given as a set of points P = {p1, ...,pn}, where each point

is a two dimensional point pi ∈ R2. The Delaunay triangulation computes a

mesh of triangles, such that the circle that contains the three triangle points
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(a) Point set (b) Valid Delaunay triangulation

Figure B.3.: A valid Delaunay triangulation of the given point set. Only the
three points of the corresponding triangle are located in the
circle, which is defined by those three points.

does not contain any other points. More information can be found in [11].

An example is shown in Figure B.3.

Based on the Delaunay triangulation, the concave hull is computed using

α-shapes [13, 14]. It is a generalization of the convex hull. The algorithm

is based on a single parameter α with 0 ≤ α ≤ ∞. It controls the maximum

curvature of a cavity. The shape is estimated using the triangles from the De-

launay triangulation. They are included in the α-shape if the corresponding

circumsphere has a radius of at most α. For α = ∞, the shape is equal to

the convex hull. By using α = 0 only the points of the point set belong to

the α-shape. Using an appropriate value for α allows to estimate the desired

shape of objects. The union of all triangles, which fulfill the above condition

gives the final shape. See [14] for details.
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