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Zusammenfassung

Zusammenfassung

Sensorkarten sind für den Laien schlecht zu lesen. CAD-Gebäudepläne hin-

gegen beinhalten viele zusätzliche Details und verbessern die Fähigkeit eines

Nutzers einen Roboter zu instruieren und zu überwachen. Diese Arbeit dreht

sich um eine Abbildung von einem Gebäudeplan auf die Sensorkarte. Wir

haben mehrere Ansätze entwickelt. Der Erste berechnet eine globale Trans-

formation, während der Zweite mehrere Transformationen zu einer Einzigen

kombiniert. Zwei weitere Ansätze basieren auf Gauß’schen Prozessen. Bei-

trag dieser Arbeit sind mehrere Verfahren um die Sensorkarte und den Ge-

bäudeplan aufeinander abzubilden und somit dem Nutzer die Möglichkeit

bietet einen intuitiveren Gebäudeplan anstatt einer Sensorkarte zu verwen-

den. Eine Auswertung der präsentierten Methoden auf verschiedenen Daten-

sätzen zeigt vielversprechende Resultate.

Andreas Kuhner V





MATCHING OCCUPANCY GRIDMAPS AND

CAD-FLOORPLANS FOR MOBILE ROBOT NAVIGATION

Abstract

Abstract

Gridmaps are hard to read for amateurs. However, floorplans provide a lot

of additional information and improve the capability of an operator to in-

struct and monitor a robot. This thesis is about a mapping approach which

transforms a point from the floorplan to a point on the gridmap. The first

approach computes a global transformation, while the second one combines

multiple transformations into a single one. The other two approaches base

on a Gaussian process. The contributions of this work are multiple ap-

proaches to match a gridmap with a floorplan which provides the operator

an opportunity to use a more intuitive CAD-map. We evaluate the different

approaches on multiple data sets and show promising results.
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1
Introduction

Nowadays, robots can localize themselves in their world very robustly. They

use laser-range finders, sonars, cameras, and many more to build huge maps.

A popular variant is the usage of laser scanners. Robots equipped with such

sensors build a gridmap where every cell is black if and only if the robot

has seen some obstacle on this particular spot. The robot uses this map to

compute its position by matching the current laser scans into it. But for what

could we use it?

A common scenario in industrial environments is that we want to control

an autonomous transporter with laser scanners. An operator needs to send

him to a given position on the map. Unfortunately, the gridmap is difficult

to read for a non-expert and lacks a lot of detailed information. Figure 1.1

(a) shows an example of such a gridmap. Parts of the machines and the

pillars of the high racks are available. The map misses a complete room.

Figure 1.1 (b) illustrates the floorplan of the same warehouse. The operator

knows where the brown point is on the gridmap. However, he does not

know the exact position of the blue and red point. If he wants to send a

transporter to such a position he has to guess the point on the gridmap. On

the other hand, if he wants to guide the transporter to a machine he probably

cannot say where machine 1 is on the gridmap. This gridmap shows how

the world looks to the robot sensors which is not intuitive for a human.

Hence, it is easier for the operator to set the goal points on a floorplan to

which he is more familiar and where he can see the whole building structure.

However, we have the problem to translate a point on the floorplan to a point

Andreas Kuhner 1
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(b) Floorplan

Figure 1.1.: The transporter did not explore the whole area in the ware-
house. Hence, the gridmap is not complete. The points repre-
sent positions on the map. The brown point on the floorplan has
an obvious match on the gridmap. However, we do not know
the exact position of the red and blue point.

in the gridmap. Although a human can find itself in the floorplan does not

mean that the transporter can localize itself on the floorplan very well. A

transporter needs all the present obstacles in a map. Figure 1.2 shows such a

scenario. The left room is part of a floorplan while the right side represents

a gridmap. The autonomous transporter needs a method to fit its laser scans

into the map which is hard if there are no furniture or additional obstacles.

The transporter lacks information if it has only a blank room without any

details. Hence, we need an approach that is able to find a corresponding

point in the gridmap given a point in the floorplan. With such an approach

the transporter knows the goal position on the gridmap, can start to plan a

path through the environment, and drive to the goal position. On the other

hand, the operator can follow the transporter position on the floorplan due

to a mapping from the gridmap onto the floorplan.

This thesis presents several methods to map a given point on the floorplan

to the corresponding point on the gridmap and vice versa. Therefore, we

apply multiple algorithms as computing a rigid transformation or calculating

the likeliest point. The main challenges are global and local variations like a

2 Andreas Kuhner



MATCHING OCCUPANCY GRIDMAPS AND

CAD-FLOORPLANS FOR MOBILE ROBOT NAVIGATION

?

Stairs

Windows

(a) Floorplan (b) Gridmap

Figure 1.2.: The green transporter can find its position on the gridmap be-
cause a lot of obstacles are drawn into the map. On the other
hand, the transporter on the floorplan does not know how to fit
his blue laser scan into the room.

bent map or a rotated room. Hence, in Chapter 3 we present all fundamental

algorithms, on which we build our matching algorithms in Chapter 4. Section

4.6 is about the automatic generation of reference pairs. Then, we present

the basic structure of our approaches in Chapter 5. Finally, in Chapter 6 we

evaluate our approaches on different data sets. But first we present related

work in the next chapter.

Andreas Kuhner 3





2
Related Work

There are multiple ways to use the matching of two maps. In [15] the authors

match different floors to each other to improve the structure of each gridmap

and create multi-floor gridmaps. They assume that each floor shares at least

some identical structure. To find such areas they apply a particle filter-based

localization by using observations and maps from different floors. In con-

trast to this approach we apply a particle filter to a gridmap and a floorplan

to find corresponding points on each map. Another approach [14] solves

the multi-floor problem by using a set of 2D maps and aligning them with

precise visual odometry. The authors apply state-of-the-art mapping algo-

rithms to compute the gridmap of each floor using a 2D laser scanner. [20]

presents an approach which relies on barometric pressure data to separate

different floors. The authors generate segments from a data set by looking at

the deviation of the barometric pressure and perform SLAM on each of these

segments. Afterward, they connect the floors where the robot moved into the

next floor. In [17] the authors use publicly available aerial images as prior

information to improve the mapping process. They insert correspondences

found between the robots sensor data and the aerial images as constraints

into a graph-based formulation of the SLAM problem.

Not only is the matching of two maps challenging but also the storage of

such maps. In [30] the authors propose a way to store multiple surfaces in a

map and how to update them according to matched maps.

Another direction in which matching of maps is useful is for the application

of multi-robot mapping. In [13] the authors challenge three problems: In the

Andreas Kuhner 5
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first one they extend a particle filter to work on multiple robots and deal with

the SLAM problem where the initial pose is known. The second challenge is

to solve the same problem without knowing the start position of any robot.

The last challenge is about the integration of data when two robots meet

each other. They use the collected data in inverse order. The final result is a

single map. A similar approach is used in [27]. The authors combine a fast

maximum likelihood map growing with a Monte Carlo localizer. Hence, they

are able to deal with large odometry errors and can create maps with multi-

ple robots. In [16] the authors also have multiple robots and want a single

map. Therefore, the key idea of their approach is to localize each robot in the

maps of the other robots and verifying matches with a rendezvous strategy.

In [3] the authors provide a stochastic approach. Their algorithm transforms

and rotates two maps to find the maximum overlap. To identify this position

they propose a heuristic which guides the algorithm to the best overlap. A

downside of this approach is the reliance that each robot creates a map with-

out making big errors due to bending or skewing. Another approach with a

heuristic is introduced in [19]. The authors try to match two maps based on

features like doors, corners, T-junctions, and end of corridors. In [28] the

authors describe an algorithm which works with landmarks. They align local

maps with a tree-based algorithm which searches for similar landmark con-

figurations and combine that with a hill climbing approach that maximizes

the overall likelihood in the space of correspondences. A graph based ap-

proach is presented in [21]. Multiple robots create a graph where each robot

has an own subgraph which is disconnected to all other robots. They use

loop closing techniques to detect overlaps between two maps. Hence, they

compute a rigid transformation for one map and fit it into the other map.

Another area, which is close to the topic described in the introduction, is

the mapping of warehouses. Typically, experts set up markers around the

warehouse and create a map from it that contains the exact positions of the

marker. Afterward, the robot is able to precisely localize itself in the envi-

ronment. The downside of this approach is the manual installation of the

markers. To overcome this problem [2] presents an approach which cre-

ates a gridmap from the warehouse. The authors try to keep the system on
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low cost by reducing the installation time and apply a semi-automated ex-

ploration and localization approach. Another problem, which they have to

tackle, are the large areas of a warehouse. Angular errors are critical in such

a scenario. In [25] the authors use a wireless sensor network to keep track of

their transport vehicles and in [31] the authors combine a radio-frequency

identification to roughly localize a vehicle with a vision based system to per-

form the fine positioning.

In this thesis we present an approach which overcomes the limitation of an

operator to stick to a warehouse gridmap. We show how a point, which we

choose on the floorplan, translates to a point on the gridmap. In difference to

the related work we do not match sensor maps but CAD-floorplans to sensor

maps and vice versa. Hence, we have to deal with different representations

of data. But first, we look into the preliminaries in the following Chapter.

Andreas Kuhner 7





3
Preliminaries

In this chapter we discuss the algorithms for the approaches presented in

Chapter 4. The first part is about the estimation of rigid transformations

which we use to compute global and local transformations. Part two intro-

duces Gaussian processes which we use to calculate the likeliest reference

point given our data. The third section is about Delaunay triangulations

which we use for the purpose to create a ground truth and the final part is

about the calculation of reference points.

3.1. Problem Definition

Before we start with the preliminaries we discuss the problem which we have

to solve in Chapter 4. We have two mapsMF andMG whereMF is a floorplan

and MG a gridmap. F and G represent point sets on these maps where F is

the respective set of MF and G corresponds to MG with F,G ∈ R2. FG is a

set of tuples (p, q) with p ∈ F and q ∈ G. We call this set the set of reference

pairs. Thus, each point in F has exactly one point in G. With the set FG we

compute a transformation T from MF to MG. We use the transformation T

to map points from MF onto MG which are not in F and vice versa.

3.2. Estimation of Rigid Transformation

We use rigid transformations to apply a translation, rotation, scaling and

shear to a point. The function we are looking for is a homogeneous transfor-

Andreas Kuhner 9
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mation T : F → G with F,G ⊂ R3. The definition of F and G is the same

as described in the previous section, just with the difference that we com-

pute a homogeneous transformation and extend every point a = (x, y)T to

a = (x, y, 1)T . The basic idea is that we take three random tuples from FG,

which we also adapt for the homogeneous case, and calculate the transfor-

mation with a Singular Value Decomposition which we explain in the next

section. However, we repeat this multiple times using the Random Sample

Consensus algorithm 3.2.2 and get an approximated transformation from

the set F to the set G. We use this technique in Section 4.2 to compute a

transformation to map points from the floorplan onto the gridmap.

3.2.1. Singular Value Decomposition

The Singular Value Decomposition (SVD) [11] decomposes a matrix into

several pieces

M = UΣV ∗, (3.1)

where U is an m×m unitary matrix, Σ is an m× n diagonal matrix with ele-

ments in R+ and the n×n unitary matrix V ∗ denotes the conjugate transpose

of the unitary matrix V with n,m ∈ N. To find these components we have to

get the Eigenvalues and Eigenvectors of MMT and MTM . The Eigenvectors

of MTM form the columns of V and the Eigenvectors of MMT make up the

columns of U. On the other hand, the singular values of Σ are square roots of

Eigenvalues from the matrix MMT and MTM , respectively. These values are

the diagonal entries of Σ and are typically sorted in descending order. Let

W = MMT and Z = MTM (3.2)

be two matrices. We want to compute the Eigenvalues. Thus, we solve the

equations:

(W − λI)x = 0, (3.3)

(Z − µI)x = 0. (3.4)

10 Andreas Kuhner
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With the resulting Eigenvectors we get U and V . As mentioned previously,

the diagonal elements of Σ are the ordered square roots of the Eigenvalues

from W and Z. Therefore we possess the decomposition of M .

We split the computation of the transformation between corresponding points

in FG into the following three steps:

1. Calculate the centroids of both point sets

2. Transform both sets to the centroid and compute the rotation R

3. Find the translation t

The first step involves the calculation of the centroids which are typically the

average points of the set.

cF =
1

N

N∑
i=1

P i
F (3.5)

cG =
1

N

N∑
i=1

P i
G, (3.6)

where PF and PG are the point sets referring to F and G. Now we can com-

pute the rotation with the help of the SVD. First we subtract from every point

the centroid such that we only have to deal with the rotation and compute

the covariance matrix H like

H =
N∑
i=1

(
P i
F − cF

)T (
P i
G − cG

)
. (3.7)

Splitting this matrix up into its SVD composition yields

H = UΣV ∗. (3.8)

If H is a square matrix than U and V ∗ are rotation matrices and Σ is a scaling

matrix. The composition

R = V UT (3.9)

Andreas Kuhner 11
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Figure 3.1.: In this example RANSAC takes two points into account and fits
a line to it. Here are the red points the outliers which are not
part of the biggest consensus set and the line is the RANSAC
result.

yields our rotation matrix.

The last step handles the computation of the translation:

t = −RcF + cG. (3.10)

Finally, we get the resulting transformation:

T =

R t

0 1

 . (3.11)

3.2.2. Random Sample Consensus

Random Sample Consensus, short RANSAC, [8] is a model that describes

given data under consideration of outliers. Figure 3.1 shows a scenario

where a line should be fit into some 2D data. In our scenario we have two

sets of points F and G, as given in Section 3.1, and the set of tuples FG

which connects these points. We want the transformation between these sets

12 Andreas Kuhner
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of points. One iteration of the RANSAC method can be split up into two

parts. In the first one we chose randomly three tuples from the set FG and

calculate the transformation T from the previous Section 3.2.1:

Tx = Rx+ t. (3.12)

In the second part we compute the error for each point:

ei = ‖P i
G − T · P i

F − t‖2. (3.13)

If the model estimates the transformed point well, it is added to the consen-

sus set. Therefore, we calculate the error for each point and after this process

we compare the set size against the so far biggest consensus set. If the set

size is bigger we have a new consensus set.

After a given number of iterations or after the error falls below a threshold

we compute the transformation using all point correspondences of the best

consensus set one more time and get our final transformation.

3.3. Gaussian Processes

The Gaussian process [22] is another way to create a transformation between

two sets of points. In principle it is a generalized Gaussian distribution with

infinitely many random variables. The feature of this approach is its focus

on basic stochastic processes. Therefore, it can also predict the variance of

each predicted point. In contrast to other approaches, like linear regression,

quadratic error minimization, or higher dimensional approaches, Gaussian

processes do not relate to any specific model. Moreover, they can represent

the underlying function of a data set obliquely but still exact. The basic idea

is that the approach works on the data set rather than on a generated, ap-

proximated function. Thus, on the one hand, the Gaussian processes depend

less on parameters. On the other hand, the processes cannot disclaim the

parameters completely. We still have to make certain assumptions to get a

reasonable result. However, if we compare it to the previous section we do

Andreas Kuhner 13
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not compute a transformation but a function which depends on local points.

We apply this technique in Section 4.4 to the matching problem of two maps.

Let (Yi) be a multidimensional normal distribution with index set I. The

process is a Gaussian process if and only if each finite set of indices in I

(Yi1 , ..., Yin) is a multivariate Gaussian random variable. This random vari-

able can be seen as n observations from a data set. We assume that the mean

of all Gaussians is zero. Thus, all observations are related to each other over

the covariance function k(x1, x2). A common choice is the squared exponen-

tial:

k(x1, x2) = σ2
f exp

(
−(x1 − x2)2

2l2

)
, (3.14)

where σ2
f is the covariance. If our data set is really noisy σ2

f should be high.

For x1 ≈ x2 our covariance function k approaches the maximum. Therefore,

f(x1) correlates to f(x2) nearly perfect. On the other hand, if x1 and x2 are

very distant from each other the resulting covariance k(x1, x2) is close to zero.

This are the preferred properties because for a smooth function close points

should be highly correlated. To summarize this: Points in close proximity of

an interpolated point p should have higher impact on p than points which

are far away. The impact of this effect is parameterized by the length l.

Another problem is noisy observation data. Typically, we assume a Gaussian

noise model:

y = f(x) +N (0, σ2
n), (3.15)

with σ2
n as the variance of the noise. It is possible to fold this noise into the

covariance function k:

k(x1, x2) = σ2
f exp

(
−(x1 − x2)2

2l2

)
+ σ2

nδ(x1, x2), (3.16)

where δ(x1, x2) is the Kronecker delta function. Finally, we do not want to

calculate the function f but a predicted value y∗ for input x. Therefore, we
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compute the covariance matrix:

K =



k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
... . . . ...

k(xn, x1) k(xn, x2) . . . k(xn, xn)


. (3.17)

We also need two other components for the calculation of y∗:

K∗ =

(
k(x∗, x1) k(x∗, x2) . . . k(x∗, xn)

)
(3.18)

and

K∗∗ = (k(x∗, x∗)) , (3.19)

where x∗ is the value for which we search a respective y∗. The key assump-

tion with Gaussian processes is that our data can be presented as a multivari-

ate Gaussian distribution. Thus, we have: y

y∗

 ∼ N
0,

K KT
∗

K∗ K∗∗


 . (3.20)

Hence, we want a y∗ which maximizes the probability p(y∗|y). This follows a

Gaussian distribution:

y∗|y ∼ N (K∗K
−1y,K∗∗ −K∗K

−1KT
∗ ). (3.21)

Therefore, the best guess is the mean of this distribution:

y∗ = K∗K
−1y (3.22)

and its respective variance

σ(y∗)
2 = K∗∗ −K∗K

−1KT
∗ . (3.23)

Andreas Kuhner 15



MATCHING OCCUPANCY GRIDMAPS AND

CAD-FLOORPLANS FOR MOBILE ROBOT NAVIGATION

3. Preliminaries

What we still do not know are the hyperparameters σf and l. We either could

estimate them based on knowledge over the data set or try to optimize them

as described in the next section.

3.3.1. Resilient Propagation

σf and l are two important parameters. Thus, we have to learn them and

fit them to the data. Therefore, we use resilient propagation, short RPROP,

[23]. It is a gradient descent algorithm which softens the effects of pure

gradient decent approaches which sometimes miss the minimum. These al-

gorithms rely on the magnitude of the derivative. Therefore, they make huge

steps on steep parts of the function and little steps on plateaus. To overcome

these effects RPROP adapts its weight update to the local behavior of the

error function by looking at sign changes. A detailed presentation of the al-

gorithm can be found in [24].

The basic idea of a backpropagation learning algorithm is to calculate the in-

fluence of each weight with respect to an error function. RPROP minimizes

the error function by performing a gradient decent step:

wi(t+ 1) = wi(t)− ε
δE

δwi
(t), (3.24)

where wi is a parameter like σf or l. The learning rate ε is a critical part of

the performance to reach convergence. If the parameter is set too high the

algorithm could end up in an oscillation. On the other hand, a small ε could

lead to a very slow convergence rate. To adapt this parameter there are two

major categories of strategies: Global strategies and local strategies. In the

global case the algorithm depends on all parameters, whereas local strategies

focus on parameter specific information like the partial derivative. The main

problem in both categories are unforeseeable fluctuations in the derivative.

Thus, a well-trained learning rate can still be disturbed by the derivative and

lead to unwanted behavior. To deal with this issue RPROP changes the size

of the parameter update directly without considering the magnitude of the

derivative. To achieve this RPROP has for each weight its own update value
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and each of it evolves over the course of the algorithm independently but

dependent on the partial derivative of the error function. Thus, RPROP uses

this rule for the updates:

∆i(t) =


η+∆i(t− 1) ,if δE

δwi
(t− 1) · δE

δwi
(t) > 0

η−∆i(t− 1) ,if δE
δwi

(t− 1) · δE
δwi

(t) < 0

∆i(t− 1) else

, (3.25)

with 0 < η− < 1 < η+. If the sign of the derivative gets changed then the

update was too big and the algorithm missed the local minimum. Thus, the

update value gets decreased by η−. If the sign did not change the update

value can be increased by η+ to speed up the convergence rate. The parame-

ter update itself follows a simple rule: With a positive derivative the weight

is decreased by its update value. On the other hand, if RPROP has a negative

derivative, it adds the update value to the parameter:

∆wi(t) =


−∆i(t) ,if δE

δwi
(t) > 0

+∆i(t) ,if δE
δwi

(t) < 0

0 else

(3.26)

and

wi(t+ 1) = wi(t) + ∆wi(t). (3.27)

However, if the sign of the derivative is changed, over the course of this

update step, the result is getting worse. Hence, the parameter update was

too big. Thus, RPROP reverts the previous weight update:

wi(t) = −wi(t− 1) ,if
δE

δwi
(t− 1) · δE

δwi
(t) < 0. (3.28)

Here, the problem is that RPROP punishes the update value twice because

the derivative is supposed to change its sign once again in the upcoming step.

To solve this RPROP sets δE
δwi

(t−1) = 0 in the adaption rule of Equation 3.25.
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3.3.2. Applying Resilient Propagation to a Gaussian Process

In the previous section we discussed how we can learn the hyperparameters

of a Gaussian process. To apply RPROP to Gaussian processes we need an

error function as well as an initialization. Finding an initialization is problem

dependent. As in Section 3.2.2 we can use the error function

ei = ‖yi − y∗i ‖2, (3.29)

where G and F are the point sets from Section 3.1 and xi ∈ G is the cor-

responding point to yi ∈ F . y∗i is based on the predicted point xi which we

get from Equation 3.21. Along this error function we can deploy RPROP to

optimize σf as well as l.

3.4. Delaunay Triangulation

In the previous sections we explained several algorithms which form the base

for describing our approaches in Chapter 4. To compare these algorithms we

need a tool to create a ground truth for which we use a triangulation.

A triangulation on a graph is called Delaunay if and only if in the circumcir-

cle of each triangle is no other point. This triangulation [4] is the dual graph

of a Voronoi diagram. Hence, if we take the middle point of the circumcircle

of each triangle in the Delaunay graph and connect them, we get a Voronoi

graph.

To compute a Delaunay graph we apply an incremental approach. As pro-

posed in [1] the key idea is to start with a single triangle and incrementally

add points to the graph. Afterward, we connect the point to other ones in

such a way that the Delaunay condition is still meet. Figure 3.2 shows one

step of this incremental approach. We apply the Delaunay triangulation to a

set of corresponding points to compute a ground truth which we later use in

Section 4.5 to compare it with our other algorithms.

Let p be a new point. If p is inside of the circumcircle the triangle fulfills the

Delaunay property no longer. Therefore, we apply the algorithm proposed
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tq

rp

t
q

rp

Figure 3.2.: p violates the Delaunay property of the triangle qrt and lies in-
side of its circumcircle. Flipping the line qr with pt results in
two triangles with a valid Delaunay property.

by [18] which solves the issue by flipping edges. If the point p lies within the

circumcircle of the triangle qrt the edge qr is flipped with the line pt. After-

ward, we have two new triangles which both fulfill the Delaunay property.

This procedure is repeated as long as p invalidates any edges and stops if no

other violation is present. Hence, we just insert points and make edge flips

until the full graph fulfills the Delaunay property.

3.5. Monte Carlo Localization

The Monte Carlo Localization [9] is a variant of the Markov localization and

solves the hijacked robot problem [6]. The key idea of Markov localization

approaches is to represent the robot’s belief with a probability distribution

over possible states. It transitions from one state to the next by applying

Bayes rule from Section 3.5.1 whenever the robot moves or observes its en-

vironment. In contrast to the early beginning of robot position tracking with

Kalman filters [10] which only can represent one state at once, Markov local-

ization is able to deal with multiple states simultaneously and, therefore, can

tackle the robot localization problem. Unfortunately, Markov localization ap-
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proaches only approximate the belief and the quality depends on the sample

size. Hence, if we want a more accurate model than we have to invest more

computation power and memory to the problem. The Monte Carlo localiza-

tion is part of the family of Monte Carlo methods [12]. It does not represent

a robot’s belief with a continuous function but with samples. Therefore, in

each update step we apply an importance re-sampling [26] to estimate the

new distribution. We use this localization and tracking technique to calculate

in Section 4.6 two sets of points and the correspondences between them.

In the next section we discuss the fundamental Bayes filter.

3.5.1. Bayes Filter

A Bayesian filter is a general probabilistic approach to approximate a prob-

ability distribution. Given a belief Bel(xt) of the robot with state xt at time

t:

Bel(xt) = P (xy|u1, z1, · · · , ut, zt), (3.30)

with ui being the controls of the robot and zi the observations. To break this

term down we have to look at several rules.

The first one is the Bayes rule. Let P (x|y) the conditional probability of x

given y. It holds that

P (x|y) =
P (x, y)

P (y)
, (3.31)

where P (x, y) is the joint probability of x and y. If they are independent of

each other

P (x, y) = P (x)P (y) (3.32)

and

P (x|y) = P (x). (3.33)

The second part is about the Markov assumptions. A model has the Markov

property if and only if the next state only depends on the current state and

not on the sequence which led to it. Figure 3.3 shows the dependency graph

on which the Bayes filter operates. In the middle section we see the robot

states xi. These states depend on the previous state xi−1 as well as on the
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ut-1

xt-1

zt-1

ut

xt

zt

ut+1

xt+1

zt+1

Figure 3.3.: A dependency graph: xi is the robot state which depends on the
previous state and the control command ui. The observation zi
depends only on the state xi.

control ui. The observation zi depends only on the robot state xi. The first

underlying assumption, which leads to the Markov assumption, is a static

world. Therefore, the world does not change over time and the observations

of the robot remain unchanged as long as it is located at a point p and ori-

ented in direction α.

The next assumption is independent noise. Hence, it does not evolve from

any robot state, control command or observation. We can sample it from

some distribution, i.e., a Gaussian normal distribution.

The third and last assumption is a perfect model. Therefore, the robot ex-

ecutes every control command without errors and retrieves a perfect ob-

servation of the environment. These three assumptions form the Markov

assumption and lead to the following equations:

P (zt|x0:t, z1:t−1, u1:t) = P (zt|xt) (3.34)

P (xt|x1:t−1, z1:t−1, u1:t) = P (xt|xt−1, ut) (3.35)

The first equation tells us that the probability P (zt|x0:t, z1:t−1, u1:t) of the ob-

servation only depends on the current state. The second one is about the

current robot state. The probability P (xt|x1:t−1, z1:t−1, u1:t) only depends on

the previous state and the current control command. All states of the robot

are independent from the observations and all control commands up to time

t− 1 are incorporated into xt−1.
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Figure 3.4.: The space is subdivided into disjunctive pieces y1, · · · , y7. We
can compute P (x) by summing up all conditional probabilities
P (x|y) multiplied with P (y). Hence, only such conditional prob-
abilities have an influence where x and yi intersect. All other
conditional probabilities are zero.

To calculate the Bel(xt) of a robot we need the law of total probability. It

states that

P (x) =
∑
y

P (x|y)P (y). (3.36)

The basic idea is that we can compute P (x) if we know all conditional prob-

abilities P (x|y) and the probabilities P (y). Figure 3.4 shows an example:

The space is divided into several parts y1, · · · , y7 and only such conditional

probabilities are not zero where x and yi intersect. Let us break down the

term

Bel(xt) = P (xy|u1, z1, · · · , ut, zt).

We want to form it into a recursive version where we know all parts. Hence,

we apply the Bayes rule in the first step:

P (xy|u1, z1, · · · , ut, zt) = ηP (zt|xt, u1, z1, · · · , ut)P (xt|u1, z1, · · · , ut).
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η is the normalization term. In the next step we use the Markov assumption

from Equation 3.34 to reduce the second part:

ηP (zt|xt, u1, z1, · · · , ut) = ηP (zt|xt).

The third part can be computed by using the law of total probability from

Equation 3.36:

P (xt|u1, z1, · · · , ut) =∫
P (xt|u1, z1, · · · , ut, xt−1)P (xt−1|u1, z1, · · · , ut)dxt−1.

By applying the Markov assumption twice we can shrink the integral term:∫
P (xt|u1, z1, · · · , ut, xt−1)P (xt−1|u1, z1, · · · , ut)dxt−1 =∫

P (xt|ut, xt−1)P (xt−1|u1, z1, · · · , ut)dxt−1 =∫
P (xt|ut, xt−1)P (xt−1|u1, z1, · · · , ut−1, zt−1)dxt−1.

The last term corresponds to Bel(xt − 1). Thus, we can write the probability

in a recursive way:

ηP (zt|xt)
∫
P (xt|ut, xt−1)P (xt−1|u1, z1, · · · , ut−1, zt−1)dxt−1 =

ηP (zt|xt)
∫
P (xt|ut, xt−1)Bel(xt−1)dxt−1.

This leads to the Bayes filter equation:

Bel(xt) = ηP (zt|xt)
∫
P (xt|ut, xt−1)Bel(xt−1)dxt−1. (3.37)

We can think of this formula as a combination of two parts: In P (xt|ut, xt−1)

we compute the motion model. Accordingly, we want the probability of xt
given that the robot was at position xt−1 in the previous time step and got

the control command ut. The other part is the observation model. The term
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u1

u3
u2

Figure 3.5.: The first motion command u1 is moving on a straight line with a
robot which introduces a lot of translational but less rotational
error. Here, the red dot is the start point of the robot and the
black dots correspond to the resulting shape according to the er-
ror distribution. Another robot with less translational but much
rotational error is performing the motion command u2. The con-
sequence is a banana shape. A third robot gets the command u3.
It introduces equally errors in rotation and translation.

P (zt|xt) implies that we have an observation zt given the robot is on position

xt. Many approaches like the Kalman filter [10] and the Particle filter [5]

base on this formula and implement the motion and observation model in

different ways. In the Section 3.5.2 and 3.5.3 we discuss how the Monte

Carlo localization is dealing with these two models.

3.5.2. Motion Model

Robot motion is typically not perfect. Every move initiates an error. There-

fore, short motions are not problematic because the error is not relevant but

for a whole trajectory this error accumulates and can lead to a completely

different position in comparison to the commands that we sent. Figure 3.5

represents three different robots with motion commands. The first robot has

much translational but less rotational error. Therefore, the motion command

u1 creates a set of points which is stretched according to the movement di-

rection. The second movement command u2 is executed by another robot

with high rotational but small translational error. The resulting shape looks

like a banana. The third robot with motion command u3 has an equally sized
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(a) u1
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(b) u2

β

α
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Figure 3.6.: u1 represents the command sent to the robot. u2 and u3 are two
ways a robot could execute this command. In u2 the robot did
not turn enough into the α direction but too much into the β
one. The translational part is perfect. On the other hand, in u3
the execution of the rotation in α and β shows an error. Also,
the robot did not drive the whole path a. Hence, all three trials
end up in a different configuration.

error in translation and rotation. Therefore, the shape is a banana which is

stretched in the direction of movement.

The key idea is that we take the current robot position and sample the next

position from some distribution. Here, we assume that the robot moves with

an odometry model. Hence, a motion command is split into three parts: The

first one is a rotation into the direction of the movement, the second one a

translation, and the third one the rotation to the final orientation. In every

step we presume that the robot is making some error. Therefore, we add

noise to all rotations and translations. We sample this noise from a Gaussian

distribution centered on zero:

εσ2 =
1√

2πσ2
exp

(
−1

2

x2

σ2

)
, (3.38)

where σ2 is the variance. In Figure 3.6 we see three examples. Here, u1 is
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the motion command. Both u2 and u3 show examples how the goal position

differs if the robot is making rotation and translation errors. To summarize

the odometry model we compute the new position in this way:

θcur = θold − α + ξ (3.39)

x = cos(θcur)t+ ζ (3.40)

y = sin(θcur)t+ ζ (3.41)

θ = θcur − β + ξ, (3.42)

where x, y is the robot position, α is the first rotation to the movement di-

rection, β the second rotation to the final orientation, t the distance of the

translation, ξ is the rotational noise, and ζ the translational noise.

In the next section we discuss how we can calculate the probability that a

robot sees some observation z.

3.5.3. Observation Model

The following section is about the probability model of the sensor function

of a laser range-finder. In contrast to other proximity sensors like sonar

sensors, laser range-finder are more exact. Hence, we do not have to deal

with big measurement errors. However, we still suffer from various prob-

lems. Crosstalk is one of it. A scanner could read a neighboring laser beam.

Another problem are reflective objects. If they reflect one of the beams in

another direction the resulting transition time is too high and the scanner

measures a too long distance. Two more problems are random measure-

ments and max range readings. The first can occur if the scanner senses an

erroneous distance. The second one happens to all beams which either got

lost or are outside of the laser’s range. To deal with these problems [29]

provides a sensor function consisting of several parts. The first part of this

function models all beams which hit the expected obstacle or are at least

close to it. It is a normal distribution centered on zexp:

Phit(z|x,m) = µ
1√

2πσ2
exp

(
−1

2

(z − zexp)2

σ2

)
, (3.43)
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zexp zmax

Expected Measurement

(a)

zexp zmax

Random Measurement

(b)

Figure 3.7.: The left graph shows a normal distribution centered on zexp. It
deals with all beams which hit an expected obstacle. The right
function models random objects.

where µ is a normalization constant, σ2 the variance, z the measured distance

to the obstacle and zexp the expected distance. x is the robot position and m

is the map. The variance is a factor to model the uncertainty of the device.

However, we use a laser scanner which is precise. Therefore, we can set the

variance to a small value and the resulting function gets more peaked. In

Figure 3.7 (a) we illustrate the normal distribution which represents the first

part of the function.

The next part is a constant function:

Prand(z|x,m) = µ
1

zmax
, (3.44)

with zmax as the max range. In Figure 3.7 (b) is an example. This function

covers all laser scan readings which we do not model and are random. It

also prevents the robot to get lost if it is delocalized. With this positive,

constant function and the iterative process in Equation 3.37 we still have a

probability unequal to zero on all possible positions. Therefore, the robot

can localize itself again. However, Monte Carlo localization is working on

samples. Hence, all particles in regions with a low probability are likely to

die out.

Part three of the sensor function is about max range readings. We see the

Andreas Kuhner 27



MATCHING OCCUPANCY GRIDMAPS AND

CAD-FLOORPLANS FOR MOBILE ROBOT NAVIGATION

3. Preliminaries

zexp zmax

Max Range

(a)

zexp zmax

Unexpected Obstacle

(b)

Figure 3.8.: The first graph is about max range readings. We map all mea-
surements which are longer than zmax to this value. The other
graph shows the function which deals with dynamical objects in
front of the robot.

function in Figure 3.8 (a). The formula is:

Pmax(z|x,m) =

 µ1
c

,if |z − zmax| < 0.1

0 else
. (3.45)

Here, c is a constant value. This max range reading function models all

beams which are further away than zmax. They either got lost or hit an

obstacle which was too far away. The last piece is an adaption to dynamic

objects. They are not part of the static world and they do not match to

anything on the map. Therefore, we see in Figure 3.8 (b) the function which

we use to deal with these dynamic objects. It is given by:

Punexp(z|x,m) =

 µλ exp (−λz) ,if z < zexp

0 else
, (3.46)

where λ is a scaling factor. The higher it is the more likely are objects close

to the robot. On the other hand, it is less likely when the beam gets closer

to the expected distance. The basic idea about this function is the fact that

objects which are close to the robot are more likely than objects far away.

Figure 3.9 shows two examples. Let the robot be on the left side and A to G
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zexp zmax
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(b)

Figure 3.9.: The picture (a) is about the function which deals with dynamic
objects. Objects which are close to the robot are likelier than far
away objects. The Graph (b) shows the combined function.

the cell names. In row number one we have an obstacle in cell B. Therefore,

the robot cannot see anything behind it. What we do is to count the number

of possibilities which have this configuration. If the wall is behind cell G we

have 25 different configurations where ? is either blocked or free. In contrast

to this is in row two the obstacle in cell F . Hence, we have 21 different

possibilities. To summarize this small example: In the first case there are

more possible configurations compared to the second case. Thus, the first

case is more likely.

All parts together form the final formula for the sensor model:

P (z|x,m) = αPhit(z|x,m) +βPunexp(z|x,m) +γPrand(z|x,m) + δPmax(z|x,m),

(3.47)

where α, β, γ and δ are coefficients to regulate the weight of each part. In

most cases we neglect the map and only write x to describe both the robot

state and the map.

The last section is about the combination of motion model and observation

model.

3.5.4. The Structure of Monte Carlo Localization

We discussed in the previous sections how the Monte Carlo localizations ob-

servation and motion model looks like. In this section we look at the update
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Figure 3.10.: The weight of each particle pi is the size of its slice. The red
lines symbolize which particles we choose. Hence, we take
particle p8 two times and particle p6 not at all. All other parti-
cles are used only once in the final particle set.

rule. The Monte Carlo localization is a particle filter. Therefore, it represents

the underlying probability distribution with particles. Each of these parti-

cles is a sample drawn from some distribution. After the initialization phase,

where we uniformly distribute particles over a map, we move each parti-

cle by a motion and, afterward, draw new samples according to the motion

and the observation model. Let pi ∈ P be a particle in the particle set P .

In each update step we perform Equation 3.39 on each particle pi where pi
represents the robot state. Afterward, we compute the weight of each parti-

cle with Equation 3.47. In the case of the Monte Carlo localization x is the

particle pi. We use the weights of each particle to apply an importance re-

sampling. Figure 3.10 shows the importance sampling. The chosen method

is stochastic universal sampling. Hence, we have a roulette wheel and each

particle has a slice on it proportional to its weight. If we want to sample n

particles from this wheel, we draw a random number r1 between zero and 1
n
.

r1 is the starting point. Afterward, we add 1
n

to r1 and we get r2. We repeat

this step n times. The points r1 to rn are the positions where we look for

particles on the wheel. If ri is within the bounds of the area of pj we add the

particle pj to the new particle set P and continue once more with the motion

update.
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Matching of Floorplans and Gridmaps

The problem we face is how to calculate or learn a function which projects

a point p from one map to the other one. In our scenario we have a floor-

plan and a gridmap where we map a point p on the floorplan to a point q

on the gridmap. We also show in the experiments how well this projection

performs in the other direction where we map a point from the gridmap onto

the floorplan. In a perfect world the transformation would be a combination

of translation, rotation and scaling. Unfortunately, gridmaps are not exact.

Figure 4.1 depicts such a scenario. The left side shows a well aligned floor-

plan while the other side shows a gridmap. They are not smooth or have a

perfect alignment. Also some parts could be stretched while other parts have

the correct scale. Therefore, a single homogeneous transformation is an ap-

proximation and we are not able to use a single transformation for the whole

map. It is even worse: At some points the gridmap could be folded into itself

which makes it hard to express this area with just one transformation.

In this chapter we propose several approaches to deal with that problem and

to calculate a mapping from one map to the other.

4.1. Linear Combination of Reference Pairs

The first technique we propose is a linear combination of one support vector

and two direction vectors. Let F be a set of points which are located on the

floorplan and a set of points G which are part of the gridmap. For each point

p ∈ F we have a corresponding point q ∈ G which is defined in the set FG
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T

Figure 4.1.: On the left side is the floorplan with blue points which all have
a reference point on the right gridmap. These corresponding
pairs of points are used to calculate a transformation T .

from Section 3.1. For a point r, which lies on the floorplan, we search for the

nearest neighbors in our set F . Let them be r1, r2 and r3. The metric we use

is the Euclidean norm:

‖a− b‖ =
√

(ax − bx)2 + (ay − by)2. (4.1)

We express r as a linear combination of the points r1, r2, and r3:

r = r1 + lr12 + kr13, (4.2)

where we start with the normalized difference vector between r1 to r2 and r1
to r3:

r12 =
r2 − r1
‖r2 − r1‖

, (4.3)

r13 =
r3 − r1
‖r3 − r1‖

. (4.4)
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r1

r2

r4

r3 s1

s4

s3

s2

Figure 4.2.: On the left side we have the linear combinations for the red and
blue point. The nearest neighbors for the red point are r1, r2 and
r3. However the nearest neighbors for the blue point are r1, r3
and r4. This results into two very different linear combinations
and a gap between the red and blue point.

The scaling factors l and k can be calculated by

l =
rx − rx1 −

ry−ry1
ry12r

x
12

rx13 −
ry13

ry12r
x
12

(4.5)

k =
ry − ry1 − lr

y
13

ry12
. (4.6)

Afterward, we look up the corresponding points s1, s2, and s3 ∈ G and com-

pute the difference vectors:

s12 = s2 − s1 (4.7)

s13 = s3 − s1. (4.8)

The corresponding point s of r can finally be expressed by a linear combina-

tion of s1, s2 and s3:

s = s1 + ls12 + ks13. (4.9)

A downside of this approach is the fact that it cannot handle overlapping

triangles. That means if we have well aligned triangles on the floorplan, like

in Figure 4.2, and corresponding overlapping triangles on the gridmap there
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will be a gap between two adjacent triangles.

The next section proposes an approach which can deal with this problem.

4.2. Global Transformation

The previous approach had problems to create a continuous function which

maps points from one map onto another. The problem comes from the fact

that we did not care for neighboring point pairs and ignore the dependency

of adjacent points. This time we take this problem into account and cal-

culate a transformation on the whole point set. Therefore, we apply the

algorithm explained in Section 3.2.2 and combine it with Section 3.2.1. The

global transformation approach has three steps: In the first one we randomly

choose three points from F . In step two we calculate with these three points

and their reference points a transformation T by applying SVD from Section

3.2.1 to it. The third step deals with the consensus set. Every point from

F , which agrees with the transformation T , is added to the consensus set.

At the end the transformation with the biggest consensus set is the actual

transformation which is used to calculate the reference point from a point

on the floorplan.

This strategy leads to a very smooth function without any gaps. It also can

interpolate points which are far away from any seen point. A downside still

exists: For the sake of a smooth function we ignored that the gridmap could

be stretched or bent on some parts and a global transformation cannot han-

dle such local exceptions. The next section conquers the last issue.

4.3. Combination of Local Transformations

In the last section we had problems to deal with local variations which can-

not be explained by a global transformation. In this approach we separate

the points from the floorplan, cluster them and compute a local transfor-

mation for each cluster. Therefore, the approach consists of two parts. In

the first step we cluster our point set F and in the second part we calculate
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Figure 4.3.: Based on the red points we compute a transformation T . The
two black points which are located in the cluster (dotted poly-
gon) are in accordance with the transformation. The blue point
does not.

transformations based on the clusters.

4.3.1. Clustering

For the clustering we perform a bottom up approach. On the lowest level we

split the floorplan into equally sized cells Zi. In each cell Zi we randomly

choose three points and compute a transformation Tk based on 3.2.1. After-

ward, we start with a new cluster Ck, add these three points to it and start

a region growing process. Every other point p of the cell Zi is added to the

cluster if the error, introduced by the transformation, with respect to its ref-

erence point q, is lower than a given threshold and does not overlap with

another cluster. Figure 4.3 shows this case: The red points are the initializa-

tion of the cluster. All points, which are inside of this cluster, agree with their

transformation. On the other hand, the blue point does not. This is repeated

as long as there are no other valid points left in cell Zi. Subsequently, the first

combination step is performed. We check if two clusters of neighboring cells

have a similar transformation. If that is the case they are merged. Thereafter,

we jump to the next layer with a coarser grid and redo the same step over

and over again.
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4.3.2. Combined Transformations

We use the set of clusters C previously calculated to map a point p from the

floorplan to the gridmap. Each cluster has its own transformation and we

combine these transformations with a weighted sum. Given a cluster Ck,

its geometric mean cmk and a point p, which we want to transform, we can

compute the weight as:

wk =
1

‖p− cmk ‖
. (4.10)

Hence, it is inversely proportional to the distance to the geometric mean of

cluster Ck. Finally, the transformation of a point q can be described by:

T =
N∑
i=0

wkTk, (4.11)

q = Tp. (4.12)

where q is the transformed point p on the gridmap.

So far, we used a single or multiple transformations to describe the map-

ping between the gridmap and the floorplan. In the next section we do not

transform the point p anymore but calculate the most likely point q on the

gridmap using a Gaussian process.

4.4. Matching with Gaussian Processes

In the last sections we had various problems: In Section 4.1 we had prob-

lems with a transformation which was not smooth on the whole map. Using

a global transformation (Section 4.2) yields a mapping which is not capable

of handling local variations. However, we described in Section 4.3 an algo-

rithm which could deal with local variations. In this section we see another

approach which can tackle this issue. The resulting mapping of the points

from the floorplan to the gridmap is both smooth and adapts to local vari-

ations. In Section 3.3 we discussed the fundamental idea and structure of

Gaussian processes. In Figure 4.4 we see a point p and its neighbors. The
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p

Figure 4.4.: The different shades of red correspond to the correlation to the
point p. Red is a strong correlation while black is a weak one.

different shades of red depicts the correlation to p where red is a strong

correlation and black a weak one. Thus, it has a bigger influence on the

calculation of the corresponding point q on the gridmap if it is red.

4.4.1. Gaussian Process

The first approach with Gaussian processes (GP) computes a system which

operates on unedited data. Let F be a set of points on the floorplan and

G a set of points on the gridmap. Each point in F has a corresponding

point in G which is given by the set FG. In general, a Gaussian process

computes a function Rn → R. Therefore, we calculate the x and y coordinate

of a corresponding point q on the gridmap independently and combine them

afterward. To optimize the hyperparameters of Gaussian processes we apply

RPROP as described in Section 3.3.1.

To compute q on the gridmap we first have to get K as it is given in Formula

Andreas Kuhner 37



MATCHING OCCUPANCY GRIDMAPS AND

CAD-FLOORPLANS FOR MOBILE ROBOT NAVIGATION

4. Matching of Floorplans and Gridmaps

3.17:

K =



k(p1, p1) k(p1, p2) . . . k(p1, pk)

k(p2, p1) k(p2, p2) . . . k(p2, pk)

...
... . . . ...

k(pk, p1) k(pk, p2) . . . k(pk, pk)


, (4.13)

where p1, · · · , pk ∈ F and k = |F |. We also need K∗ and K∗∗ from Formula

3.18 and 3.19:

K∗ =

(
k(p, p1) k(p, p2) . . . k(p, pk)

)
(4.14)

K∗∗ = (k(p, p)) . (4.15)

The final step is the calculation of q that maximizes p(qx|qx1 , · · · , qxn). To

achieve this, we compute the mean:

qx = K∗K
−1(qx1 , · · · , qxn)T . (4.16)

We apply the same procedure to get the y coordinate of q.

One downside of this approach is a poor interpolation of points which are

far away from any point in F . The Gaussian process tends to converge to

a zero mean which does not represent the correct transformation from the

floorplan to the gridmap. Hence, we apply an adaption to this algorithm in

the next section.

4.4.2. Gaussian Process with Global Transformation

We previously discussed the problem with points which do not have any close

neighbors. One solution is to increase the length parameter l. It regulates the

amount how much neighbors impact on a point p. A bigger value increases

the range where neighbors are stronger correlated to a point p whereas a

smaller value leads to less neighbors. Another downside of an increased

length parameter is the loss of local variations. The higher the value is the
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T

p
q~

q

q

q~
d

Figure 4.5.: First we transform each point p with the global transformation
to the red point q̃: q̃ = Tp. Afterward, we compute the dif-
ference vector d between the blue correspondence q and the
transformed q̃: d = q− q̃. Therefore the Gaussian process learns
with the tuple (p, d).

more we get a global transformation. On the other hand, if a point has no

correlated neighbors its transformed point on the gridmap tends to go to the

mean. To avoid this issue we preprocess the points from the set F and G

where the points from F have a reference point in G due to the set FG. Fig-

ure 4.5 shows the basic idea. First of all we compute a global transformation

T as described in Section 4.2. With T we transform every point pi from the

floorplan to the gridmap:

q̃i = Tpi. (4.17)

Afterward, we calculate the difference between qi and q̃i where qi is the cor-

responding point from pi on the gridmap:

di = qi − q̃i. (4.18)

Thus, we learn a Gaussian process with input (pi, di) and because of that we

no longer work on an absolute value but on the difference vector between qi
and q̃i. Finally we can calculate a corresponding point qi of pi by transforming

the point p with the global transformation and adding the difference vector

of the Gaussian process in Formula 4.16:

qi = Tpi + di. (4.19)
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r1

r2

r3

r4
s1

s3
s4

s2

Figure 4.6.: Two triangles with the Delaunay property. The red, blue and
gray point are transformed with respect to their Barycentric co-
ordinates. The points ri on the left side have a corresponding
point si on the right side.

This adaption solves the problem with a wrong interpolation of points which

are not close to any neighbors. These points depend mostly on the global

transformation which is the best guess for them if we do not have any further

information about the mapping.

The next section explains how we create our ground truth.

4.5. Mapping with a Triangulation

In this section we discuss how we compute a ground truth to compare it to

our other approaches. We have a point p which is on the floorplan and we

want to get the transformed point q on the gridmap which corresponds to

p. Hence, the key idea is that we first search for the triangle M in which

our point p lies. Figure 4.6 shows an example where the triangle is given by

r1r2r3 and is enclosing the red point. Afterward, we calculate the barycen-

tric coordinates l, k, and m of the point within the triangle M , look for the

corresponding triangle N on the gridmap (e.g. s1s2s3) and use the same

barycentric coordinates l, k, and m to get the point within the triangle N on

the gridmap. The first step involves the creation of a Delaunay triangula-

40 Andreas Kuhner



MATCHING OCCUPANCY GRIDMAPS AND

CAD-FLOORPLANS FOR MOBILE ROBOT NAVIGATION

tion DT on the set of points F from the floorplan described in Section 3.4.

The second step involves to find the triangle of DT in which the point p lies

where p is a point from the floorplan. If we get a match we calculate the

barycentric coordinates [7] l, k and m of p within the triangle r1r2r3:

l =
(ry2 − r

y
3)(rx − rx3) + (rx3 − rx2)(ry − ry3)

(ry2 − r
y
3)(rx1 − rx3) + (rx3 − rx2)(ry1 − r

y
3)

, (4.20)

k =
(ry3 − r

y
1)(rx − rx3) + (rx1 − rx3)(ry − ry3)

(ry2 − r
y
3)(rx1 − rx3) + (rx3 − rx2)(ry1 − r

y
3)

, (4.21)

m = 1− l − k. (4.22)

Similar to Section 4.1 we obtain q with the correspondences of p1, p2 and p3:

q = lq1 + kq2 +mq3. (4.23)

However, we need the triangulation generated by the correspondences on the

gridmap to be non-overlapping. Otherwise, we end up in the same configu-

ration as in Section 4.1 and get a discontinuous function. To avoid this issue

we generate the point pairs by hand because this approach can not handle

overlapping triangles. This is a difference from the other approaches which

use automatic generated point pairs. Therefore, we discuss this automatic

generation of point pairs in the following section.

4.6. Approximated Reference Pairs

All algorithms in Chapter 4 depend on two sets of points F and G where

every point in F has a corresponding point in G. Therefore, we discuss in

the following section how we compute our two sets of points and how we

create the connection between them. In Figure 4.7 we see two maps. The

left one is a floorplan and the right one a gridmap. The red dot is the robot

position on both maps and the blue dots represent the endpoints of the laser

scan. Each blue point on the left side has a corresponding point on the right

side. The basic idea is that we drive a robot through a building and track

the position of the robot on both the floorplan and gridmap with a particle

Andreas Kuhner 41



MATCHING OCCUPANCY GRIDMAPS AND

CAD-FLOORPLANS FOR MOBILE ROBOT NAVIGATION

4. Matching of Floorplans and Gridmaps

Figure 4.7.: On the left we have the floorplan and on the right side a cor-
responding gridmap. The red dot represents the position of the
robot and the blue points are the endpoints of the robots’ laser
scan. Each blue point on the left side has a corresponding point
on the right side. These are our point pairs.

filter. We take each laser scan, produced by the robot, and compute the

position of every endpoint of the laser scan with respect to the current robot

position on the maps. Hence, we have our corresponding points. However,

we see that both maps look very different. Typically, a floorplan consists of

the buildings’ structure whereas a gridmap has much more details like chairs,

tables, cupboards, machines, and other stuff in its map. We discuss how that

impacts the results in Chapter 6.

4.6.1. Calculation of Reference Pairs

We discussed in Chapter 4 how we compute a function which maps points

from the floorplan onto the gridmap. To calculate this function we imple-

mented several approaches. However, to create them we need a set of points

on the floorplan and we need to know where the corresponding points on

the gridmap are. We track a robot on both the floorplan and gridmap with

the Monte Carlo localization from Section 3.5.4. For this task we have two

possibilities: Either we could first localize our robot and then track it or we

start with a known pose and track it immediately. In both ways we start to

generate reference pairs when the robot is in the tracking stage. Hence, we

have a particle set on both maps. To compute the actual robot position from
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these sets we apply a weighted mean approach. Therefore, we have:

px =
N∑
i

wip
x
i (4.24)

py =
N∑
i

wip
y
i (4.25)

pθ = arctan

(
N∑
i

wi sin p
θ
i ,

N∑
i

wi cos pθi

)
, (4.26)

where pi is a particle, wi the respective weight computed in the observation

model and N the number of particles. In every update step of the Monte

Carlo localization we apply this mean calculation and get the robot position

on both the floorplan and gridmap separately. These two positions serve as

the starting points to get the laser endpoints of the current laser scan. For ev-

ery measured distance we compute the position on the floorplan and on the

gridmap and add them to the reference pair set. Therefore, during the tour

of the robot through a building we generate a lot of reference pairs which

we use in Chapter 4 to compute the mapping function.

In the next Chapter we discuss some implementation details and the struc-

ture of the applied algorithms.
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Implementation Details

The next two sections are about the structure and details about the imple-

mentation of the algorithms described in the previous chapters.

5.1. Combined Transformations with Clusters

The combination of transformations in Section 4.3 consists of two parts: First

we have to calculate a clustering and second we need to compute on each

cluster the transformation. Hence, we look at the basic structure of the clus-

tering. There, we divide the map into equally sized cells and calculate clus-

ters in each cell. These have to be non-overlapping. Then, we combine, with

respect to the transformation, similar clusters by merging two cells. Here,

P is the point set which lies within the cell Z and C is the cluster. Using

the Algorithm 5.1 we can compute the clusters and the corresponding trans-

formations. We want the corresponding point q on the gridmap. Let p be

a point on the floorplan. Therefore, we apply the Algorithm 5.1. wi is the

weight in Equation 4.10, Cm is the geometric mean of cluster Ci and w the

total weight. Hence, we have computed our reference point q of p with the

weighted sum using several transformations.

The next section describes how we implemented the transformations with

the Gaussian processes.
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Algorithm 1 The clustering of the combined transformations approach.
1: for all cell Z do
2: while P not empty do
3: Add 3 points from P to C
4: Remove these points from P
5: Calculate Transformation T of C
6: for all p in P do
7: if p agrees with T then
8: Add p to C
9: Remove p from P

10: end if
11: if C overlaps with any Ci then
12: Remove p from C
13: end if
14: end for
15: end while
16: end for
17: for all Neighboring cells Ci Cj do
18: if Ti of Ci agrees with Tj of Cj then
19: Merge Ci and Cj
20: end if
21: end for

5.2. Transformation with Gaussian Processes

In the last section we looked closer on the structure of combined transfor-

mations. In this section we do not compute an exact transformation but the

most probable reference point q on the gridmap of a point p on the floorplan.

The first part is the learning and optimization process described in Section

5.2. Here, FG is the set of reference points from the floorplan and gridmap

and GP the Gaussian process. Hence, we first add all pairs to the Gaussian

process and then optimize the length parameter and the variance. To finally

calculate a reference point q we apply the Gaussian process from Algorithm

5.2. Hence, we compute the most likely reference for the point p.

We also implemented the variant from Section 4.4.2: Instead of the zero

mean strategy we have an initial guess with the global transformation from

Section 4.2. Therefore, if all neighbors are not in correlation with the point
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Algorithm 2 First we calculate the weight for each cluster and, afterward,
we combine the transformations with respect to the weight.

1: q = 0
2: w = 0
3: for all Cluster Ci do
4: wi = 1

dist(p,Cm)

5: w = w + wi
6: end for
7: for all Cluster Ci do
8: wi = wi

w

9: q = q + wiTip
10: end for

Algorithm 3 We add all reference pairs from the set FG to the Gaussian
process and optimize the parameters with RPROP.

1: for all pq in FG do
2: Add pq to GP
3: Calculate covariances of pq
4: end for
5: Optimize GP with RPROP

p we transform it with the global transformation as a fallback strategy. Thus,

the structure changes to the Algorithm 5.2. Hence, we first transform the

point p onto the gridmap using the global transformation and then initialize

the Gaussian process with the difference vector d between the transformed

point q̃ and q. For the calculation of a reference point we first have to trans-

form the point and then add the output of the Gaussian process to it.

In the next chapter we discuss how well the different approaches perform

in comparison with the ground truth.
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Algorithm 4 The calculation of the reference point q.
1: Calculate K∗ and K∗∗ of pq
2: q = K∗K−1(q1, · · · , qn)T

Algorithm 5 The adapted variant of the Gaussian process with a global trans-
formation as fallback strategy.

1: Calculate global transformation T
2: for all pq in PQ do
3: d = q − Tp
4: Add pd to GP
5: Calculate covariances of pd
6: end for
7: Optimize GP with RPROP
8: q̃ = Tp
9: Calculate K∗ and K∗∗ of pd

10: q = q̃ +K∗K−1(d1, · · · , dn)T
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Experiments

We proposed several approaches to calculate a function or transformation

which projects a point p on a floorplan to a point q on the gridmap and vice

versa. To learn these projections we described a set of algorithms in Chapter

4. They either compute a transformation, use an interpolation or calculate

the most likely point q, given some data, on the gridmap. In the follow-

ing chapter we evaluate the output of these algorithms and compare it with

a ground truth. Therefore, we have multiple floorplans and the respective

gridmaps. We recorded the output from a laser scanner attached to a Pioneer

robot and the odometry. Afterward, we built multiple gridmaps from these

data sets and generated the set of reference pairs by applying the proposed

algorithm from Section 4.6. We used these reference pairs to apply our ap-

proaches and compute a transformation.

The first experiment is about the performance of each algorithm in compari-

son to the ground truth.

6.1. Comparison to the Ground Truth

The first experiment is about the application of the approaches to the differ-

ent data sets. We compare the results to the ground truth which we generate

by manually setting points on the floorplan and its corresponding points on

the gridmap. Through these point pairs we compute a Delaunay triangula-

tion as described in Section 3.4. However, we set only points on positions

where the gridmap is available. We can see the results in Table 6.1 and the
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6. Experiments

(a) Delaunay Triangulation

(b) Global Transformation (GT)

Figure 6.1.: The top picture shows the ground truth of the floorplan matched
into the gridmap. The bottom picture is an approach with a
global transformation. The meaning of the two positions A and
B will be discussed in the text.
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APPROACH Building 79 Building 74 Building
106

Factory
Floor

GT 0.265 m 0.226 m 0.157 m 0.151 m

CT 1.705 m 0.458 m - -

GP 0.692 m 0.455 m 0.172 m 0.170 m

GPGT 0.419 m 0.268 m 0.173 m 0.202 m

Table 6.1.: The mean error of all approaches.

following sections present the individual results on the different data sets.

6.1.1. Building 74

The data set of building 74 consists of a trajectory through a floor and office

environment where we visited a few rooms. In the top picture of Figure 6.1

we see the ground truth. We take the floorplan and map every wall of it into

the gridmap. The result is a gridmap with a red overlay which represents

parts of the floorplan of building 74. As we mentioned before: We just take

walls of the floorplan which are inside of a triangle from the Delaunay tri-

angulation and map them onto the gridmap. The lower picture shows the

approach with the global transformation (GT) from Section 4.2. It takes all

points and the corresponding ones into account and computes a transforma-

tion. We can see that the global shape fits into the gridmap. However, it does

not consider local details. For example the transformed plan at A does not

fit onto the gridmap. At position B we have a slightly rotated room. The GT

misses this detail as well. The mean error of this approach is 0.226 m with

a map resolution of 0.025 m. Here, the mean error is the summed up error

of every sample divided by the total amount of samples. The samples are

the wall-points on the floorplan. The next Figure 6.2 is about the approach

where we combine several local transformations (CT) and weight each of

them with respect to the distance to the cluster center. It is able to adapt

to the rotated room at position A and the hallway at B as well. However,

the global performance is not as good as in the previous approach. Hence, it
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6. Experiments

Figure 6.2.: The floorplan is mapped onto the gridmap through a combina-
tion of transformations.

shifts the floorplan at position B and C. The mean error is 0.458 m. Figure

6.3 shows two approaches based on Gaussian processes. Here, the top pic-

ture is the Gaussian process (GP) described in Section 4.4 without any pre-

processing. The blue points represent the reference points. At the first sight

it looks like a bad transformation. However, a Gaussian process heavily de-

pends on samples in a close region to interpolate a point. Hence, if we have

no points in a small region around our point p from the floorplan we cannot

find a good counterpart on the gridmap. We see this issue at the curved parts

of the floorplan which we mapped onto the gridmap. But as long as we stay

close to samples the performance is close to the correct position. Due to the

big errors in areas without any samples the mean error is 0.455 m. To deal

with this issue we proposed in Section 4.4.2 an adaption. We first transform

all points from the floorplan onto the gridmap with a global transformation

and, afterward, learn a Gaussian process on the difference between the trans-

formed point p and the reference point q on the gridmap. We call it GPGT.

The lower picture shows the result. Areas without any samples are closer to

the global transformation which is, without any further knowledge, a good

approximation. Hence, the global shape depends on the global transforma-
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(a) Gaussian Process (GP)

(b) Gaussian Process with Global Transformation (GPGT)

Figure 6.3.: The top picture shows the performance of a Gaussian process.
The blue points represent the reference points. The lower pic-
ture is the Gaussian process where we first transform the points
with a global transformation and learn on top of it a Gaussian
process.
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tion with local variations due to the Gaussian Process. It is able to adapt the

rotated room at position A and also aligns the hallway at B to the appropri-

ate one on the gridmap. The mean error is 0.268 m which is slightly higher

than the error from the global transformation.

We see that the GT has the best result on this data set. The reason is that,

beside one slightly rotated room, the whole map has no bad alignments.

Therefore, a GT is a good approximation. On the other hand, the GPGT ap-

proach can deal with the rotated room. It adapts a global transformation

and, hence, is the second best approach on this data set.

6.1.2. Building 79

Building 79 is an office building that has a lot of rooms and a connecting

hallway. Figure 6.4 shows the ground truth and the first approach with a

global transformation. In comparison to the ground truth the GT approach

did not adapt the scaling factor correctly. On the left side of the picture we

have a higher offset compared to the other side. Therefore, the walls of the

floorplan do not match with the walls of the gridmap. Despite this issue, the

gridmap is well aligned. The mean error is 0.265 m. The next approach is

the CT one. In Figure 6.5 we see the result. It is globally shifted downwards

and does not align very well with the structure. Therefore, we have a bigger

mean error of 1.075 m. Both Gaussian process variations depend heavily on

sample density. Therefore, we have one more time a lot of curvy lines which

are too far away from samples and are not well interpolated. However, in

regions with samples the GP in the top picture (Figure 6.6 (a)) fits into the

gridmap. Here, the blue points are our reference points. The two learned

length scale parameters are 6.26 and 4.96 for the x direction and 5.41 and

5.61 for the y direction. Because of the bad interpolation performance the

mean error is 0.692 m. In the lower picture we see the GPGT approach. It fits

a lot better to the global shape but is still very curvy between reference pairs.

The learned length scale parameters are 4.6 and 3.08 for the x direction and

4.02 and 3.01 for the y-direction. Hence, this approach sticks more to local

samples than the previous approach. The mean error is 0.419 m.
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(a) Delaunay Triangulation

(b) Global Transformation

Figure 6.4.: The first picture shows the ground truth whereas the second one
the global transformation.
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Figure 6.5.: This picture shows the result of the combined transformations
approach.

However, if we make the same experiments on the same data set which we

use for the ground truth all mean errors decrease. The CT approach is still

the worst with a mean error of 0.161 m followed by the GT with a mean

error of 0.129 m. We achieve the best results with the GP and the adaption.

The GP has a mean error of 0.094 m and the GPGT version a mean error

of 0.092 m. Thus, we see that the performance also depends on the given

references. However, we have to generate them manually which is not feasi-

ble with larger data sets. Therefore, we stick to the automatically generated

references from Section 4.6.

6.1.3. Building 106

The data set from building 106 consists of a trajectory through hallways.

Therefore, we do not have to deal with many obstacles and furniture. The

resulting gridmap and floorplan look very similar. Hence, we have good

reference points. The GT in Figure 6.7 shows a good matching of gridmap

and floorplan. The result is slightly rotated but does not end up in big errors
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(a) Gaussian Process

(b) Gaussian Process with Global Transformation

Figure 6.6.: The first picture is about the pure GP with our reference points
in blue. In the other one we see the GPGT.
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Figure 6.7.: Due to good reference points the global approach creates a good
matching of floorplan and gridmap.

due to the small map. The mean error is 0.157 m. However, the GP performs

very well, too. It has a mean error of 0.172 m which is very close to the GT

approach. We can see the result in Figure A.2 in the appendix. Once more,

the only downside are the poor interpolation capabilities in border regions

where it shifts away from the optimal position. The next Figure 6.8 illustrates

the GPGT. As in former experiments the result looks wavy. However, the

mean error is 0.173 m which is close to the other two approaches. The CT

approach has difficulties to create a proper clustering. Hence, we cannot

evaluate this approach for this data set.

6.1.4. Factory Floor

The factory floor data set consists of four trajectories which all start at the

same spot. The hallways are several hundred meters long. The CAD-floorplan

contains different machine setups. Here, the problem is that all structures are

in the map. Hence, we also have to deal with obstacles which the robot does
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Figure 6.8.: The GPGT performs similarly as the GT.

not see. We also edited the floorplan, such that the robot has a free and

empty path and no structure spans over a hallway. Nevertheless, the algo-

rithm for the automatic reference pair generation finished all four trajectories

without delocalizing itself. Figure 6.9 shows the result of the GT approach.

The mean error is 0.151 m. Therefore, we have the best results on this huge

data set. On the other data sets the mean error was between 0.157 m and

0.265 m. One reason for such a good performance are the reference points.

In Figure 6.10 we see the reference points which we generated with a par-

ticle filter on the floorplan and one on the gridmap. The blue points match

the structure of the floorplan. Only at some positions the points are scattered

where the particle filter changed over into a multi-modal mode. Because of

the good reference points the GP performed well, too. In Figure 6.11 we

see the results of it. Around the hallways are no obvious mismatches. The

mean error is 0.170 m. The GPGT is a bit less accurate. It has a mean error

of 0.202 m. We see the result in Figure A.3 in the appendix. The approach

aligns the floorplan as good as the GP to the gridmap. Only one spot (Posi-
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Figure 6.9.: The GT on the factory floor data set.

Figure 6.10.: The reference points on the floorplan.
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Figure 6.11.: The GP on the factory floor data set.

tion A) is wrong aligned which leads to a higher mean error.

We have seen that the performance of the different approaches is close re-

lated to the quality of reference pairs. Especially the GP and GPGT depend

on good reference pairs. On the other hand, the global transformation can

deal with scattered reference pairs and small errors.

In the next section we see an experiment with an erroneous map of building

74.

6.2. Performance on Erroneous
Map of Building 74

We have seen that the performance of a GT is very good in situations where

the gridmap is globally consistent. In this section we look at a map for which

this no longer holds. Figure 6.12 shows the erroneous map of building 74.

The bent, which can be seen in the middle of the map, can happen if the

scan matcher creates a wrong connection between two nodes in a graph
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(a) Delaunay Triangulation

(b) Global Transformation

Figure 6.12.: The erroneous gridmap with the triangulation in the first pic-
ture and the GT on the second picture.
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based mapping algorithm or a wrong aligned scan in a particle filter based

algorithm. If this happens, for example, in an online approach there is no

time to restart the mapping but our algorithm has to deal with it. In the

top picture we show the ground truth. Hence, we transformed the points

from the floorplan onto the gridmap with the algorithm from Section 4.5.

The problem with this map is the kink in the area of A and the bend in the

area of B. Therefore, we do not have a globally aligned map. As a result

the performance of the GT approach is quite bad: It has a mean error of

1.75 m. The lower picture in 6.12 shows the resulting transformed map. It

takes all points into account and computes a global transformation which

does not follow the alignment of the gridmap. If we use the CT approach

we get a problem due to outliers. We illustrate the result in Figure A.1 in

the appendix. At A and B we have several outliers from the automatically

generated references. Hence, the algorithm incorporates them and creates

on top of it a set of transformations. The result is a shift towards this clus-

ter in the area around A. The mean error is 1.81 m. The next two figures

in Figure 6.13 show the results of the two approaches based on Gaussian

processes. The first two approaches could not align to the local variations

which are present in the current experiment. However, the GP as well as the

GPGT version can deal with it. The top picture shows the GP. It can deal

with the bent at position A and aligns itself with the gridmap. Also, on the

right side of the map it fits onto the gridmap except for the area around B

where it misses references. The mean error is 0.71 m which is smaller as

the error from the previous approaches. The GPGT approach is less accurate

having a mean error of 0.798 m which we can see in the lower picture. It

can deal with local variations but also suffers from missing references in the

area around B. Another downside is the fact that the global constraint is not

fulfilled. Therefore, the initial global transformation for every point does not

improve the interpolation capabilities of the algorithm. Another comparison

can be done if we take the triangulation algorithm into account and apply

it on the automatically generated references. The first thing to say is that it

cannot deal with any outliers and takes them all into account. Hence, if we

have a triangulation with the Delaunay property on the floorplan and look at
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(a) Gaussian Process

(b) Gaussian Process with Global Transformation

Figure 6.13.: The first picture shows the result of the Gaussian process.
It is able to align to the local variations as well as the sec-
ond approach with an adapted Gaussian process in the second
picture.
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APPROACH Building 79 Building 74 Building
106

Factory
Floor

GT 0.20 m 0.20 m 0.10 m 0.15 m

CT 1.00 m+ 0.35 m,
0.7 m

0.15 m,
0.85 m

-

GP 1.00 m+ 0.15 m 0.20 m 0.15 m

GPGT 0.30 m 0.30 m 0.10 m 0.15 m

Table 6.2.: The main peaks of the approaches.

the matching ones on the gridmap we have overlapping triangles. As a result

we get no smooth function and a lot of mismatched points. The mean error

is 10.27 m.

The first results illustrate that the GT performs very well on gridmaps which

do not contain any global error such as bent or skewed parts. The GPGT beats

the Gaussian process due to its better interpolation capabilities in border re-

gions. However, if the map has local variations or is not globally aligned then

the GP and GPGT outperforms the GT approach. The linear combination and

CT perform both not as good as the other approaches.

6.3. Distribution of Mapped Points

In the last section we looked into the performance with respect to the ground

truth. This section is about the distance of each point on the map to the

ground truth position. Hence, we map every point of the floorplan onto

the gridmap and compare it to the ground truth. Afterward, we count the

number how often points fall into a given interval. Table 6.2 illustrates the

resulting peaks of the distributions.
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Figure 6.14.: A histogram for building 74. We map every point from the
floorplan onto the gridmap and compare it to the ground truth.
Afterward, we count the number of points which fall into given
intervals.

6.3.1. Building 74

In the previous section we have seen that the GT and the GPGT performs

better than the other approaches. We can see this behavior in Figure 6.14

with the gray and blue bars. The main peak of both approaches is around

0.2 m. This corresponds to the mean error which was slightly above 0.24 m.

If we look at larger intervals the number of points decreases and no point is

further away than 1.0 m. On the other hand, we have the approach where we

combine multiple transformations to map a point from one map to the other.

Figure 6.14 represents it with brown bars. The CT approach has multiple

peaks at 0.35 m and 0.7 m. It also has points which are further away than

1.0 m. The same holds for the GP in red. Due to the bad performance of the

interpolation of points which are further away, it has a lot of points in the

interval 1.0 m and more. On the other hand, it has a peak at 0.15 m which

represents the points in close range around our reference pairs.
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Figure 6.15.: A histogram for building 79. We compare every point trans-
formed to the gridmap with the ground truth and look how
much points lie in which distance to the ground truth.

6.3.2. Building 79

One more time the GT approach performed better than the other approaches.

We can see this in Figure 6.15. Most points fall into the intervals between

0.1 m and 0.4 m. On the other hand, the GP and the GPGT have the most

points in the same region. The GPGT has the peak at 0.3 m and the most

points lie between 0.1 m and 0.45 m. The CT approach has the most points

in the region from 0.45 m to over 1.0 m. However, all approaches have points

which are further away than 1.0 m. Here, the GP has the highest peak fol-

lowed by the CT and the GPGT. The GT has a rather small peak.

6.3.3. Building 106

On this data set all approaches, except the CT, deliver similar results. Figure

6.16 illustrates the results. The leading approach is the GT. It has its peak at

0.1 m. The second best approach is the GP with the highest peak at 0.2 m.

Close to the GP is the GPGT. It has its main peak at 0.1 m, too. Most points
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Figure 6.16.: All approaches, except the combined transformations, perform
similarly where the main peak is between 0.1 m and 0.2 m.

of all three approaches lie between 0.05 m and 0.45 m. The CT method has

points which are far away from the ground truth. The error range is from

0.05 m up to over 1.0 m where all points are equally distributed.

6.3.4. Factory Floor

We were able to generate good reference pairs on the factory floor data set.

Hence, the main peaks of all approaches are at 0.15 m. Figure 6.17 shows

the results. Most points end up with an error between 0.05 m and 0.40 m.

However, the GPGT has another peak at 1.0 m+. This is due to one position

where it does not align the floorplan very well to the gridmap. The GT has

the highest peak while the GP has a smaller peak, in comparison to the GT,

but is more spread in the region around 0.15 m.

In the next section we see how big the offset of a transformed point is from

the ground truth.
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Figure 6.17.: The error distribution of the factory floor data set. All ap-
proaches perform similar. However, the GPGT has another
small peak at 1.0 m+. The main peak of all approaches is at
0.15 m.

6.4. Error Map

So far we have seen the comparison to the ground truth by mapping the

structure from the floorplan onto the gridmap and the error distribution

with histograms. This time we map the whole area which is enclosed by

the ground truth to the gridmap. The result is a red shaded image where red

represents a bad transformation and white a transformation which is rather

close to the ground truth.

6.4.1. Building 74

The main challenge in the gridmap of building 74 is the room in the top left

corner. We can see this in Figure 6.18. It is slightly rotated. Therefore, the

GT approach cannot deal with this local variation and the area around this

room is closer to red. Figure A.4 in the appendix shows the transformed map

of the CT approach. This approach has still problems with the room in the
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(a) Error Map of Building 74

1.0m+

0m
(b) Scale

Figure 6.18.: The GT approach has minor issues with local variations like in
the upper left corner. The scale describes the distance between
a point and its ground truth correspondence.

top left corner and behaves different at the outer border of the ground truth.

Overall the shade of red is darker than with the GT. The next approach is

the GP in Figure 6.19. As long as reference points are in close proximity

we have a good match to the ground truth. However, there are also big

areas of red where the GP cannot fit to the ground truth. This issue occurs

because of the poor interpolation capabilities of Gaussian processes. On the

other hand, such areas are not of high interest because we do not have any

information about it on the gridmap and, therefore, do not want to drive

there. The last Figure A.5 in the appendix is about the GPGT. In areas,

where the Gaussian process would have to interpolate the points, because no

reference pairs are in close proximity, the algorithm falls back to the global

transformation. Hence, the result looks similar to the GT. However, it is able

to deal with local variations.

6.4.2. Building 79

The data set of building 79 consists of a robot tour where the robot drives

mainly to the right. Hence, there are not enough reference pairs on the

left side to represent it and the algorithm cannot take it into account. The
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(a) Error Map of Building 74

1.0m+

0m
(b) Scale

Figure 6.19.: The GP has problems with the interpolation between reference
pairs. However, it can deal with local variations.

(a) Error Map of Building 79

1.0m+

0m
(b) Scale

Figure 6.20.: The GT approach performs well in on this data set. Just on the
left where no reference points are available is the shade red.
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(a) Error Map of Building 79

1.0m+

0m
(b) Scale

Figure 6.21.: The GP has problems with the interpolation between reference
pairs. However, it can deal with local variations.

result is that the GT fits on the right side but is less accurate on the left side.

However, it still performs better than any other presented approach. On the

other hand, the approach where we combine multiple transformations into

a single one (CT) performs in the opposite way: It fits on the left side to

the ground truth but not on the right side. The next approach is the GP.

Due to the lack of interpolation capabilities the performance on the left side

is very bad and yields the highest approximation error. However, between

reference pairs, like on the floor and some rooms, it performs close to the

ground truth. On the other hand, we have the GPGT approach. Similar to

the GP it has in some areas problems to interpolate the points well, like in

the lower left corner. This is due to the bad performance of the GT in this

corner which is the fall back strategy for the GPGT.

6.4.3. Building 106

The first Figure 6.22 illustrates a smooth result of the GT approach. However,

the mapping is not well aligned at the starting area (position A) of the robot

trajectory. This is due to the fact that the Monte Carlo localization needs a

few iterations before the mean position among the particles is at the correct

position. We see the same behavior of the GP in Figure 6.23. At the start

location we have minor issues regarding a good alignment. However, the
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(a) Error Map of Building 106

0.45m

0m
(b) Scale

Figure 6.22.: The red areas are around the start point of the robot. At this
point the robot was not perfectly localized.

(a) Error Map of Building 106

0.50m

0m
(b) Scale

Figure 6.23.: The GP has minor issues at the robot start position where the
biggest red shaded area is located.
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(a) Error Map of the Factory Floor

0.70m

0m
(b) Scale

Figure 6.24.: The GT error ranges from 0.0 m up to 0.7 m. Nevertheless,
only small areas have a measurable error.

other areas fit to the ground truth. Figure A.8 in the appendix illustrates a

noisier example of the GPGT. In the first section of the experiment chapter we

have seen the wavy structure of the GPGT. This resolves into a grid pattern.

Nonetheless, the overall alignment is close to the ground truth.

6.4.4. Factory Floor

Figure 6.24 shows the first result with the GT on the factory floor data set.

A few small areas have an error of 0.7 m. Most other points behave similar

to the ground truth. The GP produces a smoother result as can be seen in

Figure 6.25. It contains more red shaded areas than the GT approach. On the

other hand, the GPGT has a similar structure than the GT. It has red shaded

areas on similar spots. However, the global performance is worse because of

points which are further away than 1.0 m with respect to the ground truth.

In Figure A.9 in the appendix we see the result of the GPGT.

The final section will be about the stability of a back and forth mapped point.
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(a) Error Map of the Factory Floor

0.95m

0m
(b) Scale

Figure 6.25.: The GP has a larger error range. It starts at 0.0 m and ends at
0.95 m.

6.5. Stability of Back and Forth Mapping

In the last sections we have seen several experiments where we compare

one transformation from one map to the other. Finally, we want to examine

the performance of our presented approaches if we map a point from the

floorplan onto the gridmap, and the inverse direction, namely taking the

mapped point and transform it back to the floorplan. Hence, we map a

point back and forth 100 times and evaluate the distance between the final

and start point. Table 6.3 illustrates the closest and farthest distance of all

approach.

6.5.1. Building 74

The GT approach performs one more time as the best approach. In Fig-

ure 6.26 we see how much the blue points spread with the back and forth

mapping. Each point sticks close to the start point. The offsets range from
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APPROACH Building 79 Building 74 Building
106

Factory
Floor

GT 0.22 m to
1.02 m

0.02 m to
1.10 m

0.71 m to
1.98 m

0.12 m to
0.92 m

CT 4.00 m to
50.00 m

1.32 m to
13.32 m

- -

GP 0.77 m to
4.15 m

0.99 m to
3.16 m

1.23 m to
2.36 m

0.17 m to
18.93 m

GPGT 0.15 m to
4.71 m

0.07 m to
2.71 m

0.86 m to
7.59 m

0.90 m to
8.33 m

Table 6.3.: The closest and farthest point of the back and forth mapping
experiment.

Figure 6.26.: The performance of the different approaches by mapping a
point from the floorplan onto the gridmap and back several
times. The red points are the CT, the blue points are the GT,
the brown points are the GP, and the purple points are the
GPGT.
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Figure 6.27.: The results from the back and forth mapping of points. The
blue points represent the GP. The brown points are from the
GP, whereas the purple points illustrate the GPGT. The red
points show the result of the CT approach.

0.02 m to 1.10 m. The mean error is around 0.40 m. The worst approach is

the CT which are the red points. Here, the errors range from 1.32 m up to

13.32 m. The mean error is around 7.00 m. The brown points represent the

GP approach. Any point in close range to reference points end up in close

proximity of the start point. However, if the point moves away from the

given reference points it starts to shift. The smallest error is 0.99 m and the

highest error is 3.16 m. The mean error is 2.00 m. The last approach GPGT,

which the purple points represent, is slightly better than the GP. Here, the

error ranges from 0.07 m to 2.71 m with a mean error of 1.20 m.

6.5.2. Building 79

The results of building 79 in Figure 6.27 are close to building 74. The GT

approach, which is represented by the blue points, has a mean error of 0.54

m which is a bit higher than in building 74. The smallest error is 0.22 m

whereas the largest error is 1.02 m. On the other hand, we have the GP

which has a mean error of 2.14 m (brown points). The error ranges from

0.77 m up to 4.15 m. Better results achieves the GPGT. The purple points

represent the behavior. At some points the transformation is stable. Hence,
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Figure 6.28.: The back and forth mapping results of building 106.

after several transformations the point is still in close proximity of the start.

However, there are also points which are far away from the start area. Here,

the smallest error is 0.15 m whereas the highest error is 4.71 m. The mean

error is 1.71 m. The CT approach, which is illustrated by the red points,

produces higher errors. The error ranges from 4.00 m up to over 50.00 m.

Hence, the results are not very reliable.

6.5.3. Building 106

Figure 6.28 illustrates the result of the back and forth mapping on the build-

ing 106 map. The GT approach (blue points), GP (brown points), and GPGT

(purple points) produce similar errors. However, they behave different. The

GT has an error range from 0.71 m to 1.98 m. The errors of the GP are

slightly higher. They start at 1.23 m and end at 2.36 m. The highest error

has the GPGT. Here, one point is 7.9 m away from the start point. However,

it still has well performing points. The best one has an error of 0.86 m.

6.5.4. Factory Floor

The results of the approaches on the factory floor data are very different.

Figure 6.29 illustrates the trajectories of the points. The GT approach (blue

points) did not move a lot. The error ranges from 0.12 m to 0.928 m. On the
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Figure 6.29.: The results on the warehouse with the back and forth mapping
experiment.
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other hand, the GP (brown points) performed worse. Its error ranges from

0.172 m to 18.93 m. Therefore, it has some areas in which a point does not

move a lot but also areas with high movement. The GPGT is between the GT

and the GP. It has an error ranging from 0.90 m up to 8.33 m.

We can see that the GT approach offers the best performance in this experi-

ment. However, we could improve the performance to a zero error by taking

the inverse global transformation. But to have a better comparison to the

other approaches, where we always have to calculate the transformation in

both directions, we neglect this possibility. The GP and GPGT approach per-

form similar. On the other hand, the CT approach is not very reliable in this

experiment.
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Conclusion

It is more intuitive for an operator to instruct and monitor a robot with the

help of a floorplan rather than with a gridmap. Therefore, we proposed sev-

eral approaches to map a point from a floorplan to its respective position

on the gridmap and vice versa. First, we automatically generated a set of

reference pairs on the floorplan and gridmap. These points served as an-

chor points on which our several approaches built the mapping. The first

one computed a global transformation. It is robust on any floorplan-gridmap

combination where the gridmap is well aligned. However, if the gridmap

possesses local variations then the three other approaches perform better.

One of it is a weighted combination of multiple transformations. The idea is

that every local variation has its own transformation and, depending on the

distance between a point and the local variation, it gets a higher or lower

weight. The other two approaches base on a Gaussian process. One of it is

a Gaussian process without preprocessing the data. Hence, it gets a set of

reference pairs as training points and, afterward, computes the most likely

corresponding point. The last approach uses also a Gaussian process but in-

troduces an additional precomputation step. Due to problems with points,

which are not in close proximity of neighbors, we first apply a global trans-

formation to every point and then calculate the difference of the transformed

point to the actual reference point. We train the Gaussian process with these

difference vectors. At the end, we first transform a point with the global

transformation and add the most likely difference vector from the Gaussian

process to it.
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7. Conclusion

In the experiments we evaluated our four approaches on four different data

sets. Three of the data sets are office environments and one of it is a factory

floor. In the first experiment we compared the performance of the different

approaches to a ground truth map and analyzed the error in multiple ways.

In another experiment we looked into the stability if we map a point from the

floorplan to the gridmap and backwards multiple times. In the evaluation we

have seen that the global transformations outperforms the other approaches

on every data set where the gridmap is not bent or skewed. However, if we

run the approaches on bent gridmaps, the Gaussian process outperforms the

other three. On this data set the Gaussian process approaches outperform

the other two. Therefore, the performance depends on the kind of gridmap.

But, in any case, the mapping is close enough to the correct point and an op-

erator is able to use a floorplan, which is more intuitive, to navigate a robot

through the environment and monitor it.

Future work could include the refinement of the reference pairs. The better

these points are the better the resulting transformations will be. Especially

the Gaussian processes would improve, as we have seen in one experiment

where we used the manually set reference points.
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Figure A.1.: The CT approach cannot deal with outliers.
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Figure A.2.: The GP sticks very close to the structure of the building. How-
ever, in border regions it shifts slowly away.
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Figure A.3.: The GPGT aligns the floorplan to the gridmap in all positions,
except one (Position A), very well.

(a) Error Map of Building 74

1.0m+

0m
(b) Scale

Figure A.4.: The CT approach suffers from outliers.
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(a) Error Map of Building 74

0.95m

0m
(b) Scale

Figure A.5.: The GPGT performs in areas where the algorithm has to inter-
polate the points like the GT approach.

(a) Error Map of Building 79

1.0m+

0m
(b) Scale

Figure A.6.: The CT results on this data set in a shift. Hence, it does not
represent the reference pairs on the right side very well.
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(a) Error Map of Building 79

1.0m+

0m
(b) Scale

Figure A.7.: As long as the GP has reference pairs in close proximity the
result is reasonable. However, it cannot deal with the interpo-
lation which is far away from reference pairs.

(a) Error Map of Building 79

0.50m

0m
(b) Scale

Figure A.8.: The wavy structure of the GPGT can be seen as a grid formation
which iterates between white areas and red shaded areas.
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(a) Error Map of the Warehouse

1.0m+

0m
(b) Scale

Figure A.9.: The GPGT behaves similar to the GT but has an overall higher
error.
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