
Synthesis of Ranking Functions
and

Synthesis of Inductive Invariants
and

Synthesis of Recurrence Sets
via

Constraint Solving

Andreas Podelski
January 17, 2012

1

Program Verification and Constraints

• Reasoning about program computations

• Computation is a sequence of program states

• Sequences generated by transition relation

• Transition relation defined by assume & update
statements

• Assume & update statements = transition constraints

2

Program Properties

• Non-reachability: given state is not reachable

• Termination: no infinite computation exists

• Linear-time properties (LTL):
reduced to reachability and termination
(in automata-theoretic approach)

3

 Verification = finding auxiliary assertions

• Proving reachability = finding inductive invariant

• Proving termination = finding ranking relation

(ranking relation defined by ranking function, i.e., an
expression over program variables which bounds number
of steps)

4

Running Example

• for constraint solving, treat x, y, and z as rationals

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

`1

`2

⌧1

⌧2

`3

⌧3

`4

⌧4

`5

⌧5

(b)

⇢1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢2 = (x + 1 y ^ x

0 = x + 1 ^ y

0 = y ^ z

0 = z)

⇢3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢4 = (x � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢5 = (x + 1 z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation �2 has a guard x + 1 � y .
Furthermore, the failure of the assert statement is represented by reachability of
the control location ⇥5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.

2

5

CFG and Transition Relations

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

`1

`2

⌧1

⌧2

`3

⌧3

`4

⌧4

`5

⌧5

(b)

⇢1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢2 = (x + 1 y ^ x

0 = x + 1 ^ y

0 = y ^ z

0 = z)

⇢3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢4 = (x � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢5 = (x + 1 z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation �2 has a guard x + 1 � y .
Furthermore, the failure of the assert statement is represented by reachability of
the control location ⇥5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.

2

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

`1

`2

⌧1

⌧2

`3

⌧3

`4

⌧4

`5

⌧5

(b)

⇢1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢2 = (x + 1 y ^ x

0 = x + 1 ^ y

0 = y ^ z

0 = z)

⇢3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢4 = (x � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢5 = (x + 1 z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation �2 has a guard x + 1 � y .
Furthermore, the failure of the assert statement is represented by reachability of
the control location ⇥5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

2

6

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

⇥1

⇥2

�1

�2

⇥3

�3

⇥4

�4

⇥5

�5

⇥2 �2

(b)

�1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�2 = (x + 1 y ^ x

0 = x + 1 ^ y

0 = y ^ z

0 = z)

�3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�4 = (x � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�5 = (x + 1 z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation �2 has a guard x + 1 � y .
Furthermore, the failure of the assert statement is represented by reachability of
the control location ⇥5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

2

Transition Constraint => Matrix

below.

⌅2 = (x + 1 ⇥ y � x � = x + 1 � y � = y)

= (x � y ⇥ �1 � �x + x � ⇥ 1 � x � x � ⇥ �1 � �y + y � ⇥ 0 � y � y � ⇥ 0)

=

⇤

⌥⌥⌥⌥⇧

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌅

����⌃

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥

⇤

⌥⌥⌥⌥⇧

�1
1
�1
0
0

⌅

����⌃

The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ⇤ ⇥0 =
�
�fx �fy 0 0

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥0

fxx � + fyy � ⇥ fxx + fyy � ⇥ =
�
�fx �fy fx fy

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

((⌥x : Ax ⇥ b) � (⌃x : Ax ⇥ b ⌅ cx ⇥ �)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = c � ⇤b ⇥ �) .

This statement asserts that every linear consequence of a satisfiable set of lin-
ear inequalities can be obtained as a non-negative linear combination of these
inequalities. As an immediate consequence we obtain that for a non-satisfiable
set of linear inequalities we can derive an unsatisfiable inequality, i.e.,

(⌃x : ¬(Ax ⇥ b)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = 0 � ⇤b ⇥ �1) .

4

below.

⌅2 = (x + 1 ⇥ y � x � = x + 1 � y � = y)

= (x � y ⇥ �1 � �x + x � ⇥ 1 � x � x � ⇥ �1 � �y + y � ⇥ 0 � y � y � ⇥ 0)

=

⇤

⌥⌥⌥⌥⇧

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌅

����⌃

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥

⇤

⌥⌥⌥⌥⇧

�1
1
�1
0
0

⌅

����⌃

The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ⇤ ⇥0 =
�
�fx �fy 0 0

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥0

fxx � + fyy � ⇥ fxx + fyy � ⇥ =
�
�fx �fy fx fy

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

((⌥x : Ax ⇥ b) � (⌃x : Ax ⇥ b ⌅ cx ⇥ �)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = c � ⇤b ⇥ �) .

This statement asserts that every linear consequence of a satisfiable set of lin-
ear inequalities can be obtained as a non-negative linear combination of these
inequalities. As an immediate consequence we obtain that for a non-satisfiable
set of linear inequalities we can derive an unsatisfiable inequality, i.e.,

(⌃x : ¬(Ax ⇥ b)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = 0 � ⇤b ⇥ �1) .

4

below.

⌅2 = (x + 1 ⇥ y � x � = x + 1 � y � = y)

= (x � y ⇥ �1 � �x + x � ⇥ 1 � x � x � ⇥ �1 � �y + y � ⇥ 0 � y � y � ⇥ 0)

=

⇤

⌥⌥⌥⌥⇧

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌅

����⌃

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥

⇤

⌥⌥⌥⌥⇧

�1
1
�1
0
0

⌅

����⌃

The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ⇤ ⇥0 =
�
�fx �fy 0 0

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥0

fxx � + fyy � ⇥ fxx + fyy � ⇥ =
�
�fx �fy fx fy

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

((⌥x : Ax ⇥ b) � (⌃x : Ax ⇥ b ⌅ cx ⇥ �)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = c � ⇤b ⇥ �) .

This statement asserts that every linear consequence of a satisfiable set of lin-
ear inequalities can be obtained as a non-negative linear combination of these
inequalities. As an immediate consequence we obtain that for a non-satisfiable
set of linear inequalities we can derive an unsatisfiable inequality, i.e.,

(⌃x : ¬(Ax ⇥ b)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = 0 � ⇤b ⇥ �1) .

4

7

Ranking Functions

• Ranking function, say f, maps states to distance
until terminating state

• f(x, y) = (y-x)

• decrease at each step

• bounded from below

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.
See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coe�cients of
the occurring variables. Let fx and fy be the coe�cients for the variables x and
y , respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let �0 be the lower bound for the value of the
ranking function, and � by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coe�cients
and the bound values.

⌃fx ⌃fy ⌃�0 ⌃�

⇧x ⇧y ⇧x � ⇧y � :

(� ⇤ 1 ⌥

⇥2 ⌅ (fxx + fyy ⇤ �0 ⌥

fxx � + fyy � ⇥ fxx + fyy � �))

(1)

Any satisfying assignment to fx , fy , �0 and � determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it di�cult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

⇥1

⇥2

�1

�2

⇥3

�3

⇥4

�4

⇥5

�5

⇥2 �2

(b)

�1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�2 = (x + 1 y ^ x

0 = x + 1 ^ y

0 = y ^ z

0 = z)

�3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�4 = (x � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�5 = (x + 1 z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation �2 has a guard x + 1 � y .
Furthermore, the failure of the assert statement is represented by reachability of
the control location ⇥5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

2

8

Ranking Function Constraint ∃∀
• ranking function f(x, y) = fx x+ fy y

• lower bound δ0

• decrease amount δ

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

⇥1

⇥2

�1

�2

⇥3

�3

⇥4

�4

⇥5

�5

⇥2 �2

(b)

�1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�2 = (x + 1 y ^ x

0 = x + 1 ^ y

0 = y ^ z

0 = z)

�3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�4 = (x � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�5 = (x + 1 z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation �2 has a guard x + 1 � y .
Furthermore, the failure of the assert statement is represented by reachability of
the control location ⇥5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

2

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.
See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coe�cients of
the occurring variables. Let fx and fy be the coe�cients for the variables x and
y , respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let �0 be the lower bound for the value of the
ranking function, and � by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coe�cients
and the bound values.

⌃fx ⌃fy ⌃�0 ⌃�

⇧x ⇧y ⇧x � ⇧y � :

� ⇤ 1 ⌥

⇥2 ⌅ (fxx + fyy ⇤ �0 ⌥

fxx � + fyy � ⇥ fxx + fyy � �)

(1)

Any satisfying assignment to fx , fy , �0 and � determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it di�cult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.
See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coe�cients of
the occurring variables. Let fx and fy be the coe�cients for the variables x and
y , respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let �0 be the lower bound for the value of the
ranking function, and � by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coe�cients
and the bound values.

⌃fx ⌃fy ⌃�0 ⌃�

⇧x ⇧y ⇧x � ⇧y � :

� ⇤ 1 ⌥

⇥2 ⌅ (fxx + fyy ⇤ �0 ⌥

fxx � + fyy � ⇥ fxx + fyy � �)

(1)

Any satisfying assignment to fx , fy , �0 and � determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it di�cult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.
See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coe�cients of
the occurring variables. Let fx and fy be the coe�cients for the variables x and
y , respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let �0 be the lower bound for the value of the
ranking function, and � by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coe�cients
and the bound values.

⌃fx ⌃fy ⌃�0 ⌃�

⇧x ⇧y ⇧x � ⇧y � :

� ⇤ 1 ⌥

⇥2 ⌅ (fxx + fyy ⇤ �0 ⌥

fxx � + fyy � ⇥ fxx + fyy � �)

(1)

Any satisfying assignment to fx , fy , �0 and � determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it di�cult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.
See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coe�cients of
the occurring variables. Let fx and fy be the coe�cients for the variables x and
y , respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let �0 be the lower bound for the value of the
ranking function, and � by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coe�cients
and the bound values.

⌃fx ⌃fy ⌃�0 ⌃�

⇧x ⇧y ⇧x � ⇧y � :

� ⇤ 1 ⌥

⇥2 ⌅ (fxx + fyy ⇤ �0 ⌥

fxx � + fyy � ⇥ fxx + fyy � �)

(1)

Any satisfying assignment to fx , fy , �0 and � determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it di�cult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

9

Quantifier Alternation ∃∀

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.
See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coe�cients of
the occurring variables. Let fx and fy be the coe�cients for the variables x and
y , respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let �0 be the lower bound for the value of the
ranking function, and � by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coe�cients
and the bound values.

⌃fx ⌃fy ⌃�0 ⌃�

⇧x ⇧y ⇧x � ⇧y � :

� ⇤ 1 ⌥

⇥2 ⌅ (fxx + fyy ⇤ �0 ⌥

fxx � + fyy � ⇥ fxx + fyy � �)

(1)

Any satisfying assignment to fx , fy , �0 and � determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it di�cult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

10

Farkas’ Lemma

• implied inequalities are derivable as weighted≥0 sums

iff

below.

⇤2 = (x + 1 ⇥ y ⌥ x � = x + 1 ⌥ y � = y)

= (x � y ⇥ �1 ⌥ �x + x � ⇥ 1 ⌥ x � x � ⇥ �1 ⌥ �y + y � ⇥ 0 ⌥ y � y � ⇥ 0)

=

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�

The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ⇤ �0 =
�
�fx �fy 0 0

⇥

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥ ��0

fxx � + fyy � ⇥ fxx + fyy � � =
�
�fx �fy fx fy

⇥

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥ ��

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

(⌃x : Ax ⇥ b) ⌥ (⇧x : Ax ⇥ b ⌅ cx ⇥ �)

⌃⇥ : ⇥ ⇤ 0 ⌥ ⇥A = c ⌥ ⇥b ⇥ �

This statement asserts that every linear consequence of a satisfiable set of
linear inequalities can be obtained as a non-negative linear combination of these
inequalities. For example, we have

⇧x ⇧y : (x � 2y ⇥ 10 ⌥ x + y ⇥ 1) ⌅ x ⇥ 5

1

3
(x � 2y ⇥ 10) +

2

3
(x + y ⇥ 1) = x ⇥ 4

⇧x : x ⇥ 4 ⌅ x ⇥ 5

⇧x ⇧y :

⇤
1 �2
1 1

⌅⇤
x
y

⌅
⇥
⇤
10
1

⌅
⌅
�
1 0
⇥⇤x

y

⌅
⇥ 5

�
1
3

2
3

⇥⇤1 �2
1 1

⌅
=
�
1 0
⇥
⌥
�
1
3

2
3

⇥⇤10
1

⌅
= 4 ⇥ 5

4

below.

⇤2 = (x + 1 ⇥ y ⌥ x � = x + 1 ⌥ y � = y)

= (x � y ⇥ �1 ⌥ �x + x � ⇥ 1 ⌥ x � x � ⇥ �1 ⌥ �y + y � ⇥ 0 ⌥ y � y � ⇥ 0)

=

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�

The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ⇤ �0 =
�
�fx �fy 0 0

⇥

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥ ��0

fxx � + fyy � ⇥ fxx + fyy � � =
�
�fx �fy fx fy

⇥

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥ ��

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

(⌃x : Ax ⇥ b) ⌥ (⇧x : Ax ⇥ b ⌅ cx ⇥ �)

⌃⇥ : ⇥ ⇤ 0 ⌥ ⇥A = c ⌥ ⇥b ⇥ �

This statement asserts that every linear consequence of a satisfiable set of
linear inequalities can be obtained as a non-negative linear combination of these
inequalities. For example, we have

⇧x ⇧y : (x � 2y ⇥ 10 ⌥ x + y ⇥ 1) ⌅ x ⇥ 5

1

3
(x � 2y ⇥ 10) +

2

3
(x + y ⇥ 1) = x ⇥ 4

⇧x : x ⇥ 4 ⌅ x ⇥ 5

⇧x ⇧y :

⇤
1 �2
1 1

⌅⇤
x
y

⌅
⇥
⇤
10
1

⌅
⌅
�
1 0
⇥⇤x

y

⌅
⇥ 5

�
1
3

2
3

⇥⇤1 �2
1 1

⌅
=
�
1 0
⇥
⌥
�
1
3

2
3

⇥⇤10
1

⌅
= 4 ⇥ 5

4

11

Transition Constraint => Matrix

below.

⌅2 = (x + 1 ⇥ y � x � = x + 1 � y � = y)

= (x � y ⇥ �1 � �x + x � ⇥ 1 � x � x � ⇥ �1 � �y + y � ⇥ 0 � y � y � ⇥ 0)

=

⇤

⌥⌥⌥⌥⇧

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌅

����⌃

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥

⇤

⌥⌥⌥⌥⇧

�1
1
�1
0
0

⌅

����⌃

The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ⇤ ⇥0 =
�
�fx �fy 0 0

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥0

fxx � + fyy � ⇥ fxx + fyy � ⇥ =
�
�fx �fy fx fy

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

((⌥x : Ax ⇥ b) � (⌃x : Ax ⇥ b ⌅ cx ⇥ �)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = c � ⇤b ⇥ �) .

This statement asserts that every linear consequence of a satisfiable set of lin-
ear inequalities can be obtained as a non-negative linear combination of these
inequalities. As an immediate consequence we obtain that for a non-satisfiable
set of linear inequalities we can derive an unsatisfiable inequality, i.e.,

(⌃x : ¬(Ax ⇥ b)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = 0 � ⇤b ⇥ �1) .

4

below.

⌅2 = (x + 1 ⇥ y � x � = x + 1 � y � = y)

= (x � y ⇥ �1 � �x + x � ⇥ 1 � x � x � ⇥ �1 � �y + y � ⇥ 0 � y � y � ⇥ 0)

=

⇤

⌥⌥⌥⌥⇧

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌅

����⌃

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥

⇤

⌥⌥⌥⌥⇧

�1
1
�1
0
0

⌅

����⌃

The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ⇤ ⇥0 =
�
�fx �fy 0 0

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥0

fxx � + fyy � ⇥ fxx + fyy � ⇥ =
�
�fx �fy fx fy

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

((⌥x : Ax ⇥ b) � (⌃x : Ax ⇥ b ⌅ cx ⇥ �)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = c � ⇤b ⇥ �) .

This statement asserts that every linear consequence of a satisfiable set of lin-
ear inequalities can be obtained as a non-negative linear combination of these
inequalities. As an immediate consequence we obtain that for a non-satisfiable
set of linear inequalities we can derive an unsatisfiable inequality, i.e.,

(⌃x : ¬(Ax ⇥ b)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = 0 � ⇤b ⇥ �1) .

4

below.

⌅2 = (x + 1 ⇥ y � x � = x + 1 � y � = y)

= (x � y ⇥ �1 � �x + x � ⇥ 1 � x � x � ⇥ �1 � �y + y � ⇥ 0 � y � y � ⇥ 0)

=

⇤

⌥⌥⌥⌥⇧

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌅

����⌃

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥

⇤

⌥⌥⌥⌥⇧

�1
1
�1
0
0

⌅

����⌃

The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ⇤ ⇥0 =
�
�fx �fy 0 0

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥0

fxx � + fyy � ⇥ fxx + fyy � ⇥ =
�
�fx �fy fx fy

⇥

⇤

⌥⌥⇧

x
y
x �

y �

⌅

��⌃ ⇥ �⇥

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

((⌥x : Ax ⇥ b) � (⌃x : Ax ⇥ b ⌅ cx ⇥ �)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = c � ⇤b ⇥ �) .

This statement asserts that every linear consequence of a satisfiable set of lin-
ear inequalities can be obtained as a non-negative linear combination of these
inequalities. As an immediate consequence we obtain that for a non-satisfiable
set of linear inequalities we can derive an unsatisfiable inequality, i.e.,

(⌃x : ¬(Ax ⇥ b)) ⇧ (⌥⇤ : ⇤ ⇤ 0 � ⇤A = 0 � ⇤b ⇥ �1) .

4

12

Eliminating ∀-Quantifier (1)below.

⇤2 = (x + 1 ⇥ y ⌥ x � = x + 1 ⌥ y � = y)

= (x � y ⇥ �1 ⌥ �x + x � ⇥ 1 ⌥ x � x � ⇥ �1 ⌥ �y + y � ⇥ 0 ⌥ y � y � ⇥ 0)

=

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�

The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ⇤ �0 =
�
�fx �fy 0 0

⇥

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥ ��0

fxx � + fyy � ⇥ fxx + fyy � � =
�
�fx �fy fx fy

⇥

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥ ��

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

(⌃x : Ax ⇥ b) ⌥ (⇧x : Ax ⇥ b ⌅ cx ⇥ �)

⌃⇥ : ⇥ ⇤ 0 ⌥ ⇥A = c ⌥ ⇥b ⇥ �

This statement asserts that every linear consequence of a satisfiable set of
linear inequalities can be obtained as a non-negative linear combination of these
inequalities. For example, we have

⇧x ⇧y : (x � 2y ⇥ 10 ⌥ x + y ⇥ 1) ⌅ x ⇥ 5

1

3
(x � 2y ⇥ 10) +

2

3
(x + y ⇥ 1) = x ⇥ 4

⇧x : x ⇥ 4 ⌅ x ⇥ 5

⇧x ⇧y :

⇤
1 �2
1 1

⌅⇤
x
y

⌅
⇥
⇤
10
1

⌅
⌅
�
1 0
⇥⇤x

y

⌅
⇥ 5

�
1
3

2
3

⇥⇤1 �2
1 1

⌅
=
�
1 0
⇥
⌥
�
1
3

2
3

⇥⇤10
1

⌅
= 4 ⇥ 5

4

below.

⇤2 = (x + 1 ⇥ y ⌥ x � = x + 1 ⌥ y � = y)

= (x � y ⇥ �1 ⌥ �x + x � ⇥ 1 ⌥ x � x � ⇥ �1 ⌥ �y + y � ⇥ 0 ⌥ y � y � ⇥ 0)

=

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�

⇤2 =

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�

The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ⇤ �0 =
�
�fx �fy 0 0

⇥

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥ ��0

fxx � + fyy � ⇥ fxx + fyy � � =
�
�fx �fy fx fy

⇥

⇧

 ⌥

x
y
x �

y �

⌃

⌦⌦� ⇥ ��

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

(⌃x : Ax ⇥ b) ⌥ (⇧x : Ax ⇥ b ⌅ cx ⇥ �)

⌃⇥ : ⇥ ⇤ 0 ⌥ ⇥A = c ⌥ ⇥b ⇥ �

This statement asserts that every linear consequence of a satisfiable set of
linear inequalities can be obtained as a non-negative linear combination of these
inequalities. For example, we have

⇧x ⇧y : (x � 2y ⇥ 10 ⌥ x + y ⇥ 1) ⌅ x ⇥ 5

1

3
(x � 2y ⇥ 10) +

2

3
(x + y ⇥ 1) = x ⇥ 4

⇧x : x ⇥ 4 ⌅ x ⇥ 5

⇧x ⇧y :

⇤
1 �2
1 1

⌅⇤
x
y

⌅
⇥
⇤
10
1

⌅
⌅
�
1 0
⇥⇤x

y

⌅
⇥ 5

4

implies

13

Eliminating ∀-Quantifier (2)

�
1
3

2
3

⇥⇤1 �2
1 1

⌅
=
�
1 0
⇥
⌥
�
1
3

2
3

⇥⇤10
1

⌅
= 4 ⇥ 5

As an immediate consequence we obtain that for a non-satisfiable set of linear
inequalities we can derive an unsatisfiable inequality, i.e.,

(⇧x : ¬(Ax ⇥ b)) ⌅ (⌃⇥ : ⇥ ⇤ 0 ⌥ ⇥A = 0 ⌥ ⇥b ⇥ �1) .

⇧x : ¬(Ax ⇥ b) ⌃⇥ : ⇥ ⇤ 0 ⌥ ⇥A = 0 ⌥ ⇥b ⇥ �1

By applying Farkas’ lemma on (1) we obtain the following constraint.

⌃⇥ : ⇥ ⇤ 0 ⌥ ⇥

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�
=
�
�fx �fy 0 0

⇥
⌥ ⇥

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�
⇥ ��0

⌃fx ⌃fy ⌃�0 ⌃�

⌃⇥ ⌃µ :

(� ⇤ 1 ⌥

⇥ ⇤ 0 ⌥

µ ⇤ 0 ⌥

⇥

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�
=
�
�fx �fy 0 0

⇥
⌥ ⇥

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�
⇥ ��0 ⌥

µ

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�
=
�
�fx �fy fx fy

⇥
⌥ µ

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�
⇥ ��

(2)

This constraint contains only existentially quantified rational variables and
consists of linear (in)equalities. Thus, it can be e�ciently solved by the existing
tools for Linear Programming over rationals.

5

iff (by Farkas’ lemma)

14

y , respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let �0 be the lower bound for the value of the
ranking function, and � by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coe�cients
and the bound values.

⌃fx ⌃fy ⌃�0 ⌃�

⇧x ⇧y ⇧x � ⇧y � :

� ⇤ 1 ⌥

⇥2 ⌅ (fxx + fyy ⇤ �0 ⌥

fxx � + fyy � ⇥ fxx + fyy � �)

(1)

Any satisfying assignment to fx , fy , �0 and � determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it di�cult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form
below.

⇥2 = (x + 1 ⇥ y ⌥ x � = x + 1 ⌥ y � = y)

= (x � y ⇥ �1 ⌥ �x + x � ⇥ 1 ⌥ x � x � ⇥ �1 ⌥ �y + y � ⇥ 0 ⌥ y � y � ⇥ 0)

=

�

⇧⇧⇧⇧⇤

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⇥

⌃⌃⌃⌃⌅

�

⇧⇧⇤

x
y
x �

y �

⇥

⌃⌃⌅ ⇥

�

⇧⇧⇧⇧⇤

�1
1
�1
0
0

⇥

⌃⌃⌃⌃⌅

⇥2 =

�

⇧⇧⇧⇧⇤

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⇥

⌃⌃⌃⌃⌅

�

⇧⇧⇤

x
y
x �

y �

⇥

⌃⌃⌅ ⇥

�

⇧⇧⇧⇧⇤

�1
1
�1
0
0

⇥

⌃⌃⌃⌃⌅

The bound and decrease conditions from (1) produce the following matrix forms.

⇧x ⇧y ⇧x � ⇧y � : ⇥2 ⌅ fxx + fyy ⇤ �0

3

Ranking Function Constraint ∃

• Find solution for fx , fy , δ0 , and δ

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.
See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coe�cients of
the occurring variables. Let fx and fy be the coe�cients for the variables x and
y , respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let �0 be the lower bound for the value of the
ranking function, and � by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coe�cients
and the bound values.

⌃fx ⌃fy ⌃�0 ⌃�

⇧x ⇧y ⇧x � ⇧y � :

� ⇤ 1 ⌥

⇥2 ⌅ (fxx + fyy ⇤ �0 ⌥

fxx � + fyy � ⇥ fxx + fyy � �)

(1)

Any satisfying assignment to fx , fy , �0 and � determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it di�cult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

�
1
3

2
3

⇥⇤1 �2
1 1

⌅
=
�
1 0
⇥
⌥
�
1
3

2
3

⇥⇤10
1

⌅
= 4 ⇥ 5

As an immediate consequence we obtain that for a non-satisfiable set of linear
inequalities we can derive an unsatisfiable inequality, i.e.,

(⇧x : ¬(Ax ⇥ b)) ⌅ (⌃⇥ : ⇥ ⇤ 0 ⌥ ⇥A = 0 ⌥ ⇥b ⇥ �1) .

⇧x : ¬(Ax ⇥ b) ⌃⇥ : ⇥ ⇤ 0 ⌥ ⇥A = 0 ⌥ ⇥b ⇥ �1

By applying Farkas’ lemma on (1) we obtain the following constraint.

⌃⇥ : ⇥ ⇤ 0 ⌥ ⇥

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�
=
�
�fx �fy 0 0

⇥
⌥ ⇥

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�
⇥ ��0

⌃fx ⌃fy ⌃�0 ⌃�

⌃⇥ ⌃µ :

� ⇤ 1 ⌥

⌃⇥ ⌃µ :

⇥ ⇤ 0 ⌥ ⇥

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�
=
�
�fx �fy 0 0

⇥
⌥ ⇥

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�
⇥ ��0 ⌥

µ ⇤ 0 ⌥ µ

⇧

 ⌥

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌃

⌦⌦⌦⌦�
=
�
�fx �fy fx fy

⇥
⌥ µ

⇧

 ⌥

�1
1
�1
0
0

⌃

⌦⌦⌦⌦�
⇥ ��

(

5

15

ranking function f(x, y) = fx x+ fy y with bound δ0, and gap δ

Ranking Function Constraint Solved

• solution for fx , fy , δ0 , and δ

⌅fx ⌅fy ⌅�0 ⌅�

⌅⇥ ⌅µ :

(� ⇤ 1 ⇧

⇥ ⇤ 0 ⇧

µ ⇤ 0 ⇧

⇥

⇤

⌥⌥⌥⌥⇧

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌅

����⌃
=

�
�fx �fy 0 0

⇥
⇧ ⇥

⇤

⌥⌥⌥⌥⇧

�1
1
�1
0
0

⌅

����⌃
⇥ ��0 ⇧

µ

⇤

⌥⌥⌥⌥⇧

1 �1 0 0
�1 0 1 0
1 0 �1 0
0 �1 0 1
0 1 0 �1

⌅

����⌃
=

�
�fx �fy fx fy

⇥
⇧ µ

⇤

⌥⌥⌥⌥⇧

�1
1
�1
0
0

⌅

����⌃
⇥ ��

(2)

This constraint contains only existentially quantified rational variables and
consists of linear (in)equalities. Thus, it can be e�ciently solved by the existing
tools for Linear Programming over rationals.

Solution We apply a linear constraint solver on (2) and obtain the following
solution.

⇥ = (1 0 0 0 0)

µ = (0 0 1 1 0)

fx = �1

fy = 1

�0 = 1

� = 1

This solution states that the expression �x + y decreases during each iteration
of the loop by at least 1, and is greater than 1 for all states that satisfy the loop
guard.

2.2 Algorithm

Now we briefly summarize the above illustration as an algorithm. See [5] for its
detailed description and pointers to the related work.

The ranking function generation algorithm takes as input a transition relation
⇤(v , v �) given by a set of linear inequalities over the program variables and their

6

• Ranking function f(x, y) = (−1 x + 1 y) = y−x

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.
See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor
branching control flow inside the loop body in order to highlight the main ideas
of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables
that proves termination. Such an expression is determined by the coe�cients of
the occurring variables. Let fx and fy be the coe�cients for the variables x and
y , respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let �0 be the lower bound for the value of the
ranking function, and � by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coe�cients
and the bound values.

⌃fx ⌃fy ⌃�0 ⌃�

⇧x ⇧y ⇧x � ⇧y � :

(� ⇤ 1 ⌥

⇥2 ⌅ (fxx + fyy ⇤ �0 ⌥

fxx � + fyy � ⇥ fxx + fyy � �))

(1)

Any satisfying assignment to fx , fy , �0 and � determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it di�cult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

16

Ranking Function Algorithm

• Input

• Defining constraint

• Linear constraint to solve

primed versions.

⇤(v , v �) = R

�
v
v �

⇥
⇥ r

Then, the condition that a vector of coe⇥cients f for the variables v defines a
linear ranking function is represented by the constraint

⌃f ⌃�0 ⌃� ⇧v ⇧v � : � ⇤ 1 ⌥ ⇤(v , v �) ⌅ (fv ⇤ �0 ⌥ fv � ⇥ fv � �) . (3)

We apply Farkas’ lemma to (3) and obtain the following existentially quantified
linear constraints that can be solved using o�-the-shelf Linear Programming
tools.

⌃f ⌃�0 ⌃�

⌃⇥ ⌃µ :

� ⇤ 1 ⌥

⇥ ⇤ 0 ⌥ µ ⇤ 0 ⌥

⇥R = (�f 0) ⌥ ⇥r ⇥ ��0 ⌥

µR = (�f f) ⌥ µr ⇥ ��

(4)

3 Constraint linear interpolants

Interpolants are logical assertions over program states that can separate program
states that satisfy a desired property from the ones that violate the property.
Interpolants play an important role in automated abstraction of sets of program
states and their automatic construction is a crucial building block for program
verification tools. In this section we present an algorithm for the computation of
linear interpolants. A unique feature of our algorithm is the possibility to bias
the outcome using additional constraints.

3.1 Example

In program verification, interpolants are computed for formulas that are ex-
tracted from program paths, i.e., sequences of program statements that follow
the control flow graph of the program. We illustrate the interpolant computation
algorithm using a program path from Figure 1, and refer to [7] for a detailed
description of the algorithm and a discussion of the related work.

Input We consider a path ⌅1⌅3⌅5, which corresponds to an execution of the pro-
gram that does not enter the loop and fails the assert statement. This path does
not modify the values of the program variables, but rather imposes a sequence
of conditions y ⇤ z ⌥ x ⇤ y ⌥ x + 1 ⇥ z . Since this sequence is not satisfiable, a
program verifier can issue an interpolation query that needs to compute a sep-
aration between the states that the program reaches after taking the transition

7

primed versions.

⇤(v , v �) = R

�
v
v �

⇥
⇥ r

Then, the condition that a vector of coe⇥cients f for the variables v defines a
linear ranking function is represented by the constraint

⌃f ⌃�0 ⌃� ⇧v ⇧v � : � ⇤ 1 ⌥ ⇤(v , v �) ⌅ (fv ⇤ �0 ⌥ fv � ⇥ fv � �) . (3)

We apply Farkas’ lemma to (3) and obtain the following existentially quantified
linear constraints that can be solved using o�-the-shelf Linear Programming
tools.

⌃f ⌃�0 ⌃�

⌃⇥ ⌃µ :

� ⇤ 1 ⌥

⇥ ⇤ 0 ⌥ µ ⇤ 0 ⌥

⇥R = (�f 0) ⌥ ⇥r ⇥ ��0 ⌥

µR = (�f f) ⌥ µr ⇥ ��

(4)

3 Constraint linear interpolants

Interpolants are logical assertions over program states that can separate program
states that satisfy a desired property from the ones that violate the property.
Interpolants play an important role in automated abstraction of sets of program
states and their automatic construction is a crucial building block for program
verification tools. In this section we present an algorithm for the computation of
linear interpolants. A unique feature of our algorithm is the possibility to bias
the outcome using additional constraints.

3.1 Example

In program verification, interpolants are computed for formulas that are ex-
tracted from program paths, i.e., sequences of program statements that follow
the control flow graph of the program. We illustrate the interpolant computation
algorithm using a program path from Figure 1, and refer to [7] for a detailed
description of the algorithm and a discussion of the related work.

Input We consider a path ⌅1⌅3⌅5, which corresponds to an execution of the pro-
gram that does not enter the loop and fails the assert statement. This path does
not modify the values of the program variables, but rather imposes a sequence
of conditions y ⇤ z ⌥ x ⇤ y ⌥ x + 1 ⇥ z . Since this sequence is not satisfiable, a
program verifier can issue an interpolation query that needs to compute a sep-
aration between the states that the program reaches after taking the transition

7

17

Solution We apply a linear constraint solver on (2) and obtain the following
solution.

⇥ = (1 0 0 0 0)

µ = (0 0 1 1 0)

fx = �1

fy = 1

�0 = 1

� = 1

This solution states that the expression �x + y decreases during each iteration
of the loop by at least 1, and is greater than 1 for all states that satisfy the loop
guard.

2.2 Algorithm

Now we briefly summarize the above illustration as an algorithm. See [5] for its
detailed description and pointers to the related work.

The ranking function generation algorithm takes as input a transition relation
⇤(v , v �) given by a set of linear inequalities over the program variables and their
primed versions.

⇤(v , v �) = R

�
v
v �

⇥
⇥ r

Then, the condition that a vector of coe⇥cients f for the variables v defines a
linear ranking function is represented by the constraint

⌃f ⌃�0 ⌃� ⇧v ⇧v � : � ⇤ 1 ⌥ ⇤(v , v �) ⌅ (fv ⇤ �0 ⌥ fv � ⇥ fv � �) . (3)

We apply Farkas’ lemma to (3) and obtain the following existentially quantified
linear constraints that can be solved using o�-the-shelf Linear Programming
tools.

⌃f ⌃�0 ⌃�

⌃⇥ ⌃µ :

� ⇤ 1 ⌥

⇥ ⇤ 0 ⌥ µ ⇤ 0 ⌥

⇥R = (�f 0) ⌥ ⇥r ⇥ ��0 ⌥

µR = (�f f) ⌥ µr ⇥ ��

(4)

⌃f ⌃�0 ⌃� ⌃⇥ ⌃µ : � ⇤ 1 ⌥

⇥ ⇤ 0 ⌥ ⇥R = (�f 0) ⌥ ⇥r ⇥ ��0 ⌥

µ ⇤ 0 ⌥ µR = (�f f) ⌥ µr ⇥ ��

6

Invariants

• Invariant for each control location:
l1 : (0 ≤ 0)
l2 : (z ≤ y)
l3 : (z ≤ x)
l4 : (0 ≤ 0)
l5 : (1 ≤ 0)

• Inductiveness
l2 : (z≤y) ∧ (x+1≤y ∧ x′=x+1 ∧ y′=y) ⇒ (z′≤y′)

18

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

⇥1

⇥2

�1

�2

⇥3

�3

⇥4

�4

⇥5

�5

⇥1

⇥2

y � z ...

x + 1 y ^ x

0 = x + 1 ...

⇥3

x � y ...

⇥4

x � z ...

⇥5

x + 1 z ...

⇥2 �2

(b)

�1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�2 = (x + 1 y ^ x

0 = x + 1 ^ y

0 = y ^ z

0 = z)

�3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�4 = (x � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�5 = (x + 1 z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

20

Example Program

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

`1

`2

⌧1

⌧2

`3

⌧3

`4

⌧4

`5

⌧5

(b)

⇢1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢2 = (x + 1 y ^ x

0 = x + 1 ^ y

0 = y ^ z

0 = z)

⇢3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢4 = (x � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢5 = (x + 1 z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation �2 has a guard x + 1 � y .
Furthermore, the failure of the assert statement is represented by reachability of
the control location ⇥5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

2.1 Example

Input We illustrate the construction of ranking functions on
the while loop from the program in Figure 1, as shown below.

2

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

`1

`2

⌧1

⌧2

`3

⌧3

`4

⌧4

`5

⌧5

(b)

⇢1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢2 = (x + 1 y ^ x

0 = x + 1 ^ y

0 = y ^ z

0 = z)

⇢3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢4 = (x � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢5 = (x + 1 z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation �2 has a guard x + 1 � y .
Furthermore, the failure of the assert statement is represented by reachability of
the control location ⇥5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

2

19

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

⇥1

⇥2

�1

�2

⇥3

�3

⇥4

�4

⇥5

�5

⇥2 �2

(b)

�1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�2 = (x + 1 y ^ x

0 = x + 1 ^ y

0 = y ^ z

0 = z)

�3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�4 = (x � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

�5 = (x + 1 z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.
Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-
tion and safety proving obligations. When translating the program instructions
into the corresponding transition relations we approximate integer program vari-
ables by rationals, in order to reduce the complexity the resulting constraint
generation and solving tasks. Hence, the relation �2 has a guard x + 1 � y .
Furthermore, the failure of the assert statement is represented by reachability of
the control location ⇥5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.
Proving program terminations requires construction of ranking functions that
over-approximate the number of execution steps that the program can make
from a given state until termination. Linear ranking functions express such ap-
proximations by linear assertions over the program variables.

2

Invariant Constraint ∃∀

• Find invariant at l2 of the form px x + py y + pz z ≤ p0

and invariant at l3 of the form qx x + qy y + qz z ≤ q0

• inductiveness of invariant at l3 entails non-reachability of l5

20

4.1 Example

We illustrate the invariant generation on the program shown in Figure 1 and
construct an invariant that proves the non-reachability of the location ⇤5, which
serves as the error location.

Input Our goal is to compute two linear inequalities over program variables
pxx + pyy + pzz ⇥ p0 and qxx + qyy + qzz ⇥ q0 for the locations ⇤2 and ⇤3,
respectively, such that these inequalities (1) represent all program states that
are reachable at the respective locations, (2) serve as an induction hypothesis
for proving (1) by induction over the number of program steps required to reach
a program state, and (3) imply that no program execution can reach the error
location ⇤5. We encode the conditions (1–3) on the unknown invariant coe�cients
as the following constraint.

⇧px ⇧py ⇧pz ⇧p0 ⇧qx ⇧qy ⇧qz ⇧q0
⌅x ⌅y ⌅z ⌅x � ⌅y � ⌅z � :

(�1 ⇤ pxx � + pyy � + pzz � ⇥ p0) ⌃
((pxx + pyy + pzz ⇥ p0 ⌃ �2) ⇤ pxx � + pyy � + pzz � ⇥ p0) ⌃
((pxx + pyy + pzz ⇥ p0 ⌃ �3) ⇤ qxx � + qyy � + qzz � ⇥ q0) ⌃
((qxx + qyy + qzz ⇥ p0 ⌃ �4) ⇤ 0 ⇥ 0) ⌃
((qxx + qyy + qzz ⇥ p0 ⌃ �5) ⇤ 0 ⇥ �1)

(9)

For each program transition this constraint contains a corresponding conjunct.
The conjunct ensures that given a set of states at the start location of the
transition all states reachable by applying the transition are represented by the
assertion associated with the destination location. For example, the first conjunct
asserts that applying ⇥1 on any state leads to a state represented by pxx +pyy +
pzz ⇥ p0.

Constraints We represent each transition relation �1, . . . , �5 in matrix form
as R1 (

v
v �) ⇥ r1, . . . , R5 (

v
v �) ⇥ r5, respectively, where v is the vector of program

variables x , y , z and v � is its primed version. Since (9) contains universal quan-
tification, we resort to the Farkas’ lemma-based elimination, which yields the

10

4.1 Example

We illustrate the invariant generation on the program shown in Figure 1 and
construct an invariant that proves the non-reachability of the location ⇤5, which
serves as the error location.

Input Our goal is to compute two linear inequalities over program variables
pxx + pyy + pzz ⇥ p0 and qxx + qyy + qzz ⇥ q0 for the locations ⇤2 and ⇤3,
respectively, such that these inequalities (1) represent all program states that
are reachable at the respective locations, (2) serve as an induction hypothesis
for proving (1) by induction over the number of program steps required to reach
a program state, and (3) imply that no program execution can reach the error
location ⇤5. We encode the conditions (1–3) on the unknown invariant coe�cients
as the following constraint.

⇧px ⇧py ⇧pz ⇧p0 ⇧qx ⇧qy ⇧qz ⇧q0
⌅x ⌅y ⌅z ⌅x � ⌅y � ⌅z � :

(�1 ⇤ pxx � + pyy � + pzz � ⇥ p0) ⌃
((pxx + pyy + pzz ⇥ p0 ⌃ �2) ⇤ pxx � + pyy � + pzz � ⇥ p0) ⌃
((pxx + pyy + pzz ⇥ p0 ⌃ �3) ⇤ qxx � + qyy � + qzz � ⇥ q0) ⌃
((qxx + qyy + qzz ⇥ p0 ⌃ �4) ⇤ 0 ⇥ 0) ⌃
((qxx + qyy + qzz ⇥ p0 ⌃ �5) ⇤ 0 ⇥ �1)

(9)

For each program transition this constraint contains a corresponding conjunct.
The conjunct ensures that given a set of states at the start location of the
transition all states reachable by applying the transition are represented by the
assertion associated with the destination location. For example, the first conjunct
asserts that applying ⇥1 on any state leads to a state represented by pxx +pyy +
pzz ⇥ p0.

Constraints We represent each transition relation �1, . . . , �5 in matrix form
as R1 (

v
v �) ⇥ r1, . . . , R5 (

v
v �) ⇥ r5, respectively, where v is the vector of program

variables x , y , z and v � is its primed version. Since (9) contains universal quan-
tification, we resort to the Farkas’ lemma-based elimination, which yields the

10

4.1 Example

We illustrate the invariant generation on the program shown in Figure 1 and
construct an invariant that proves the non-reachability of the location ⇤5, which
serves as the error location.

Input Our goal is to compute two linear inequalities over program variables
pxx + pyy + pzz ⇥ p0 and qxx + qyy + qzz ⇥ q0 for the locations ⇤2 and ⇤3,
respectively, such that these inequalities (1) represent all program states that
are reachable at the respective locations, (2) serve as an induction hypothesis
for proving (1) by induction over the number of program steps required to reach
a program state, and (3) imply that no program execution can reach the error
location ⇤5. We encode the conditions (1–3) on the unknown invariant coe�cients
as the following constraint.

⇧px ⇧py ⇧pz ⇧p0 ⇧qx ⇧qy ⇧qz ⇧q0
⌅x ⌅y ⌅z ⌅x � ⌅y � ⌅z � :

(�1 ⇤ pxx � + pyy � + pzz � ⇥ p0) ⌃
((pxx + pyy + pzz ⇥ p0 ⌃ �2) ⇤ pxx � + pyy � + pzz � ⇥ p0) ⌃
((pxx + pyy + pzz ⇥ p0 ⌃ �3) ⇤ qxx � + qyy � + qzz � ⇥ q0) ⌃
((qxx + qyy + qzz ⇥ p0 ⌃ �4) ⇤ 0 ⇥ 0) ⌃
((qxx + qyy + qzz ⇥ p0 ⌃ �5) ⇤ 0 ⇥ �1)

(9)

For each program transition this constraint contains a corresponding conjunct.
The conjunct ensures that given a set of states at the start location of the
transition all states reachable by applying the transition are represented by the
assertion associated with the destination location. For example, the first conjunct
asserts that applying ⇥1 on any state leads to a state represented by pxx +pyy +
pzz ⇥ p0.

Constraints We represent each transition relation �1, . . . , �5 in matrix form
as R1 (

v
v �) ⇥ r1, . . . , R5 (

v
v �) ⇥ r5, respectively, where v is the vector of program

variables x , y , z and v � is its primed version. Since (9) contains universal quan-
tification, we resort to the Farkas’ lemma-based elimination, which yields the

10

4.1 Example

We illustrate the invariant generation on the program shown in Figure 1 and
construct an invariant that proves the non-reachability of the location ⇤5, which
serves as the error location.

Input Our goal is to compute two linear inequalities over program variables
pxx + pyy + pzz ⇥ p0 and qxx + qyy + qzz ⇥ q0 for the locations ⇤2 and ⇤3,
respectively, such that these inequalities (1) represent all program states that
are reachable at the respective locations, (2) serve as an induction hypothesis
for proving (1) by induction over the number of program steps required to reach
a program state, and (3) imply that no program execution can reach the error
location ⇤5. We encode the conditions (1–3) on the unknown invariant coe�cients
as the following constraint.

⇧px ⇧py ⇧pz ⇧p0 ⇧qx ⇧qy ⇧qz ⇧q0
⌅x ⌅y ⌅z ⌅x � ⌅y � ⌅z � :

(�1 ⇤ pxx � + pyy � + pzz � ⇥ p0) ⌃
((pxx + pyy + pzz ⇥ p0 ⌃ �2) ⇤ pxx � + pyy � + pzz � ⇥ p0) ⌃
((pxx + pyy + pzz ⇥ p0 ⌃ �3) ⇤ qxx � + qyy � + qzz � ⇥ q0) ⌃
((qxx + qyy + qzz ⇥ p0 ⌃ �4) ⇤ 0 ⇥ 0) ⌃
((qxx + qyy + qzz ⇥ p0 ⌃ �5) ⇤ 0 ⇥ �1)

(9)

For each program transition this constraint contains a corresponding conjunct.
The conjunct ensures that given a set of states at the start location of the
transition all states reachable by applying the transition are represented by the
assertion associated with the destination location. For example, the first conjunct
asserts that applying ⇥1 on any state leads to a state represented by pxx +pyy +
pzz ⇥ p0.

Constraints We represent each transition relation �1, . . . , �5 in matrix form
as R1 (

v
v �) ⇥ r1, . . . , R5 (

v
v �) ⇥ r5, respectively, where v is the vector of program

variables x , y , z and v � is its primed version. Since (9) contains universal quan-
tification, we resort to the Farkas’ lemma-based elimination, which yields the

10

4.1 Example

We illustrate the invariant generation on the program shown in Figure 1 and
construct an invariant that proves the non-reachability of the location ⇤5, which
serves as the error location.

Input Our goal is to compute two linear inequalities over program variables
pxx + pyy + pzz ⇥ p0 and qxx + qyy + qzz ⇥ q0 for the locations ⇤2 and ⇤3,
respectively, such that these inequalities (1) represent all program states that
are reachable at the respective locations, (2) serve as an induction hypothesis
for proving (1) by induction over the number of program steps required to reach
a program state, and (3) imply that no program execution can reach the error
location ⇤5. We encode the conditions (1–3) on the unknown invariant coe�cients
as the following constraint.

⇧px ⇧py ⇧pz ⇧p0 ⇧qx ⇧qy ⇧qz ⇧q0
⌅x ⌅y ⌅z ⌅x � ⌅y � ⌅z � :

(�1 ⇤ pxx � + pyy � + pzz � ⇥ p0) ⌃
((pxx + pyy + pzz ⇥ p0 ⌃ �2) ⇤ pxx � + pyy � + pzz � ⇥ p0) ⌃
((pxx + pyy + pzz ⇥ p0 ⌃ �3) ⇤ qxx � + qyy � + qzz � ⇥ q0) ⌃
((qxx + qyy + qzz ⇥ p0 ⌃ �4) ⇤ 0 ⇥ 0) ⌃
((qxx + qyy + qzz ⇥ p0 ⌃ �5) ⇤ 0 ⇥ �1)

(9)

For each program transition this constraint contains a corresponding conjunct.
The conjunct ensures that given a set of states at the start location of the
transition all states reachable by applying the transition are represented by the
assertion associated with the destination location. For example, the first conjunct
asserts that applying ⇥1 on any state leads to a state represented by pxx +pyy +
pzz ⇥ p0.

Constraints We represent each transition relation �1, . . . , �5 in matrix form
as R1 (

v
v �) ⇥ r1, . . . , R5 (

v
v �) ⇥ r5, respectively, where v is the vector of program

variables x , y , z and v � is its primed version. Since (9) contains universal quan-
tification, we resort to the Farkas’ lemma-based elimination, which yields the

10

Quantifier Alternation ∃∀

• use matrix form

• eliminate ∀ by applying Farkas’ lemma

21

following constraint.

⌅px ⌅py ⌅pz ⌅p0 ⌅qx ⌅qy ⌅qz ⌅q0
⌅�1 ⌅�2 ⌅�3 ⌅�4 ⌅�5 :

�1 ⇤ 0 ⇧ · · · ⇧ �5 ⇤ 0 ⇧
�1R1 = (0 px py pz) ⇧ �1r1 ⇥ p0 ⇧

�2

⇤
px py pz 0

R2

⌅
= (0 px py pz) ⇧ �2

⇤
p0
r2

⌅
⇥ p0 ⇧

�3

⇤
px py pz 0

R3

⌅
= (0 qx qy qz) ⇧ �3

⇤
p0
r3

⌅
⇥ q0 ⇧

�4

⇤
qx qy qz 0

R4

⌅
= 0 ⇧ �4

⇤
q0
r4

⌅
⇥ 0 ⇧

�5

⇤
qx qy qz 0

R5

⌅
= 0 ⇧ �5

⇤
q0
r5

⌅
⇥ �1

(10)

v =
�

x
y
z

⇥

⇥1 = R1 (
v
v �) ⇥ r1

...

⇥5 = R5 (
v
v �) ⇥ r5

⌅px ⌅py ⌅pz ⌅p0 ⌅qx ⌅qy ⌅qz ⌅q0
⌅�1 ⌅�2 ⌅�3 ⌅�4 ⌅�5 :

�1 ⇤ 0 ⇧ �1R1 = (0 px py pz) ⇧ �1r1 ⇥ p0 ⇧

�2 ⇤ 0 ⇧ �2

⇤
px py pz 0

R2

⌅
= (0 px py pz) ⇧ �2

⇤
p0
r2

⌅
⇥ p0 ⇧

�3 ⇤ 0 ⇧ �3

⇤
px py pz 0

R3

⌅
= (0 qx qy qz) ⇧ �3

⇤
p0
r3

⌅
⇥ q0 ⇧

�4 ⇤ 0 ⇧ �4

⇤
qx qy qz 0

R4

⌅
= 0 ⇧ �4

⇤
q0
r4

⌅
⇥ 0 ⇧

�5 ⇤ 0 ⇧ �5

⇤
qx qy qz 0

R5

⌅
= 0 ⇧ �5

⇤
q0
r5

⌅
⇥ �1

11

Invariant Constraint ∃

• Find invariant at l2 of the form px x + py y + pz z ≤ p0

and invariant at l3 of the form qx x + qy y + qz z ≤ q0

22

following constraint.

⌅px ⌅py ⌅pz ⌅p0 ⌅qx ⌅qy ⌅qz ⌅q0
⌅�1 ⌅�2 ⌅�3 ⌅�4 ⌅�5 :

�1 ⇤ 0 ⇧ · · · ⇧ �5 ⇤ 0 ⇧
�1R1 = (0 px py pz) ⇧ �1r1 ⇥ p0 ⇧

�2

�
px py pz 0

R2

⇥
= (0 px py pz) ⇧ �2

�
p0
r2

⇥
⇥ p0 ⇧

�3

�
px py pz 0

R3

⇥
= (0 qx qy qz) ⇧ �3

�
p0
r3

⇥
⇥ q0 ⇧

�4

�
qx qy qz 0

R4

⇥
= 0 ⇧ �4

�
q0
r4

⇥
⇥ 0 ⇧

�5

�
qx qy qz 0

R5

⇥
= 0 ⇧ �5

�
q0
r5

⇥
⇥ �1

(10)

⌅px ⌅py ⌅pz ⌅p0 ⌅qx ⌅qy ⌅qz ⌅q0
⌅�1 ⌅�2 ⌅�3 ⌅�4 ⌅�5 :

�1 ⇤ 0 ⇧ �1R1 = (0 px py pz) ⇧ �1r1 ⇥ p0 ⇧

�2 ⇤ 0 ⇧ �2

�
px py pz 0

R2

⇥
= (0 px py pz) ⇧ �2

�
p0
r2

⇥
⇥ p0 ⇧

�3 ⇤ 0 ⇧ �3

�
px py pz 0

R3

⇥
= (0 qx qy qz) ⇧ �3

�
p0
r3

⇥
⇥ q0 ⇧

�4 ⇤ 0 ⇧ �4

�
qx qy qz 0

R4

⇥
= 0 ⇧ �4

�
q0
r4

⇥
⇥ 0 ⇧

�5 ⇤ 0 ⇧ �5

�
qx qy qz 0

R5

⇥
= 0 ⇧ �5

�
q0
r5

⇥
⇥ �1

Unfortunately, this constraint is non-linear since it contains multiplication
between unknown components of �1, ... ,�5 and the unknown coe�cients
px , py , pz , p0, qx , qy , qz , q0.

Solution In contrast to interpolation or ranking function generation, we cannot
directly apply Linear Programming tools to solve (10) and need to introduce
additional solving steps, as described in Section 4.3 and [4]. These steps lead
to the significant reduction of the number of non-linear terms, and make the
constraints amenable to solving using case analysis on the remaining unknown
coe�cients for derivations.

11

Invariant Constraint Solved

• Find l2 : px x + py y + pz z ≤ p0 and l3 : qx x + qy y + qz z ≤ q0

23

�1R1 �1r1

�2

�
px py pz 0

R2

⇥
�2

�
p0
r2

⇥

�3

�
px py pz 0

R3

⇥
�3

�
p0
r3

⇥

�4

�
qx qy qz 0

R4

⇥
�4

�
q0
r4

⇥

�5

�
qx qy qz 0

R5

⇥
�5

�
q0
r5

⇥

Unfortunately, this constraint is non-linear since it contains multiplication
between unknown components of �1, ... ,�5 and the unknown coe�cients
px , py , pz , p0, qx , qy , qz , q0.

Solution In contrast to interpolation or ranking function generation, we cannot
directly apply Linear Programming tools to solve (10) and need to introduce
additional solving steps, as described in Section 4.3 and [4]. These steps lead
to the significant reduction of the number of non-linear terms, and make the
constraints amenable to solving using case analysis on the remaining unknown
coe�cients for derivations.

For our program we obtain the following solution.

�1 = (1 1 1 1)

�2 = (1 0 1 1 1)

�3 = (1 1 1 1 1)

�4 = (0 0 0 0 0)

�5 = (1 1 0 0 0)

px = 0 py = �1 pz = 1 p0 = 0

qx = �1 qy = 0 qz = 1 q0 = 0

This solution defines an invariant �y + x ⇥ 0 at the location ⇥2 and �x + z ⇥ 0
at the location ⇥3.

4.2 Algorithm

Next, we sketch the constraint-based invariant algorithm. See [?,1, 4] for further
details and a discussion of related work.

12

�1R1 �1r1

�2

�
px py pz 0

R2

⇥
�2

�
p0
r2

⇥

�3

�
px py pz 0

R3

⇥
�3

�
p0
r3

⇥

�4

�
qx qy qz 0

R4

⇥
�4

�
q0
r4

⇥

�5

�
qx qy qz 0

R5

⇥
�5

�
q0
r5

⇥

Unfortunately, this constraint is non-linear since it contains multiplication
between unknown components of �1, ... ,�5 and the unknown coe�cients
px , py , pz , p0, qx , qy , qz , q0.

Solution In contrast to interpolation or ranking function generation, we cannot
directly apply Linear Programming tools to solve (10) and need to introduce
additional solving steps, as described in Section 4.3 and [4]. These steps lead
to the significant reduction of the number of non-linear terms, and make the
constraints amenable to solving using case analysis on the remaining unknown
coe�cients for derivations.

For our program we obtain the following solution.

�1 = (1 1 1 1)

�2 = (1 0 1 1 1)

�3 = (1 1 1 1 1)

�4 = (0 0 0 0 0)

�5 = (1 1 0 0 0)

px = 0 py = �1 pz = 1 p0 = 0

qx = �1 qy = 0 qz = 1 q0 = 0

This solution defines an invariant �y + x ⇥ 0 at the location ⇥2 and �x + z ⇥ 0
at the location ⇥3.

4.2 Algorithm

Next, we sketch the constraint-based invariant algorithm. See [?,1, 4] for further
details and a discussion of related work.

12

• Invariant at l2 : 0x +(−1)y +1z ≤ 0 and l3 : (-1)x +0y +1z ≤ 0
 l2 : z ≤ y and l3 : z ≤ x

Proving Non-Termination

• Non-terminating execution
(−1, 0, −1), (−1, 0, −1), ...

• Recurrence set S is reachable and can always reach itself

• Example recurrence set S = (x+1 ≤ y /\ z ≤ −1)

24

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {

x=x+1+z;
}

}

(a)

`1

`2

⌧1

⌧2

`3

⌧3

(b)

⇢1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢2 = (x + 1 y ^ x

0 = x + 1 + z ^ y

0 = y ^ z

0 = z)

⇢3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 2. A non-terminating example program (a), its control-flow graph (b), and the
corresponding transition relations (c).

22

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {

x=x+1+z;
}

}

(a)

`1

`2

⇢1

⇢2

`3

⇢3

(b)

⇢1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢2 = (x + 1 y ^ x

0 = x + 1 + z ^ y

0 = y ^ z

0 = z)

⇢3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 2. A non-terminating example program (a), its control-flow graph (b), and the
corresponding transition relations (c).

23

Recurrence Set Constraint ∃∀∃

• Recurrence set Sv ≤ s is reachable and
can always reach itself

• Let v = (x y z)

• Find (Sv ≤ s) = (px x + py y + pz z ≤ p0 ∧
 qx x + qy y + qz z ≤ q0)

25

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {

x=x+1+z;
}

}

(a)

`1

`2

⇢1

⇢2

`3

⇢3

(b)

⇢1 = (y � z ^ x

0 = x ^ y

0 = y ^ z

0 = z)

⇢2 = (x + 1 y ^ x

0 = x + 1 + z ^ y

0 = y ^ z

0 = z)

⇢3 = (x � y ^ x

0 = x ^ y

0 = y ^ z

0 = z)

(c)

Fig. 2. A non-terminating example program (a), its control-flow graph (b), and the
corresponding transition relations (c).

23

as its first instruction and reflect the modification in the constraints, then we
will be able to compute the following bound.

x ⇥ y

⌃px ⌃py ⌃pz ⌃p0 ⌃by ⌃bz ⌃b0
⌃�1 ⌃�2 ⌃�3 :

�1 ⇤ 0 ⌥ �1R1 = (0 px py pz) ⌥ �1r1 ⇥ p0 ⌥

�2 ⇤ 0 ⌥ �2

�
px py pz 0

R2

⇥
= (0 px py pz) ⌥ �2

�
p0
r2

⇥
⇥ p0 ⌥

�3 ⇤ 0 ⌥ �3

�
px py pz 0

R3

⇥
= (0 1 � by � bz) ⌥ �3

�
p0
r3

⇥
⇥ b0

5 Recurrence sets

Inherent limitations of the existing tools for proving program termination can
lead to cases when non-conclusive results are reported. Since a failure to find
a termination argument does not directly imply that the program does not
terminate on certain inputs, we need dedicated methods that can prove non-
termination of programs. In this section we present such a method. It is based
on the notion of recurrence set that serves as a proof for the existence of a
non-terminating program execution.

Input We show how non-termination can be proved by constructing recurrence
sets using the example in Figure 2. Here, we assume that the program variables
range over integer numbers, i.e., no overflow can take place. The complete version
of the corresponding algorithm is presented in [3] and handles programs over
integers as bit-strings as well.

To prove non-termination we will compute a recurrence set consisting of pro-
gram states that can be reached at the loop entry and lead to an additional loop
iteration. We assume that a desired recurrence set can be expressed by a conjunc-
tion of two inequalities pv ⇥ p0 ⌥ qv ⇥ q0 over the vector of program variables
v consisting of x , y , and z , while p, p0, q, and q0 are unknown coe�cients. To
simplify notation, we write Sv ⇥ s for the conjunction of pv ⇥ p0 and qv ⇥ q0.
Then, the following constraint encodes the recurrence set condition.

⌃S ⌃s :

(⌃v ⌃v � : ⇥1(v , v �) ⌥ Sv � ⇥ s) ⌥

(⇧v ⌃v � : Sv ⇥ s ⌅ (⇥2(v , v �) ⌥ Sv � ⇥ s))

(13)

The first conjunct guarantees that the recurrence set is not empty and requires
that the recurrence set contains at least one state that is reachable by following

16

as its first instruction and reflect the modification in the constraints, then we
will be able to compute the following bound.

x ⇥ y

⌃px ⌃py ⌃pz ⌃p0 ⌃by ⌃bz ⌃b0
⌃�1 ⌃�2 ⌃�3 :

�1 ⇤ 0 ⌥ �1R1 = (0 px py pz) ⌥ �1r1 ⇥ p0 ⌥

�2 ⇤ 0 ⌥ �2

�
px py pz 0

R2

⇥
= (0 px py pz) ⌥ �2

�
p0
r2

⇥
⇥ p0 ⌥

�3 ⇤ 0 ⌥ �3

�
px py pz 0

R3

⇥
= (0 1 � by � bz) ⌥ �3

�
p0
r3

⇥
⇥ b0

5 Recurrence sets

Inherent limitations of the existing tools for proving program termination can
lead to cases when non-conclusive results are reported. Since a failure to find
a termination argument does not directly imply that the program does not
terminate on certain inputs, we need dedicated methods that can prove non-
termination of programs. In this section we present such a method. It is based
on the notion of recurrence set that serves as a proof for the existence of a
non-terminating program execution.

Input We show how non-termination can be proved by constructing recurrence
sets using the example in Figure 2. Here, we assume that the program variables
range over integer numbers, i.e., no overflow can take place. The complete version
of the corresponding algorithm is presented in [3] and handles programs over
integers as bit-strings as well.

To prove non-termination we will compute a recurrence set consisting of pro-
gram states that can be reached at the loop entry and lead to an additional loop
iteration. We assume that a desired recurrence set can be expressed by a conjunc-
tion of two inequalities pv ⇥ p0 ⌥ qv ⇥ q0 over the vector of program variables
v consisting of x , y , and z , while p, p0, q, and q0 are unknown coe�cients. To
simplify notation, we write Sv ⇥ s for the conjunction of pv ⇥ p0 and qv ⇥ q0.
Then, the following constraint encodes the recurrence set condition.

⌃S ⌃s :

(⌃v ⌃v � : ⇥1(v , v �) ⌥ Sv � ⇥ s) ⌥

(⇧v ⌃v � : Sv ⇥ s ⌅ (⇥2(v , v �) ⌥ Sv � ⇥ s))

(13)

The first conjunct guarantees that the recurrence set is not empty and requires
that the recurrence set contains at least one state that is reachable by following

16

Quantifier Alternation ∃∀∃

• ρ1(v, v′) and ρ2(v, v′) define functional dependency
between v′ and v
... /\ x′ = x /\ y′ = y /\ z′ = z
... /\ x′ = x+1+z /\ y′ = y /\ z′ = z

• Useful for elimination of ∃v′

26

the transition ⇤1, i.e., by when the loop is reached for the first time. The last
conjunct guarantees that every state in the recurrence set can follow the loop
transition ⇤2 and get back to the recurrence set. Together, these properties guar-
antee that there exists an infinite program execution that can be constructed
from the elements of the recurrence set.

Constraints The constraint (13) contains universal quantification and quan-
tifier alternation, which makes it di�cult to solve using the existing quantifier
elimination tools. As the first step, we simplify (13) by exploiting the structure
of transition relations ⇥1 and ⇥2. Our simplification relies on the fact that the
values of primed variables are defined by update expressions, and substitutes
the primed variables by the corresponding update expressions. We obtain the
following simplified equivalent of (13).

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⇧x ⇧y ⇧z : S
⇤

x
y
z

⌅
⇥ s ⌅ (x + 1 ⇥ y ⌥ S

⇤
x+1+z

y
z

⌅
⇥ s))

Next, we eliminate universal quantification by applying Farkas’ lemma. The
application yields the following constraint. It only contains existential quantifi-
cation and uses Sx , Sy , and Sz to refer to the first, second, and the third column
of S , respectively.

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
1 �1 0

⇥
⌥ �s ⇥ �1) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
Sx Sy Sz + Sx

⇥
⌥ �s ⇥ (s � Sx))

(14)

Solution We apply solving techniques that we used for dealing with non-linear
constraints during invariant generation, see Section 4, and obtain the following

17

the transition ⇤1, i.e., by when the loop is reached for the first time. The last
conjunct guarantees that every state in the recurrence set can follow the loop
transition ⇤2 and get back to the recurrence set. Together, these properties guar-
antee that there exists an infinite program execution that can be constructed
from the elements of the recurrence set.

Constraints The constraint (13) contains universal quantification and quan-
tifier alternation, which makes it di�cult to solve using the existing quantifier
elimination tools. As the first step, we simplify (13) by exploiting the structure
of transition relations ⇥1 and ⇥2. Our simplification relies on the fact that the
values of primed variables are defined by update expressions, and substitutes
the primed variables by the corresponding update expressions. We obtain the
following simplified equivalent of (13).

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⇧x ⇧y ⇧z : S
⇤

x
y
z

⌅
⇥ s ⌅ (x + 1 ⇥ y ⌥ S

⇤
x+1+z

y
z

⌅
⇥ s))

Next, we eliminate universal quantification by applying Farkas’ lemma. The
application yields the following constraint. It only contains existential quantifi-
cation and uses Sx , Sy , and Sz to refer to the first, second, and the third column
of S , respectively.

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
1 �1 0

⇥
⌥ �s ⇥ �1) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
Sx Sy Sz + Sx

⇥
⌥ �s ⇥ (s � Sx))

(14)

Solution We apply solving techniques that we used for dealing with non-linear
constraints during invariant generation, see Section 4, and obtain the following

17

the transition ⇤1, i.e., by when the loop is reached for the first time. The last
conjunct guarantees that every state in the recurrence set can follow the loop
transition ⇤2 and get back to the recurrence set. Together, these properties guar-
antee that there exists an infinite program execution that can be constructed
from the elements of the recurrence set.

Constraints The constraint (13) contains universal quantification and quan-
tifier alternation, which makes it di�cult to solve using the existing quantifier
elimination tools. As the first step, we simplify (13) by exploiting the structure
of transition relations ⇥1 and ⇥2. Our simplification relies on the fact that the
values of primed variables are defined by update expressions, and substitutes
the primed variables by the corresponding update expressions. We obtain the
following simplified equivalent of (13).

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⇧x ⇧y ⇧z : S
⇤

x
y
z

⌅
⇥ s ⌅ (x + 1 ⇥ y ⌥ S

⇤
x+1+z

y
z

⌅
⇥ s))

Next, we eliminate universal quantification by applying Farkas’ lemma. The
application yields the following constraint. It only contains existential quantifi-
cation and uses Sx , Sy , and Sz to refer to the first, second, and the third column
of S , respectively.

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
1 �1 0

⇥
⌥ �s ⇥ �1) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
Sx Sy Sz + Sx

⇥
⌥ �s ⇥ (s � Sx))

(14)

Solution We apply solving techniques that we used for dealing with non-linear
constraints during invariant generation, see Section 4, and obtain the following

17

Quantifier Alternation ∃∀

• Elimination of ∀v produces:

27

the transition ⇤1, i.e., by when the loop is reached for the first time. The last
conjunct guarantees that every state in the recurrence set can follow the loop
transition ⇤2 and get back to the recurrence set. Together, these properties guar-
antee that there exists an infinite program execution that can be constructed
from the elements of the recurrence set.

Constraints The constraint (13) contains universal quantification and quan-
tifier alternation, which makes it di�cult to solve using the existing quantifier
elimination tools. As the first step, we simplify (13) by exploiting the structure
of transition relations ⇥1 and ⇥2. Our simplification relies on the fact that the
values of primed variables are defined by update expressions, and substitutes
the primed variables by the corresponding update expressions. We obtain the
following simplified equivalent of (13).

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⇧x ⇧y ⇧z : S
⇤

x
y
z

⌅
⇥ s ⌅ (x + 1 ⇥ y ⌥ S

⇤
x+1+z

y
z

⌅
⇥ s))

Next, we eliminate universal quantification by applying Farkas’ lemma. The
application yields the following constraint. It only contains existential quantifi-
cation and uses Sx , Sy , and Sz to refer to the first, second, and the third column
of S , respectively.

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
1 �1 0

⇥
⌥ �s ⇥ �1) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
Sx Sy Sz + Sx

⇥
⌥ �s ⇥ (s � Sx))

(14)

Solution We apply solving techniques that we used for dealing with non-linear
constraints during invariant generation, see Section 4, and obtain the following

17

the transition ⇤1, i.e., by when the loop is reached for the first time. The last
conjunct guarantees that every state in the recurrence set can follow the loop
transition ⇤2 and get back to the recurrence set. Together, these properties guar-
antee that there exists an infinite program execution that can be constructed
from the elements of the recurrence set.

Constraints The constraint (13) contains universal quantification and quan-
tifier alternation, which makes it di�cult to solve using the existing quantifier
elimination tools. As the first step, we simplify (13) by exploiting the structure
of transition relations ⇥1 and ⇥2. Our simplification relies on the fact that the
values of primed variables are defined by update expressions, and substitutes
the primed variables by the corresponding update expressions. We obtain the
following simplified equivalent of (13).

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⇧x ⇧y ⇧z : S
⇤

x
y
z

⌅
⇥ s ⌅ (x + 1 ⇥ y ⌥ S

⇤
x+1+z

y
z

⌅
⇥ s))

Next, we eliminate universal quantification by applying Farkas’ lemma. The
application yields the following constraint. It only contains existential quantifi-
cation and uses Sx , Sy , and Sz to refer to the first, second, and the third column
of S , respectively.

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
1 �1 0

⇥
⌥ �s ⇥ �1) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
Sx Sy Sz + Sx

⇥
⌥ �s ⇥ (s � Sx))

(14)

Solution We apply solving techniques that we used for dealing with non-linear
constraints during invariant generation, see Section 4, and obtain the following

17

the transition ⇤1, i.e., by when the loop is reached for the first time. The last
conjunct guarantees that every state in the recurrence set can follow the loop
transition ⇤2 and get back to the recurrence set. Together, these properties guar-
antee that there exists an infinite program execution that can be constructed
from the elements of the recurrence set.

Constraints The constraint (13) contains universal quantification and quan-
tifier alternation, which makes it di�cult to solve using the existing quantifier
elimination tools. As the first step, we simplify (13) by exploiting the structure
of transition relations ⇥1 and ⇥2. Our simplification relies on the fact that the
values of primed variables are defined by update expressions, and substitutes
the primed variables by the corresponding update expressions. We obtain the
following simplified equivalent of (13).

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⇧x ⇧y ⇧z : S
⇤

x
y
z

⌅
⇥ s ⌅ (x + 1 ⇥ y ⌥ S

⇤
x+1+z

y
z

⌅
⇥ s))

Next, we eliminate universal quantification by applying Farkas’ lemma. The
application yields the following constraint. It only contains existential quantifi-
cation and uses Sx , Sy , and Sz to refer to the first, second, and the third column
of S , respectively.

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
1 �1 0

⇥
⌥ �s ⇥ �1) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
Sx Sy Sz + Sx

⇥
⌥ �s ⇥ (s � Sx))

(14)

Solution We apply solving techniques that we used for dealing with non-linear
constraints during invariant generation, see Section 4, and obtain the following

17

the transition ⇤1, i.e., by when the loop is reached for the first time. The last
conjunct guarantees that every state in the recurrence set can follow the loop
transition ⇤2 and get back to the recurrence set. Together, these properties guar-
antee that there exists an infinite program execution that can be constructed
from the elements of the recurrence set.

Constraints The constraint (13) contains universal quantification and quan-
tifier alternation, which makes it di�cult to solve using the existing quantifier
elimination tools. As the first step, we simplify (13) by exploiting the structure
of transition relations ⇥1 and ⇥2. Our simplification relies on the fact that the
values of primed variables are defined by update expressions, and substitutes
the primed variables by the corresponding update expressions. We obtain the
following simplified equivalent of (13).

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⇧x ⇧y ⇧z : S
⇤

x
y
z

⌅
⇥ s ⌅ (x + 1 ⇥ y ⌥ S

⇤
x+1+z

y
z

⌅
⇥ s))

Next, we eliminate universal quantification by applying Farkas’ lemma. The
application yields the following constraint. It only contains existential quantifi-
cation and uses Sx , Sy , and Sz to refer to the first, second, and the third column
of S , respectively.

⌃S ⌃s :

(⌃x ⌃y ⌃z : y ⇤ z ⌥ S
⇤

x
y
z

⌅
⇥ s) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
1 �1 0

⇥
⌥ �s ⇥ �1) ⌥

(⌃� : � ⇤ 0 ⌥ �S =
�
Sx Sy Sz + Sx

⇥
⌥ �s ⇥ (s � Sx))

(14)

Solution We apply solving techniques that we used for dealing with non-linear
constraints during invariant generation, see Section 4, and obtain the following

17

Constraint on Recurrence Set, Solved

• Find (px x + py y + pz z ≤ p0 /\ qx x + qy y + qz z ≤ q0)

• Non-terminating computation from (−2, −1, −1)
not leaving (x+1 ≤ y) /\ (z ≤ −1)

28

solution.
x = �2

y = �1

z = �1

� = (1 0)

� =

�
1 0
1 1

⇥

p = (1 � 1 0)

p0 = �1

q = (0 0 1)

q0 = �1

This solution defines the recurrence set

x � y ⇥ �1 ⌅ z ⇥ �1 ,

and states that the program does not terminate if executed from an initial state
that assigns x = �2, y = �1, and z = �1.

6 Combination with uninterpreted functions

In the previous sections we showed how auxiliary assertions represented by linear
inequalities can be generated using constraint-based techniques. In this section
we show that these techniques can be directly extended to deal with assertions
represented by linear arithmetic combined with uninterpreted functions. This
combined theory plays in important role in program verification, where unin-
terpreted functions are used to abstract functions that are too complex to be
modeled precisely. The basis of the extension is the hierarchical approach to
the combination of logical theories [6]. We refer to [7, 1] for constraint-based
interpolation and invariant generation algorithms for the combination of linear
arithmetic and uninterpreted functions. Next, we will illustrate the interpolation
algorithm for linear arithmetic and function symbols using a small example.

Input The interpolation algorithm takes as input a pair of mutually unsatisfi-
able assertions ⇤ and ⇥ shown below.

⇤ = (x ⇥ a ⌅ a ⇥ y ⌅ f (a) ⇥ 0)

⇥ = (y ⇥ b ⌅ b ⇥ x ⌅ 1 ⇥ f (b))

The proof of unsatisfiability requires reasoning about linear arithmetic and
uninterpreted function, which we represent by the logical consequence rela-
tion |=LI+UIF.

⇤ ⌅ ⇥ |=LI+UIF ⇤

18

solution.
x = �2

y = �1

z = �1

� = (1 0)

� =

�
1 0
1 1

⇥

p = (1 � 1 0)

p0 = �1

q = (0 0 1)

q0 = �1

This solution defines the recurrence set

x � y ⇥ �1 ⌅ z ⇥ �1 ,

and states that the program does not terminate if executed from an initial state
that assigns x = �2, y = �1, and z = �1.

6 Combination with uninterpreted functions

In the previous sections we showed how auxiliary assertions represented by linear
inequalities can be generated using constraint-based techniques. In this section
we show that these techniques can be directly extended to deal with assertions
represented by linear arithmetic combined with uninterpreted functions. This
combined theory plays in important role in program verification, where unin-
terpreted functions are used to abstract functions that are too complex to be
modeled precisely. The basis of the extension is the hierarchical approach to
the combination of logical theories [6]. We refer to [7, 1] for constraint-based
interpolation and invariant generation algorithms for the combination of linear
arithmetic and uninterpreted functions. Next, we will illustrate the interpolation
algorithm for linear arithmetic and function symbols using a small example.

Input The interpolation algorithm takes as input a pair of mutually unsatisfi-
able assertions ⇤ and ⇥ shown below.

⇤ = (x ⇥ a ⌅ a ⇥ y ⌅ f (a) ⇥ 0)

⇥ = (y ⇥ b ⌅ b ⇥ x ⌅ 1 ⇥ f (b))

The proof of unsatisfiability requires reasoning about linear arithmetic and
uninterpreted function, which we represent by the logical consequence rela-
tion |=LI+UIF.

⇤ ⌅ ⇥ |=LI+UIF ⇤

18

solution.
x = �2

y = �1

z = �1

� = (1 0)

� =

�
1 0
1 1

⇥

p = (1 � 1 0)

p0 = �1

q = (0 0 1)

q0 = �1

This solution defines the recurrence set

x � y ⇥ �1 ⌅ z ⇥ �1 ,

and states that the program does not terminate if executed from an initial state
that assigns x = �2, y = �1, and z = �1.

6 Combination with uninterpreted functions

In the previous sections we showed how auxiliary assertions represented by linear
inequalities can be generated using constraint-based techniques. In this section
we show that these techniques can be directly extended to deal with assertions
represented by linear arithmetic combined with uninterpreted functions. This
combined theory plays in important role in program verification, where unin-
terpreted functions are used to abstract functions that are too complex to be
modeled precisely. The basis of the extension is the hierarchical approach to
the combination of logical theories [6]. We refer to [7, 1] for constraint-based
interpolation and invariant generation algorithms for the combination of linear
arithmetic and uninterpreted functions. Next, we will illustrate the interpolation
algorithm for linear arithmetic and function symbols using a small example.

Input The interpolation algorithm takes as input a pair of mutually unsatisfi-
able assertions ⇤ and ⇥ shown below.

⇤ = (x ⇥ a ⌅ a ⇥ y ⌅ f (a) ⇥ 0)

⇥ = (y ⇥ b ⌅ b ⇥ x ⌅ 1 ⇥ f (b))

The proof of unsatisfiability requires reasoning about linear arithmetic and
uninterpreted function, which we represent by the logical consequence rela-
tion |=LI+UIF.

⇤ ⌅ ⇥ |=LI+UIF ⇤

18

