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Program Verification and Constraints

• Reasoning about program computations

• Computation is a sequence of program states

• Sequences generated by transition relation

• Transition relation defined by assume & update 
statements 

• Assume & update statements = transition constraints
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Program Properties

• Non-reachability:  given state is not reachable

• Termination:  no infinite computation exists

• Linear-time properties (LTL): 
reduced to reachability and termination
(in automata-theoretic approach)
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          Verification = finding auxiliary assertions

• Proving reachability = finding inductive invariant

• Proving termination = finding ranking relation 

(ranking relation defined by ranking function, i.e.,  an 
expression over program variables which bounds number 
of steps)
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Preliminaries

• Running example

• Control-flow graphs and transition relations

• Linear inequalities: matrix form, Farkas’ lemma

• Constraint solvers
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Running Example

• for constraint solving, treat x, y, and z as rationals

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)
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(b)

ρ1 = (y ≥ z ∧ x � = x ∧ y � = y ∧ z � = z)

ρ2 = (x + 1 ≤ y ∧ x � = x + 1 ∧ y � = y ∧ z � = z)

ρ3 = (x ≥ y ∧ x � = x ∧ y � = y ∧ z � = z)

ρ4 = (x ≥ z ∧ x � = x ∧ y � = y ∧ z � = z)

ρ5 = (x + 1 ≤ z ∧ x � = x ∧ y � = y ∧ z � = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.

Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-

tion and safety proving obligations. When translating the program instructions

into the corresponding transition relations we approximate integer program vari-

ables by rationals, in order to reduce the complexity the resulting constraint

generation and solving tasks. Hence, the relation ρ2 has a guard x + 1 ≤ y .
Furthermore, the failure of the assert statement is represented by reachability of

the control location �5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.

Proving program terminations requires construction of ranking functions that

over-approximate the number of execution steps that the program can make

from a given state until termination. Linear ranking functions express such ap-

proximations by linear assertions over the program variables.

2.1 Example

Input We illustrate the construction of ranking functions on

the while loop from the program in Figure 1, as shown below.

2
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CFG and Transition Relations
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Transition Constraint => Matrix

below.

ρ2 = (x + 1 ≤ y ∧ x � = x + 1 ∧ y � = y)

= (x − y ≤ −1 ∧ −x + x � ≤ 1 ∧ x − x � ≤ −1 ∧ −y + y � ≤ 0 ∧ y − y � ≤ 0)

=





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1









x
y
x �

y �



 ≤





−1
1
−1
0
0





The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ≥ δ0 =
�
−fx −fy 0 0

�





x
y
x �

y �



 ≤ −δ0

fxx � + fyy � ≤ fxx + fyy − δ =
�
−fx −fy fx fy

�





x
y
x �

y �



 ≤ −δ

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

((∃x : Ax ≤ b) ∧ (∀x : Ax ≤ b → cx ≤ γ)) ↔ (∃λ : λ ≥ 0 ∧ λA = c ∧ λb ≤ γ) .

This statement asserts that every linear consequence of a satisfiable set of lin-
ear inequalities can be obtained as a non-negative linear combination of these
inequalities. As an immediate consequence we obtain that for a non-satisfiable
set of linear inequalities we can derive an unsatisfiable inequality, i.e.,

(∀x : ¬(Ax ≤ b)) ↔ (∃λ : λ ≥ 0 ∧ λA = 0 ∧ λb ≤ −1) .

4
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Farkas’ Lemma

• Mathematical tool for dealing with inequalities

• Informally: “implied inequalities are derivable”

below.

ρ2 = (x + 1 ≤ y ∧ x � = x + 1 ∧ y � = y)

= (x − y ≤ −1 ∧ −x + x � ≤ 1 ∧ x − x � ≤ −1 ∧ −y + y � ≤ 0 ∧ y − y � ≤ 0)

=





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1









x
y
x �

y �



 ≤





−1
1
−1
0
0





The bound and decrease conditions from (1) produce the following matrix forms.
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∀x ∀y : (x − 2y ≤ 10 ∧ x + y ≤ 1) → x ≤ 5

1

3
(x − 2y ≤ 10) +

2

3
(x + y ≤ 1) = x ≤ 4

∀x : x ≤ 4 → x ≤ 5

∀x ∀y :

�
1 −2
1 1

��
x
y

�
≤

�
10
1

�
→

�
1 0

��x
y

�
≤ 5

�
1
3

2
3

��1 −2
1 1

�
=

�
1 0

�
∧
�
1
3

2
3

��10
1

�
= 4 ≤ 5
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Farkas’ Lemma

• “implied inequalities are derivable”
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Farkas’ Lemma 2

• implied inequalities are derivable as weighted≥0 sums

iff

below.
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Constraint Solvers

• Black-box tools for solving constraints

• Linear Programming

• SAT (satisfiability)

• SMT (satisfiability modulo theory)

• CLP (constraint logic programming)

12



Ranking Functions

• Ranking function, say f, maps states to distance 
until terminating state

• f(10, 10) = 0,   f(5, 10) = 5,   f(0, 10) = 10,   ...

• f(x, y) = (y-x)

• decrease at each step

• bounded from below

2.1 Example

Input We illustrate the construction of ranking functions on

the while loop from the program in Figure 1, as shown below.

See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor

branching control flow inside the loop body in order to highlight the main ideas

of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables

that proves termination. Such an expression is determined by the coefficients of

the occurring variables. Let fx and fy be the coefficients for the variables x and

y , respectively. Since the program variable z does not play a role in the loop, to

simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below

for all states on which the loop can make a step, and is decreasing by some a

priory fixed positive amount. Let δ0 be the lower bound for the value of the

ranking function, and δ by the lower bound on the amount of decrease. Then,

we obtain the following defining constraint on the ranking function coefficients

and the bound values.

∃fx ∃fy ∃δ0 ∃δ

∀x ∀y ∀x � ∀y � :

(δ ≥ 1 ∧

ρ2 → (fxx + fyy ≥ δ0 ∧

fxx � + fyy � ≤ fxx + fyy − δ))

(1)

Any satisfying assignment to fx , fy , δ0 and δ determines a linear ranking function

for the loop.

The constraint (1) contains universal quantification over the program vari-

ables and their primed version, which makes it difficult to solve directly using

existing constraint solvers. At the next step, we will address this obstacle by

eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix

form, which will help us during the constraint generation. After replacing equal-

ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}

(a)

�1

�2

ρ1

ρ2

�3

ρ3

�4

ρ4

�5

ρ5

�2 ρ2

(b)

ρ1 = (y ≥ z ∧ x � = x ∧ y � = y ∧ z � = z)

ρ2 = (x + 1 ≤ y ∧ x � = x + 1 ∧ y � = y ∧ z � = z)

ρ3 = (x ≥ y ∧ x � = x ∧ y � = y ∧ z � = z)

ρ4 = (x ≥ z ∧ x � = x ∧ y � = y ∧ z � = z)

ρ5 = (x + 1 ≤ z ∧ x � = x ∧ y � = y ∧ z � = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.

Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-

tion and safety proving obligations. When translating the program instructions

into the corresponding transition relations we approximate integer program vari-

ables by rationals, in order to reduce the complexity the resulting constraint

generation and solving tasks. Hence, the relation ρ2 has a guard x + 1 ≤ y .
Furthermore, the failure of the assert statement is represented by reachability of

the control location �5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.

Proving program terminations requires construction of ranking functions that

over-approximate the number of execution steps that the program can make

from a given state until termination. Linear ranking functions express such ap-

proximations by linear assertions over the program variables.

2
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Ranking Function Constraint ∃∀
• ranking function f(x, y) = fx x+ fy y 

• lower bound δ0

• decrease amount δ 

main(int x, int y, int z) {
assume(y >= z);
while (x < y) {
x++;

}
assert(x >= z);

}
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ρ1

ρ2

�3

ρ3

�4

ρ4

�5

ρ5

�2 ρ2

(b)

ρ1 = (y ≥ z ∧ x � = x ∧ y � = y ∧ z � = z)

ρ2 = (x + 1 ≤ y ∧ x � = x + 1 ∧ y � = y ∧ z � = z)

ρ3 = (x ≥ y ∧ x � = x ∧ y � = y ∧ z � = z)

ρ4 = (x ≥ z ∧ x � = x ∧ y � = y ∧ z � = z)

ρ5 = (x + 1 ≤ z ∧ x � = x ∧ y � = y ∧ z � = z)

(c)

Fig. 1. An example program (a), its control-flow graph (b), and the corresponding
transition relations (c).

to deal with the combination of linear arithmetic and uninterpreted functions.

Here, we use the interpolation algorithm as an example.

We use the program shown in Figure 1 as a source of termination, interpola-

tion and safety proving obligations. When translating the program instructions

into the corresponding transition relations we approximate integer program vari-

ables by rationals, in order to reduce the complexity the resulting constraint

generation and solving tasks. Hence, the relation ρ2 has a guard x + 1 ≤ y .
Furthermore, the failure of the assert statement is represented by reachability of

the control location �5.

2 Linear ranking functions

Program termination is an important property that ensures its responsiveness.

Proving program terminations requires construction of ranking functions that

over-approximate the number of execution steps that the program can make

from a given state until termination. Linear ranking functions express such ap-

proximations by linear assertions over the program variables.

2

2.1 Example

Input We illustrate the construction of ranking functions on

the while loop from the program in Figure 1, as shown below.

See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor

branching control flow inside the loop body in order to highlight the main ideas

of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables

that proves termination. Such an expression is determined by the coefficients of

the occurring variables. Let fx and fy be the coefficients for the variables x and

y , respectively. Since the program variable z does not play a role in the loop, to

simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below

for all states on which the loop can make a step, and is decreasing by some a

priory fixed positive amount. Let δ0 be the lower bound for the value of the

ranking function, and δ by the lower bound on the amount of decrease. Then,

we obtain the following defining constraint on the ranking function coefficients

and the bound values.

∃fx ∃fy ∃δ0 ∃δ

∀x ∀y ∀x � ∀y � :

δ ≥ 1 ∧

ρ2 → (fxx + fyy ≥ δ0 ∧

fxx � + fyy � ≤ fxx + fyy − δ)

(1)

Any satisfying assignment to fx , fy , δ0 and δ determines a linear ranking function

for the loop.

The constraint (1) contains universal quantification over the program vari-

ables and their primed version, which makes it difficult to solve directly using

existing constraint solvers. At the next step, we will address this obstacle by

eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix

form, which will help us during the constraint generation. After replacing equal-

ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

2.1 Example

Input We illustrate the construction of ranking functions on

the while loop from the program in Figure 1, as shown below.

See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor

branching control flow inside the loop body in order to highlight the main ideas

of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables

that proves termination. Such an expression is determined by the coefficients of

the occurring variables. Let fx and fy be the coefficients for the variables x and

y , respectively. Since the program variable z does not play a role in the loop, to

simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below

for all states on which the loop can make a step, and is decreasing by some a

priory fixed positive amount. Let δ0 be the lower bound for the value of the

ranking function, and δ by the lower bound on the amount of decrease. Then,

we obtain the following defining constraint on the ranking function coefficients

and the bound values.

∃fx ∃fy ∃δ0 ∃δ

∀x ∀y ∀x � ∀y � :

δ ≥ 1 ∧

ρ2 → (fxx + fyy ≥ δ0 ∧

fxx � + fyy � ≤ fxx + fyy − δ)

(1)

Any satisfying assignment to fx , fy , δ0 and δ determines a linear ranking function

for the loop.

The constraint (1) contains universal quantification over the program vari-

ables and their primed version, which makes it difficult to solve directly using

existing constraint solvers. At the next step, we will address this obstacle by

eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix

form, which will help us during the constraint generation. After replacing equal-

ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

2.1 Example

Input We illustrate the construction of ranking functions on

the while loop from the program in Figure 1, as shown below.

See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor

branching control flow inside the loop body in order to highlight the main ideas

of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables

that proves termination. Such an expression is determined by the coefficients of

the occurring variables. Let fx and fy be the coefficients for the variables x and

y , respectively. Since the program variable z does not play a role in the loop, to

simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below

for all states on which the loop can make a step, and is decreasing by some a

priory fixed positive amount. Let δ0 be the lower bound for the value of the

ranking function, and δ by the lower bound on the amount of decrease. Then,

we obtain the following defining constraint on the ranking function coefficients

and the bound values.

∃fx ∃fy ∃δ0 ∃δ

∀x ∀y ∀x � ∀y � :

δ ≥ 1 ∧

ρ2 → (fxx + fyy ≥ δ0 ∧

fxx � + fyy � ≤ fxx + fyy − δ)

(1)

Any satisfying assignment to fx , fy , δ0 and δ determines a linear ranking function

for the loop.

The constraint (1) contains universal quantification over the program vari-

ables and their primed version, which makes it difficult to solve directly using

existing constraint solvers. At the next step, we will address this obstacle by

eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix

form, which will help us during the constraint generation. After replacing equal-

ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

2.1 Example

Input We illustrate the construction of ranking functions on

the while loop from the program in Figure 1, as shown below.

See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor

branching control flow inside the loop body in order to highlight the main ideas

of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables

that proves termination. Such an expression is determined by the coefficients of

the occurring variables. Let fx and fy be the coefficients for the variables x and

y , respectively. Since the program variable z does not play a role in the loop, to

simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below

for all states on which the loop can make a step, and is decreasing by some a

priory fixed positive amount. Let δ0 be the lower bound for the value of the

ranking function, and δ by the lower bound on the amount of decrease. Then,

we obtain the following defining constraint on the ranking function coefficients

and the bound values.

∃fx ∃fy ∃δ0 ∃δ

∀x ∀y ∀x � ∀y � :

δ ≥ 1 ∧

ρ2 → (fxx + fyy ≥ δ0 ∧

fxx � + fyy � ≤ fxx + fyy − δ)

(1)

Any satisfying assignment to fx , fy , δ0 and δ determines a linear ranking function

for the loop.

The constraint (1) contains universal quantification over the program vari-

ables and their primed version, which makes it difficult to solve directly using

existing constraint solvers. At the next step, we will address this obstacle by

eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix

form, which will help us during the constraint generation. After replacing equal-

ities by conjunctions of corresponding inequalities, we obtain the matrix form

3
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Quantifier Alternation ∃∀

• Difficult to solve

2.1 Example

Input We illustrate the construction of ranking functions on

the while loop from the program in Figure 1, as shown below.

See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor

branching control flow inside the loop body in order to highlight the main ideas

of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables

that proves termination. Such an expression is determined by the coefficients of

the occurring variables. Let fx and fy be the coefficients for the variables x and

y , respectively. Since the program variable z does not play a role in the loop, to

simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below

for all states on which the loop can make a step, and is decreasing by some a

priory fixed positive amount. Let δ0 be the lower bound for the value of the

ranking function, and δ by the lower bound on the amount of decrease. Then,

we obtain the following defining constraint on the ranking function coefficients

and the bound values.

∃fx ∃fy ∃δ0 ∃δ

∀x ∀y ∀x � ∀y � :

δ ≥ 1 ∧

ρ2 → (fxx + fyy ≥ δ0 ∧

fxx � + fyy � ≤ fxx + fyy − δ)

(1)

Any satisfying assignment to fx , fy , δ0 and δ determines a linear ranking function

for the loop.

The constraint (1) contains universal quantification over the program vari-

ables and their primed version, which makes it difficult to solve directly using

existing constraint solvers. At the next step, we will address this obstacle by

eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix

form, which will help us during the constraint generation. After replacing equal-

ities by conjunctions of corresponding inequalities, we obtain the matrix form

3
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Eliminating ∀-Quantifier (1)below.

ρ2 = (x + 1 ≤ y ∧ x � = x + 1 ∧ y � = y)

= (x − y ≤ −1 ∧ −x + x � ≤ 1 ∧ x − x � ≤ −1 ∧ −y + y � ≤ 0 ∧ y − y � ≤ 0)

=





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1









x
y
x �

y �



 ≤





−1
1
−1
0
0





The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ≥ δ0 =
�
−fx −fy 0 0

�





x
y
x �

y �



 ≤ −δ0

fxx � + fyy � ≤ fxx + fyy − δ =
�
−fx −fy fx fy

�





x
y
x �

y �



 ≤ −δ

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

(∃x : Ax ≤ b) ∧ (∀x : Ax ≤ b → cx ≤ δ)

∃λ : λ ≥ 0 ∧ λA = c ∧ λb ≤ δ

This statement asserts that every linear consequence of a satisfiable set of
linear inequalities can be obtained as a non-negative linear combination of these
inequalities. For example, we have

∀x ∀y : (x − 2y ≤ 10 ∧ x + y ≤ 1) → x ≤ 5

1

3
(x − 2y ≤ 10) +

2

3
(x + y ≤ 1) = x ≤ 4

∀x : x ≤ 4 → x ≤ 5

∀x ∀y :

�
1 −2
1 1

��
x
y

�
≤

�
10
1

�
→

�
1 0

��x
y

�
≤ 5

�
1
3

2
3

��1 −2
1 1

�
=

�
1 0

�
∧
�
1
3

2
3

��10
1

�
= 4 ≤ 5

4

below.

ρ2 = (x + 1 ≤ y ∧ x � = x + 1 ∧ y � = y)

= (x − y ≤ −1 ∧ −x + x � ≤ 1 ∧ x − x � ≤ −1 ∧ −y + y � ≤ 0 ∧ y − y � ≤ 0)

=





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1









x
y
x �

y �



 ≤





−1
1
−1
0
0





ρ2 =





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1









x
y
x �

y �



 ≤





−1
1
−1
0
0





The bound and decrease conditions from (1) produce the following matrix forms.

fxx + fyy ≥ δ0 =
�
−fx −fy 0 0

�





x
y
x �

y �



 ≤ −δ0

fxx � + fyy � ≤ fxx + fyy − δ =
�
−fx −fy fx fy

�





x
y
x �

y �



 ≤ −δ

Now we are ready to eliminate the universal quantification. For this purpose
we apply Farkas’ lemma, which formally states

(∃x : Ax ≤ b) ∧ (∀x : Ax ≤ b → cx ≤ δ)

∃λ : λ ≥ 0 ∧ λA = c ∧ λb ≤ δ

This statement asserts that every linear consequence of a satisfiable set of
linear inequalities can be obtained as a non-negative linear combination of these
inequalities. For example, we have

∀x ∀y : (x − 2y ≤ 10 ∧ x + y ≤ 1) → x ≤ 5

1

3
(x − 2y ≤ 10) +

2

3
(x + y ≤ 1) = x ≤ 4

∀x : x ≤ 4 → x ≤ 5

∀x ∀y :

�
1 −2
1 1

��
x
y

�
≤

�
10
1

�
→

�
1 0

��x
y

�
≤ 5

4

implies
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Eliminating ∀-Quantifier (2)

�
1
3

2
3

��1 −2
1 1

�
=

�
1 0

�
∧
�
1
3

2
3

��10
1

�
= 4 ≤ 5

As an immediate consequence we obtain that for a non-satisfiable set of linear
inequalities we can derive an unsatisfiable inequality, i.e.,

(∀x : ¬(Ax ≤ b)) ↔ (∃λ : λ ≥ 0 ∧ λA = 0 ∧ λb ≤ −1) .

∀x : ¬(Ax ≤ b) ∃λ : λ ≥ 0 ∧ λA = 0 ∧ λb ≤ −1

By applying Farkas’ lemma on (1) we obtain the following constraint.

∃λ : λ ≥ 0 ∧ λ





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1




=

�
−fx −fy 0 0

�
∧ λ





−1
1
−1
0
0




≤ −δ0

∃fx ∃fy ∃δ0 ∃δ

∃λ ∃µ :

(δ ≥ 1 ∧

λ ≥ 0 ∧

µ ≥ 0 ∧

λ





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1




=

�
−fx −fy 0 0

�
∧ λ





−1
1
−1
0
0




≤ −δ0 ∧

µ





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1




=

�
−fx −fy fx fy

�
∧ µ





−1
1
−1
0
0




≤ −δ

(2)

This constraint contains only existentially quantified rational variables and
consists of linear (in)equalities. Thus, it can be efficiently solved by the existing
tools for Linear Programming over rationals.

5

iff (by Farkas’ lemma)
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y , respectively. Since the program variable z does not play a role in the loop, to
simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below
for all states on which the loop can make a step, and is decreasing by some a
priory fixed positive amount. Let δ0 be the lower bound for the value of the
ranking function, and δ by the lower bound on the amount of decrease. Then,
we obtain the following defining constraint on the ranking function coefficients
and the bound values.

∃fx ∃fy ∃δ0 ∃δ

∀x ∀y ∀x � ∀y � :

δ ≥ 1 ∧

ρ2 → (fxx + fyy ≥ δ0 ∧

fxx � + fyy � ≤ fxx + fyy − δ)

(1)

Any satisfying assignment to fx , fy , δ0 and δ determines a linear ranking function
for the loop.

The constraint (1) contains universal quantification over the program vari-
ables and their primed version, which makes it difficult to solve directly using
existing constraint solvers. At the next step, we will address this obstacle by
eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix
form, which will help us during the constraint generation. After replacing equal-
ities by conjunctions of corresponding inequalities, we obtain the matrix form
below.

ρ2 = (x + 1 ≤ y ∧ x � = x + 1 ∧ y � = y)

= (x − y ≤ −1 ∧ −x + x � ≤ 1 ∧ x − x � ≤ −1 ∧ −y + y � ≤ 0 ∧ y − y � ≤ 0)

=





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1









x
y
x �

y �



 ≤





−1
1
−1
0
0





ρ2 =





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1









x
y
x �

y �



 ≤





−1
1
−1
0
0





The bound and decrease conditions from (1) produce the following matrix forms.

∀x ∀y ∀x � ∀y � : ρ2 → fxx + fyy ≥ δ0

3



Ranking Function Constraint ∃

• Find ranking function f(x, y) = fx x+ fy y , δ0, and δ 

2.1 Example

Input We illustrate the construction of ranking functions on

the while loop from the program in Figure 1, as shown below.

See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor

branching control flow inside the loop body in order to highlight the main ideas

of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables

that proves termination. Such an expression is determined by the coefficients of

the occurring variables. Let fx and fy be the coefficients for the variables x and

y , respectively. Since the program variable z does not play a role in the loop, to

simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below

for all states on which the loop can make a step, and is decreasing by some a

priory fixed positive amount. Let δ0 be the lower bound for the value of the

ranking function, and δ by the lower bound on the amount of decrease. Then,

we obtain the following defining constraint on the ranking function coefficients

and the bound values.

∃fx ∃fy ∃δ0 ∃δ

∀x ∀y ∀x � ∀y � :

δ ≥ 1 ∧

ρ2 → (fxx + fyy ≥ δ0 ∧

fxx � + fyy � ≤ fxx + fyy − δ)

(1)

Any satisfying assignment to fx , fy , δ0 and δ determines a linear ranking function

for the loop.

The constraint (1) contains universal quantification over the program vari-

ables and their primed version, which makes it difficult to solve directly using

existing constraint solvers. At the next step, we will address this obstacle by

eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix

form, which will help us during the constraint generation. After replacing equal-

ities by conjunctions of corresponding inequalities, we obtain the matrix form

3

�
1
3

2
3

��1 −2
1 1

�
=

�
1 0

�
∧
�
1
3

2
3

��10
1

�
= 4 ≤ 5

As an immediate consequence we obtain that for a non-satisfiable set of linear
inequalities we can derive an unsatisfiable inequality, i.e.,

(∀x : ¬(Ax ≤ b)) ↔ (∃λ : λ ≥ 0 ∧ λA = 0 ∧ λb ≤ −1) .

∀x : ¬(Ax ≤ b) ∃λ : λ ≥ 0 ∧ λA = 0 ∧ λb ≤ −1

By applying Farkas’ lemma on (1) we obtain the following constraint.

∃λ : λ ≥ 0 ∧ λ





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1




=

�
−fx −fy 0 0

�
∧ λ





−1
1
−1
0
0




≤ −δ0

∃fx ∃fy ∃δ0 ∃δ

∃λ ∃µ :

δ ≥ 1 ∧

∃λ ∃µ :

λ ≥ 0 ∧ λ





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1




=

�
−fx −fy 0 0

�
∧ λ





−1
1
−1
0
0




≤ −δ0 ∧

µ ≥ 0 ∧ µ





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1




=

�
−fx −fy fx fy

�
∧ µ





−1
1
−1
0
0




≤ −δ

(
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• Linear inequality constraints to solve



Ranking Function Constraint Solved

• Find ranking function f(x, y) = fx x+ fy y , δ0, and δ 

∃fx ∃fy ∃δ0 ∃δ

∃λ ∃µ :

(δ ≥ 1 ∧

λ ≥ 0 ∧

µ ≥ 0 ∧

λ





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1




=

�
−fx −fy 0 0

�
∧ λ





−1
1
−1
0
0




≤ −δ0 ∧

µ





1 −1 0 0
−1 0 1 0
1 0 −1 0
0 −1 0 1
0 1 0 −1




=

�
−fx −fy fx fy

�
∧ µ





−1
1
−1
0
0




≤ −δ

(2)

This constraint contains only existentially quantified rational variables and
consists of linear (in)equalities. Thus, it can be efficiently solved by the existing
tools for Linear Programming over rationals.

Solution We apply a linear constraint solver on (2) and obtain the following
solution.

λ = (1 0 0 0 0)

µ = (0 0 1 1 0)

fx = −1

fy = 1

δ0 = 1

δ = 1

This solution states that the expression −x + y decreases during each iteration
of the loop by at least 1, and is greater than 1 for all states that satisfy the loop
guard.

2.2 Algorithm

Now we briefly summarize the above illustration as an algorithm. See [5] for its
detailed description and pointers to the related work.

The ranking function generation algorithm takes as input a transition relation
ρ(v , v �) given by a set of linear inequalities over the program variables and their

6

• Ranking function f(x, y)  =  (−1 x + 1 y)  =  y−x

2.1 Example

Input We illustrate the construction of ranking functions on

the while loop from the program in Figure 1, as shown below.

See [5] for its detailed description and pointers to the related work.

while (x < y) {
x++;

}

We deliberately choose a loop that neither contains further nesting loops nor

branching control flow inside the loop body in order to highlight the main ideas

of the constraint-based ranking function generation.

Our algorithm will search for a linear expression over the program variables

that proves termination. Such an expression is determined by the coefficients of

the occurring variables. Let fx and fy be the coefficients for the variables x and

y , respectively. Since the program variable z does not play a role in the loop, to

simplify the presentation we do not take it into consideration.

A linear expression is a ranking function if its value is bounded from below

for all states on which the loop can make a step, and is decreasing by some a

priory fixed positive amount. Let δ0 be the lower bound for the value of the

ranking function, and δ by the lower bound on the amount of decrease. Then,

we obtain the following defining constraint on the ranking function coefficients

and the bound values.

∃fx ∃fy ∃δ0 ∃δ

∀x ∀y ∀x � ∀y � :

(δ ≥ 1 ∧

ρ2 → (fxx + fyy ≥ δ0 ∧

fxx � + fyy � ≤ fxx + fyy − δ))

(1)

Any satisfying assignment to fx , fy , δ0 and δ determines a linear ranking function

for the loop.

The constraint (1) contains universal quantification over the program vari-

ables and their primed version, which makes it difficult to solve directly using

existing constraint solvers. At the next step, we will address this obstacle by

eliminating the universal quantification.

Constraints First, we represent the transition relation of the loop in matrix

form, which will help us during the constraint generation. After replacing equal-

ities by conjunctions of corresponding inequalities, we obtain the matrix form
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primed versions.

ρ(v , v �) = R

�
v
v �

�
≤ r

Then, the condition that a vector of coefficients f for the variables v defines a
linear ranking function is represented by the constraint

∃f ∃δ0 ∃δ ∀v ∀v � : δ ≥ 1 ∧ ρ(v , v �) → (fv ≥ δ0 ∧ fv � ≤ fv − δ) . (3)

We apply Farkas’ lemma to (3) and obtain the following existentially quantified
linear constraints that can be solved using off-the-shelf Linear Programming
tools.

∃f ∃δ0 ∃δ

∃λ ∃µ :

δ ≥ 1 ∧

λ ≥ 0 ∧ µ ≥ 0 ∧

λR = (−f 0) ∧ λr ≤ −δ0 ∧

µR = (−f f ) ∧ µr ≤ −δ

(4)

3 Constraint linear interpolants

Interpolants are logical assertions over program states that can separate program
states that satisfy a desired property from the ones that violate the property.
Interpolants play an important role in automated abstraction of sets of program
states and their automatic construction is a crucial building block for program
verification tools. In this section we present an algorithm for the computation of
linear interpolants. A unique feature of our algorithm is the possibility to bias
the outcome using additional constraints.

3.1 Example

In program verification, interpolants are computed for formulas that are ex-
tracted from program paths, i.e., sequences of program statements that follow
the control flow graph of the program. We illustrate the interpolant computation
algorithm using a program path from Figure 1, and refer to [7] for a detailed
description of the algorithm and a discussion of the related work.

Input We consider a path τ1τ3τ5, which corresponds to an execution of the pro-
gram that does not enter the loop and fails the assert statement. This path does
not modify the values of the program variables, but rather imposes a sequence
of conditions y ≥ z ∧ x ≥ y ∧ x + 1 ≤ z . Since this sequence is not satisfiable, a
program verifier can issue an interpolation query that needs to compute a sep-
aration between the states that the program reaches after taking the transition
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Solution We apply a linear constraint solver on (2) and obtain the following
solution.

λ = (1 0 0 0 0)

µ = (0 0 1 1 0)

fx = −1

fy = 1

δ0 = 1

δ = 1

This solution states that the expression −x + y decreases during each iteration
of the loop by at least 1, and is greater than 1 for all states that satisfy the loop
guard.

2.2 Algorithm

Now we briefly summarize the above illustration as an algorithm. See [5] for its
detailed description and pointers to the related work.

The ranking function generation algorithm takes as input a transition relation
ρ(v , v �) given by a set of linear inequalities over the program variables and their
primed versions.

ρ(v , v �) = R

�
v
v �

�
≤ r

Then, the condition that a vector of coefficients f for the variables v defines a
linear ranking function is represented by the constraint

∃f ∃δ0 ∃δ ∀v ∀v � : δ ≥ 1 ∧ ρ(v , v �) → (fv ≥ δ0 ∧ fv � ≤ fv − δ) . (3)

We apply Farkas’ lemma to (3) and obtain the following existentially quantified
linear constraints that can be solved using off-the-shelf Linear Programming
tools.

∃f ∃δ0 ∃δ

∃λ ∃µ :

δ ≥ 1 ∧

λ ≥ 0 ∧ µ ≥ 0 ∧

λR = (−f 0) ∧ λr ≤ −δ0 ∧

µR = (−f f ) ∧ µr ≤ −δ

(4)

∃f ∃δ0 ∃δ ∃λ ∃µ : δ ≥ 1 ∧

λ ≥ 0 ∧ λR = (−f 0) ∧ λr ≤ −δ0 ∧

µ ≥ 0 ∧ µR = (−f f ) ∧ µr ≤ −δ

6


