Synthesis of Ranking Functions and
 Synthesis of Inductive Invariants and

Synthesis of Recurrence Sets via
Constraint Solving

Andreas Podelski
January 17, 2012

Program Verification and Constraints

- Reasoning about program computations
- Computation is a sequence of program states
- Sequences generated by transition relation
- Transition relation defined by assume \& update statements
- Assume \& update statements = transition constraints

Program Properties

- Non-reachability: given state is not reachable
- Termination: no infinite computation exists
- Linear-time properties (LTL):
reduced to reachability and termination (in automata-theoretic approach)

Verification = finding auxiliary assertions

- Proving reachability $=$ finding inductive invariant
- Proving termination $=$ finding ranking relation
(ranking relation defined by ranking function, i.e., an expression over program variables which bounds number of steps)

Running Example

```
main(int \(x\), int \(y\), int \(z\) ) \{
    assume (y >= z);
    while (x < y) \{
        x++;
    \}
    assert( x >= z );
\}
```

- for constraint solving, treat x, y, and z as rationals

CFG and Transition Relations

```
main(int \(x\), int \(y\), int \(z)\{\)
    assume ( \(\mathrm{y}>=\mathrm{z}\) );
    while ( \(\mathrm{x}<\mathrm{y}\) ) \{
        x++;
    \}
    assert ( \(x\) > \(=z\) );
\}
    \(\rho_{1}=\left(y \geq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right)\)
    \(\rho_{2}=\left(x+1 \leq y \wedge x^{\prime}=x+1 \wedge y^{\prime}=y \wedge z^{\prime}=z\right)\)
    (lale
\[
\begin{aligned}
& \rho_{1}=\left(y \geq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{2}=\left(x+1 \leq y \wedge x^{\prime}=x+1 \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{3}=\left(x \geq y \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{4}=\left(x \geq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{5}=\left(x+1 \leq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right)
\end{aligned}
\]
```


Transition Constraint => Matrix

$$
\begin{aligned}
\rho_{2} & =\left(x+1 \leq y \wedge x^{\prime}=x+1 \wedge y^{\prime}=y\right) \\
& =\left(x-y \leq-1 \wedge-x+x^{\prime} \leq 1 \wedge x-x^{\prime} \leq-1 \wedge-y+y^{\prime} \leq 0 \wedge y-y^{\prime} \leq 0\right) \\
& =\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
x^{\prime} \\
y^{\prime}
\end{array}\right) \leq\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Ranking Functions

- Ranking function, say f, maps states to distance until terminating state

$$
\begin{aligned}
& \text { while }(x<y)\{ \\
& x++; \\
& \}
\end{aligned}
$$

- $f(x, y)=(y-x)$
- decrease at each step
- bounded from below

Ranking Function Constraint $\exists \forall$

- ranking function $f(x, y)=f_{x} x+f_{y} y$
- lower bound δ_{0}
- decrease amount δ

$$
\delta \geq 1 \wedge
$$

$$
\forall x \forall y \forall x^{\prime} \forall y^{\prime}:
$$

$$
\begin{aligned}
\rho_{2} \rightarrow & \left(f_{x} x+f_{y} y \geq \delta_{0} \wedge\right. \\
& \left.f_{x} x^{\prime}+f_{y} y^{\prime} \leq f_{x} x+f_{y} y-\delta\right)
\end{aligned}
$$

Quantifier Alternation $\exists \forall$

$$
\begin{aligned}
& \exists f_{x} \exists f_{y} \exists \delta_{0} \exists \delta \\
& \forall x \forall y \forall x^{\prime} \forall y^{\prime}: \\
& \delta \geq 1 \wedge \\
& \rho_{2} \rightarrow \\
& \quad\left(f_{x} x+f_{y} y \geq \delta_{0} \wedge\right. \\
& \left.\quad f_{x} x^{\prime}+f_{y} y^{\prime} \leq f_{x} x+f_{y} y-\delta\right)
\end{aligned}
$$

Farkas' Lemma

- implied inequalities are derivable as weighted $\mathrm{z}_{\geq 0}$ sums

$$
(\exists x: A x \leq b) \wedge(\forall x: A x \leq b \rightarrow c x \leq \delta)
$$

iff

$$
\exists \lambda: \lambda \geq 0 \wedge \lambda A=c \wedge \lambda b \leq \delta
$$

Transition Constraint => Matrix

$$
\begin{aligned}
\rho_{2} & =\left(x+1 \leq y \wedge x^{\prime}=x+1 \wedge y^{\prime}=y\right) \\
& =\left(x-y \leq-1 \wedge-x+x^{\prime} \leq 1 \wedge x-x^{\prime} \leq-1 \wedge-y+y^{\prime} \leq 0 \wedge y-y^{\prime} \leq 0\right) \\
& =\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
x^{\prime} \\
y^{\prime}
\end{array}\right) \leq\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Eliminating \forall-Quantifier (I)

$$
\rho_{2}=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
x^{\prime} \\
y^{\prime}
\end{array}\right) \leq\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
0 \\
0
\end{array}\right)
$$

implies

$$
f_{x} x+f_{y} y \geq \delta_{0}=\left(\begin{array}{llll}
-f_{x}-f_{y} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
x^{\prime} \\
y^{\prime}
\end{array}\right) \leq-\delta_{0}
$$

Eliminating \forall-Quantifier (2)

$$
\forall x \forall y \forall x^{\prime} \forall y^{\prime}: \rho_{2} \rightarrow f_{x} x+f_{y} y \geq \delta_{0}
$$

iff (by Farkas' lemma)
$\exists \lambda: \lambda \geq 0 \wedge \lambda\left(\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & -1\end{array}\right)=\left(-f_{x}-f_{y} 000\right) \wedge \lambda\left(\begin{array}{c}-1 \\ 1 \\ -1 \\ 0 \\ 0\end{array}\right) \leq-\delta_{0}$

Ranking Function Constraint \exists

- Find solution for f_{x}, f_{y}, δ_{0}, and δ

$$
\begin{aligned}
& \delta \geq 1 \wedge \\
& \exists \lambda \exists \mu:
\end{aligned}
$$

$$
\left.\begin{array}{l}
\lambda \geq 0 \wedge \lambda\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right)=\left(\begin{array}{l}
-f_{x}-f_{y} 000
\end{array}\right) \wedge \lambda\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
0 \\
0
\end{array}-1\right. \text { 0 } \\
-1
\end{array}\right) \leq-\delta_{0} \wedge ~\left(\begin{array}{cccc}
-1 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right)=\left(-f_{x}-f_{y} f_{x} f_{y}\right) \wedge \mu\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
0
\end{array}\right) \leq-\delta
$$

ranking function $f(x, y)=f_{x} x+f_{y} y$ with bound δ_{0}, and gap δ

Ranking Function Constraint Solved

- solution for f_{x}, f_{y}, δ_{0}, and δ

$$
\begin{aligned}
\lambda & =\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right) \\
\mu & =\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 0
\end{array}\right) \\
f_{x} & =-1 \\
f_{y} & =1 \\
\delta_{0} & =1 \\
\delta & =1
\end{aligned}
$$

$$
\text { while }(x<y)\{
$$

x++;

$$
\}
$$

- Ranking function $f(x, y)=(-I x+I y)=y-x$

Ranking Function Algorithm

- Input $\quad \rho\left(v, v^{\prime}\right)=R\binom{v}{v^{\prime}} \leq r$
- Defining constraint

$$
\exists f \exists \delta_{0} \exists \delta \forall v \forall v^{\prime}: \delta \geq 1 \wedge \rho\left(v, v^{\prime}\right) \rightarrow\left(f v \geq \delta_{0} \wedge f v^{\prime} \leq f v-\delta\right)
$$

- Linear constraint to solve

$$
\begin{aligned}
\exists f \exists \delta_{0} \exists \delta \exists & \lambda \exists \mu \delta \geq 1 \wedge \\
\lambda & \geq 0 \wedge \lambda R=(-f 0) \wedge \lambda r \leq-\delta_{0} \wedge \\
\mu & \geq 0 \wedge \mu R=(-f f) \wedge \mu r \leq-\delta
\end{aligned}
$$

Invariants

- Invariant for each control location:
$I_{1}:(0 \leq 0)$
$I_{2}:(z \leq y)$
$I_{3}:(z \leq x)$
$I_{4}:(0 \leq 0)$
$I_{5}:(1 \leq 0)$

- Inductiveness
$I_{2}:(z \leq y) \wedge\left(x+I \leq y \wedge x^{\prime}=x+\mid \wedge y^{\prime}=y\right) \Rightarrow\left(z^{\prime} \leq y^{\prime}\right)$

Example Program

```
main(int \(x\), int \(y\), int \(z)\{\)
    assume ( \(\mathrm{y}>=\mathrm{z}\) );
    while ( \(x<y\) ) \{
        x++;
    \}
    assert ( x >= z );
\}
    \(\rho_{1}=\left(y \geq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right)\)
    \(\rho_{2}=\left(x+1 \leq y \wedge x^{\prime}=x+1 \wedge y^{\prime}=y \wedge z^{\prime}=z\right)\)
```



```
\[
\begin{aligned}
& \rho_{1}=\left(y \geq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{2}=\left(x+1 \leq y \wedge x^{\prime}=x+1 \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{3}=\left(x \geq y \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{4}=\left(x \geq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{5}=\left(x+1 \leq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right)
\end{aligned}
\]
```


Invariant Constraint $\exists \forall$

- Find invariant at l_{2} of the form $p_{x} x+p_{y} y+p_{z} z \leq p_{0}$ and invariant at l_{3} of the form $q_{x} x+q_{y} y+q_{z} z \leq q_{0}$
- inductiveness of invariant at l_{3} entails non-reachability of l_{5}
$\forall x \forall y \forall z \forall x^{\prime} \forall y^{\prime} \forall z^{\prime}:$

$$
\begin{aligned}
& \left(\rho_{1} \rightarrow p_{x} x^{\prime}+p_{y} y^{\prime}+p_{z} z^{\prime} \leq p_{0}\right) \wedge \\
& \left(\left(p_{x} x+p_{y} y+p_{z} z \leq p_{0} \wedge \rho_{2}\right) \rightarrow p_{x} x^{\prime}+p_{y} y^{\prime}+p_{z} z^{\prime} \leq p_{0}\right) \wedge \\
& \left(\left(p_{x} x+p_{y} y+p_{z} z \leq p_{0} \wedge \rho_{3}\right) \rightarrow q_{x} x^{\prime}+q_{y} y^{\prime}+q_{z} z^{\prime} \leq q_{0}\right) \wedge \\
& \left(\left(q_{x} x+q_{y} y+q_{z} z \leq p_{0} \wedge \rho_{4}\right) \rightarrow 0 \leq 0\right) \wedge \\
& \left(\left(q_{x} x+q_{y} y+q_{z} z \leq p_{0} \wedge \rho_{5}\right) \rightarrow 0 \leq-1\right)
\end{aligned}
$$

Quantifier Alternation $\exists \forall$

- use matrix form

$$
\begin{aligned}
& v=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& \rho_{1}=R_{1}\binom{v}{v^{\prime}} \leq r_{1} \\
& \cdots \\
& \rho_{5}=R_{5}\binom{v}{v^{\prime}} \leq r_{5}
\end{aligned}
$$

- eliminate \forall by applying Farkas’ lemma

Invariant Constraint ヨ

- Find invariant at l_{2} of the form $p_{x} x+p_{y} y+p_{z} z \leq p_{0}$ and invariant at l_{3} of the form $q_{x} x+q_{y} y+q_{z} z \leq q_{0}$
$\exists \lambda_{1} \exists \lambda_{2} \exists \lambda_{3} \exists \lambda_{4} \exists \lambda_{5}$:

$$
\begin{aligned}
& \lambda_{1} \geq 0 \wedge \lambda_{1} R_{1}=\left(0 p_{x} p_{y} p_{z}\right) \wedge \lambda_{1} r_{1} \leq p_{0} \wedge \\
& \lambda_{2} \geq 0 \wedge \lambda_{2}\binom{p_{x} p_{y} p_{z} 0}{R_{2}}=\left(0 p_{x} p_{y} p_{z}\right) \wedge \lambda_{2}\binom{p_{0}}{r_{2}} \leq p_{0} \wedge \\
& \lambda_{3} \geq 0 \wedge \lambda_{3}\binom{p_{x} p_{y} p_{z} 0}{R_{3}}=\left(0 q_{x} q_{y} q_{z}\right) \wedge \lambda_{3}\binom{p_{0}}{r_{3}} \leq q_{0} \wedge \\
& \lambda_{4} \geq 0 \wedge \lambda_{4}\binom{q_{x} q_{y} q_{z} 0}{R_{4}}=0 \wedge \lambda_{4}\binom{q_{0}}{r_{4}} \leq 0 \wedge \\
& \lambda_{5} \geq 0 \wedge \lambda_{5}\binom{c_{x} q_{y} q_{z} 0}{R_{5}}=0 \wedge \lambda_{5}\binom{q_{0}}{r_{5}} \leq-1
\end{aligned}
$$

Invariant Constraint Solved

- Find $l_{2}: p_{x} x+p_{y} y+p_{z} z \leq p_{0}$ and $l_{3}: q_{x} x+q_{y} y+q_{z} z \leq q_{0}$

$$
\begin{aligned}
& \lambda_{1}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) \\
& \lambda_{2}=\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right) \\
& \lambda_{3}=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) \\
& \lambda_{4}=\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array} 0\right) \\
& \lambda_{5}=\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right) \\
& p_{x}=0 \quad p_{y}=-1 \quad p_{z}=1 \quad p_{0}=0 \\
& q_{x}=-1 \quad q_{y}=0 \quad q_{z}=1 \quad q_{0}=0
\end{aligned}
$$

- Invariant at $l_{2}: 0 x+(-I) y+I z \leq 0$ and $I_{3}:(-I) x+0 y+I z \leq 0$

$$
I_{2}: z \leq y
$$ and $I_{3}: z \leq x$

Proving Non-Termination

```
main(int x, int y, int z) {
    assume(y >= z);
    while (x < y) {
        x=x+1+z;
    }
}
```


- Non-terminating execution (-I, 0, -I), (-I, 0, -I), ...
- Recurrence set S is reachable and can always reach itself
- Example recurrence set $S=(x+I \leq y / z \leq-I)$

Recurrence Set Constraint $\exists \forall \exists$

- Recurrence set $S v \leq s$ is reachable and can always reach itself
- Let $v=(x y z)$
- Find $(S v \leq s)=\left(p_{x} x+p_{y} y+p_{z} z \leq p_{0} \wedge\right.$

$$
\left.q_{x} x+q_{y} y+q_{z} z \leq q_{0}\right)
$$

$\exists S \exists s:$

$$
\begin{aligned}
& \left(\exists v \exists v^{\prime}: \rho_{1}\left(v, v^{\prime}\right) \wedge S v^{\prime} \leq s\right) \wedge \\
& \left(\forall v \exists v^{\prime}: S v \leq s \rightarrow\left(\rho_{2}\left(v, v^{\prime}\right) \wedge S v^{\prime} \leq s\right)\right)
\end{aligned}
$$

Quantifier Alternation $\exists \forall \exists$

- $\rho_{1}\left(v, v^{\prime}\right)$ and $\rho_{2}\left(v, v^{\prime}\right)$ define functional dependency between v^{\prime} and v

$$
\begin{aligned}
& \ldots \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z \\
& \ldots \wedge x^{\prime}=x+\mid+z \wedge y^{\prime}=y \wedge z^{\prime}=z
\end{aligned}
$$

- Useful for elimination of $\exists v^{\prime}$
$\exists S \exists s:$

$$
\begin{aligned}
& \left(\exists x \exists y \exists z: y \geq z \wedge S\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \leq s\right) \wedge \\
& \left(\forall x \forall y \forall z: S\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \leq s \rightarrow\left(x+1 \leq y \wedge S\left(\begin{array}{c}
x+1+z \\
y \\
z
\end{array}\right) \leq s\right)\right)
\end{aligned}
$$

Quantifier Alternation $\exists \forall$

- Elimination of $\forall v$ produces:
$\exists S \exists s:$

$$
\begin{aligned}
& \left(\exists x \exists y \exists z: y \geq z \wedge S\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \leq s\right) \wedge \\
& (\exists \lambda: \lambda \geq 0 \wedge \lambda S=(1-10) \wedge \lambda s \leq-1) \wedge \\
& \left(\exists \wedge: \wedge \geq 0 \wedge \wedge S=\left(S_{x} S_{y} S_{z}+S_{x}\right) \wedge \wedge s \leq\left(s-S_{x}\right)\right)
\end{aligned}
$$

Constraint on Recurrence Set, Solved

- Find $\left(p_{x} x+p_{y} y+p_{z} z \leq p_{0} \wedge q_{x} x+q_{y} y+q_{z} z \leq q_{0}\right)$

$$
\begin{aligned}
p & =\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right) & & x=-2 \\
p_{0} & =-1 & & \lambda=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
q & =\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) & & z=-1
\end{aligned} \quad \Lambda=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

- Non-terminating computation from (-2, -I, -I) not leaving $(x+1 \leq y) / \wedge(z \leq-I)$

