Synthesis of Ranking Functions via Constraint Solving

Andreas Podelski
January 16, 2012

Program Verification and Constraints

- Reasoning about program computations
- Computation is a sequence of program states
- Sequences generated by transition relation
- Transition relation defined by assume \& update statements
- Assume \& update statements = transition constraints

Program Properties

- Non-reachability: given state is not reachable
- Termination: no infinite computation exists
- Linear-time properties (LTL):
reduced to reachability and termination (in automata-theoretic approach)

Verification = finding auxiliary assertions

- Proving reachability $=$ finding inductive invariant
- Proving termination $=$ finding ranking relation
(ranking relation defined by ranking function, i.e., an expression over program variables which bounds number of steps)

Preliminaries

- Running example
- Control-flow graphs and transition relations
- Linear inequalities: matrix form, Farkas' lemma
- Constraint solvers

Running Example

```
main(int \(x\), int \(y\), int \(z\) ) \{
    assume (y >= z);
    while (x < y) \{
        x++;
    \}
    assert( x >= z );
\}
```

- for constraint solving, treat x, y, and z as rationals

CFG and Transition Relations

```
main(int \(x\), int \(y\), int \(z)\{\)
    assume ( \(\mathrm{y}>=\mathrm{z}\) );
    while ( \(\mathrm{x}<\mathrm{y}\) ) \{
        x++;
    \}
    assert ( \(x\) > \(=z\) );
\}
    \(\rho_{1}=\left(y \geq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right)\)
    \(\rho_{2}=\left(x+1 \leq y \wedge x^{\prime}=x+1 \wedge y^{\prime}=y \wedge z^{\prime}=z\right)\)
    (lale
\[
\begin{aligned}
& \rho_{1}=\left(y \geq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{2}=\left(x+1 \leq y \wedge x^{\prime}=x+1 \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{3}=\left(x \geq y \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{4}=\left(x \geq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right) \\
& \rho_{5}=\left(x+1 \leq z \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge z^{\prime}=z\right)
\end{aligned}
\]
```


Transition Constraint => Matrix

$$
\begin{aligned}
\rho_{2} & =\left(x+1 \leq y \wedge x^{\prime}=x+1 \wedge y^{\prime}=y\right) \\
& =\left(x-y \leq-1 \wedge-x+x^{\prime} \leq 1 \wedge x-x^{\prime} \leq-1 \wedge-y+y^{\prime} \leq 0 \wedge y-y^{\prime} \leq 0\right) \\
& =\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
x^{\prime} \\
y^{\prime}
\end{array}\right) \leq\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Farkas' Lemma

- Mathematical tool for dealing with inequalities
- Informally:"implied inequalities are derivable"

$$
\begin{aligned}
& \forall x \forall y:(x-2 y \leq 10 \wedge x+y \leq 1) \rightarrow x \leq 5 \\
& \frac{1}{3}(x-2 y \leq 10)+\frac{2}{3}(x+y \leq 1)=x \leq 4 \\
& \quad \forall x: x \leq 4 \rightarrow x \leq 5
\end{aligned}
$$

Farkas' Lemma

- "implied inequalities are derivable"
in matrix form:

$$
\begin{gathered}
\forall x \forall y:\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{x}{y} \leq\binom{ 10}{1} \rightarrow\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{x}{y} \leq 5 \\
\left(\begin{array}{ll}
\frac{1}{3} & \frac{2}{3}
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \wedge\left(\begin{array}{ll}
\frac{1}{3} & \frac{2}{3}
\end{array}\right)\binom{10}{1}=4 \leq 5
\end{gathered}
$$

Farkas' Lemma 2

- implied inequalities are derivable as weighted ≥ 0 sums

$$
(\exists x: A x \leq b) \wedge(\forall x: A x \leq b \rightarrow c x \leq \delta)
$$

iff

$$
\exists \lambda: \lambda \geq 0 \wedge \lambda A=c \wedge \lambda b \leq \delta
$$

Constraint Solvers

- Black-box tools for solving constraints
- Linear Programming
- SAT (satisfiability)
- SMT (satisfiability modulo theory)
- CLP (constraint logic programming)

Ranking Functions

- Ranking function, say f, maps states to distance until terminating state

$$
\begin{aligned}
& \text { while }(x<y)\{ \\
& x++; \\
& \}
\end{aligned}
$$

- $f(I 0, I 0)=0, f(5,10)=5, f(0, I 0)=10, \ldots$
- $f(x, y)=(y-x)$
- decrease at each step
- bounded from below

Ranking Function Constraint $\exists \forall$

- ranking function $f(x, y)=f_{x} x+f_{y} y$
- lower bound δ_{0}
- decrease amount δ

$$
\delta \geq 1 \wedge
$$

$$
\forall x \forall y \forall x^{\prime} \forall y^{\prime}:
$$

$$
\begin{aligned}
\rho_{2} \rightarrow & \left(f_{x} x+f_{y} y \geq \delta_{0} \wedge\right. \\
& \left.f_{x} x^{\prime}+f_{y} y^{\prime} \leq f_{x} x+f_{y} y-\delta\right)
\end{aligned}
$$

Quantifier Alternation $\exists \forall$

$$
\begin{aligned}
& \exists f_{x} \exists f_{y} \exists \delta_{0} \exists \delta \\
& \forall x \forall y \forall x^{\prime} \forall y^{\prime}: \\
& \delta \geq 1 \wedge \\
& \rho_{2} \rightarrow \\
& \quad\left(f_{x} x+f_{y} y \geq \delta_{0} \wedge\right. \\
& \left.\quad f_{x} x^{\prime}+f_{y} y^{\prime} \leq f_{x} x+f_{y} y-\delta\right)
\end{aligned}
$$

- Difficult to solve

Eliminating \forall-Quantifier (I)

$$
\rho_{2}=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
x^{\prime} \\
y^{\prime}
\end{array}\right) \leq\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
0 \\
0
\end{array}\right)
$$

implies

$$
f_{x} x+f_{y} y \geq \delta_{0}=\left(\begin{array}{llll}
-f_{x}-f_{y} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
x^{\prime} \\
y^{\prime}
\end{array}\right) \leq-\delta_{0}
$$

Eliminating \forall-Quantifier (2)

$$
\forall x \forall y \forall x^{\prime} \forall y^{\prime}: \rho_{2} \rightarrow f_{x} x+f_{y} y \geq \delta_{0}
$$

iff (by Farkas' lemma)
$\exists \lambda: \lambda \geq 0 \wedge \lambda\left(\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & -1\end{array}\right)=\left(\begin{array}{l}-f_{x}-f_{y}\end{array} 000\right) \wedge \lambda\left(\begin{array}{c}-1 \\ 1 \\ -1 \\ 0 \\ 0\end{array}\right) \leq-\delta_{0}$

Ranking Function Constraint ヨ

- Find ranking function $f(x, y)=f_{x} x+f_{y} y, \delta_{0}$, and δ

$$
\begin{aligned}
& \delta \geq 1 \wedge \\
& \exists \lambda \exists \mu:
\end{aligned}
$$

$$
\left.\begin{array}{l}
\lambda \geq 0 \wedge \lambda\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right)=\left(-f_{x}-f_{y} 000\right) \wedge \lambda\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}-1\right. \text { 0 } \\
-1 \\
0 \\
0
\end{array}\right) \leq-\delta_{0} \wedge
$$

- Linear inequality constraints to solve

Ranking Function Constraint Solved

- Find ranking function $f(x, y)=f_{x} x+f_{y} y, \delta_{0}$, and δ

$$
\begin{aligned}
\lambda & =\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right) \\
\mu & =\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 0
\end{array}\right) \\
f_{x} & =-1 \\
f_{y} & =1 \\
\delta_{0} & =1 \\
\delta & =1
\end{aligned}
$$

$$
\text { while }(x<y)\{
$$

x++;

- Ranking function $f(x, y)=(-I x+I y)=y-x$

Ranking Function Algorithm

- Input $\quad \rho\left(v, v^{\prime}\right)=R\binom{v}{v^{\prime}} \leq r$
- Defining constraint

$$
\exists f \exists \delta_{0} \exists \delta \forall v \forall v^{\prime}: \delta \geq 1 \wedge \rho\left(v, v^{\prime}\right) \rightarrow\left(f v \geq \delta_{0} \wedge f v^{\prime} \leq f v-\delta\right)
$$

- Linear constraint to solve

$$
\begin{aligned}
\exists f \exists \delta_{0} \exists \delta \exists & \lambda \exists \mu \delta \geq 1 \wedge \\
\lambda & \geq 0 \wedge \lambda R=(-f 0) \wedge \lambda r \leq-\delta_{0} \wedge \\
\mu & \geq 0 \wedge \mu R=(-f f) \wedge \mu r \leq-\delta
\end{aligned}
$$

