
Abstraction

Andreas Podelski

December 12, 2011

abstraction of post by post#

I instead of iteratively applying post, use
over-approximation post# such that always

post(ϕ, ρ) |= post#(ϕ, ρ)

I decompose computation of post# into two steps:
first, apply post and then, over-approximate result

I define abstraction function α such that always

ϕ |= α(ϕ) .

I for a given abstraction function α, define post#:

post#(ϕ, ρ) = α(post(ϕ, ρ))

abstraction of ϕreach by ϕ#
reach

I instead of computing ϕreach,
compute over-approximation ϕ#

reach such that ϕ#
reach ⊇ ϕreach

I check whether ϕ#
reach contains any error states

if ϕ#
reach ∧ ϕerr |= false

then ϕreach ∧ ϕerr |= false, i.e., program is safe

I compute ϕ#
reach by applying iteration

ϕ#
reach = α(ϕinit) ∨

post#(α(ϕinit), ρR) ∨
post#(post#(α(ϕinit), ρR), ρR) ∨ . . .

=
∨

i≥0(post#)i (α(ϕinit), ρR)

I consequence: ϕreach |= ϕ#
reach

predicate abstraction

I construct abstraction α(ϕ) using a given set of building
blocks, so-called predicates

I predicate = formula over the program variables V

I fix finite set of predicates Preds = {p1, . . . , pn}
I over-approximation of ϕ by conjunction of predicates in Preds

α(ϕ) =
∧
{p ∈ Preds | ϕ |= p}

I computation of α(ϕ) requires n entailment checks
(n = number of predicates)

example: compute α(at `2 ∧ y ≥ z ∧ x + 1 ≤ y)

I Preds = {at `1, . . . , at `5, y ≥ z , x ≥ y}
1. to compute α(ϕ), check logical consequence between ϕ and

each of the predicates:

y ≥ z x ≥ y at `1 at `2 at `3 at `4 at `5
at `2 ∧
y ≥ z ∧
x + 1 ≤ y

|= 6|= 6|= |= 6|= 6|= 6|=

2. result of abstraction = conjunction over entailed predicates

α(
at `2 ∧
y ≥ z ∧ x + 1 ≤ y

) = at `2 ∧ y ≥ z

trivial abstraction α(ϕ) = true

I result of applying predicate abstraction is true if
none of the predicates is entailed by ϕ
(“predicates are too specific”)
. . . always the case if Preds = ∅

algorithm AbstReach

begin
α := λϕ .

∧
{p ∈ Preds | ϕ |= p}

post# := λ(ϕ, ρ) . α(post(ϕ, ρ))
ReachStates# := {α(ϕinit)}
Parent := ∅
Worklist := ReachStates#

while Worklist 6= ∅ do
ϕ := choose from Worklist
Worklist := Worklist \ {ϕ}
for each ρ ∈ R do

ϕ′ := post#(ϕ, ρ)
if ϕ′ 6∈ ReachStates# then

ReachStates# := {ϕ′} ∪ ReachStates#

Parent := {(ϕ, ρ, ϕ′)} ∪ Parent
Worklist := {ϕ′} ∪Worklist

return (ReachStates#,Parent)
end

Abstract Reachability Graph

ϕ1 : at `1

ϕ2 : at `2 ∧ y ≥ z

ϕ3 : at `3 ∧ y ≥ z ∧ x ≥ y

ϕ4 : at `4 ∧ y ≥ z ∧ x ≥ y

ρ1

ρ2

ρ3

ρ4

ϕ1 = α(ϕinit)

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

I Preds = {false, at `1, . . . , at `5, y ≥ z , x ≥ y}
I nodes ϕ1, . . . , ϕ4 ∈ ReachStates#

I labeled edges ∈ Parent

I dotted edge : entailment relation (here, post#(ϕ2, ρ2) |= ϕ2)

example: predicate abstraction to compute ϕ#
reach

I Preds = {false, at `1, . . . , at `5, y ≥ z , x ≥ y}

I over-approximation of the set of initial states ϕinit :

ϕ1 = α(at `1) = at `1

I apply post# on ϕ1 wrt. each program transition:

ϕ2 = post#(ϕ1, ρ1) = α(at `2 ∧ y ≥ z︸ ︷︷ ︸
post(ϕ1,ρ1)

) = at `2 ∧ y ≥ z

post#(ϕ1, ρ2) = · · · = post#(ϕ1, ρ5) =
∧
{false, . . . } = false

apply post# to ϕ2 = (at `2 ∧ y ≥ z)

I application of ρ1, ρ4, and ρ5 on ϕ2 results in false
(since ρ1, ρ4, and ρ5 are applicable only if either at `1 or
at `3 hold)

I for ρ2 we obtain

post#(ϕ2, ρ2) = α(at `2 ∧ y ≥ z ∧ x ≤ y) = at `2 ∧ y ≥ z

result is ϕ2 which is already in ReachStates#: nothing to do

I for ρ3 we obtain

post#(ϕ2, ρ3) = α(at `3 ∧ y ≥ z ∧ x ≥ y)

= at `3 ∧ y ≥ z ∧ x ≥ y

= ϕ3

new node ϕ3 in ReachStates#, new edge in Parent

apply post# to ϕ3 = (at `3 ∧ y ≥ z ∧ x ≥ y)

I application of ρ1, ρ2, and ρ3 on ϕ3 results in false

I for ρ4 we obtain:

post#(ϕ3, ρ4) = α(at `4 ∧ y ≥ z ∧ x ≥ y ∧ x ≥ z)

= at `4 ∧ y ≥ z ∧ x ≥ y

= ϕ4

new node ϕ4 in ReachStates#, new edge in Parent

I for ρ5 (assertion violation) we obtain:

post#(ϕ3, ρ5) = α(at `5 ∧ y ≥ z ∧ x ≥ y ∧ x + 1 ≤ z)

= false

I any further application of program transitions does not
compute any additional reachable states

I thus, ϕ#
reach = ϕ1 ∨ . . . ∨ ϕ4

I since ϕ#
reach ∧ at `5 |= false, the program is proven safe

abstraction α(ϕ)

I monotonicity

ϕ1 |= ϕ2 implies α(ϕ1) |= α(ϕ2)

I idempotency
α(α(ϕ1)) = α(ϕ1)

I extensiveness
ϕ1 |= α(ϕ1)

Abstract reachability computation with
Preds = {false, at `1, . . . , at `5, y ≥ z}

ϕ1 : at `1

ϕ2 : at `2 ∧ y ≥ z

ϕ3 : at `3 ∧ y ≥ z

ϕ4 : at `4 ∧ y ≥ z ϕ5 : at `5 ∧ y ≥ z

ρ1

ρ2

ρ3

ρ4 ρ5

ϕ1 = α(ϕinit)

ϕ2 = post#(ϕ1, ρ1)

post#(ϕ2, ρ2) |= ϕ2

ϕ3 = post#(ϕ2, ρ3)

ϕ4 = post#(ϕ3, ρ4)

ϕ5 = post#(ϕ3, ρ5)

I omitting just one predicate (in the example: x ≥ y) may lead

to an over-approximation ϕ#
reach such that

ϕ#
reach ∧ ϕerr 6|= false

that is, AbstReach without the predicate x ≥ y fails to
prove safety

counterexample path

I Parent relation records sequence leading to ϕ5

I apply ρ1 to ϕ1 and obtain ϕ2

I apply ρ3 to ϕ2 and obtain ϕ3

I apply ρ5 to ϕ3 and obtain ϕ5

I counterexample path:
sequence of program transitions ρ1, ρ3, and ρ5

I Using this path and the functions α and post# corresponding
to the current set of predicates we obtain

ϕ5 = post#(post#(post#(α(ϕinit), ρ1), ρ3), ρ5)

that is, ϕ5 is equal to the over-approximation of the
post-condition computed along the counterexample path

analysis of counterexample path

I check if the counterexample path also leads to the error states
when no over-approximation is applied

I compute

post(post(post(ϕinit , ρ1), ρ3), ρ5)

= post(post(at `2 ∧ y ≥ z , ρ3), ρ5)

= post(at `3 ∧ y ≥ z ∧ x ≥ y , ρ5)

= false .

I by executing the program transitions ρ1, ρ3, and ρ5 is not
possible to reach any error

I conclude that the over-approximation is too coarse
when dealing with the above path

need for refinement of abstraction

I need a more precise over-approximation that will prevent
ϕ#
reach from including error states

I need a more precise over-approximation that will prevent α
from including states that lead to error states along the path
ρ1, ρ3, and ρ5

I need a refined abstraction function α and a corresponding
post# such that the execution of AbstReach along the
counterexample path does not compute a set of states that
contains some error states

post#(post#(post#(α(ϕinit), ρ1), ρ3), ρ5) ∧ ϕerr |= false .

need for refinement of abstraction

I need a more precise over-approximation that will prevent
ϕ#
reach from including error states

I need a more precise over-approximation that will prevent α
from including states that lead to error states along the path
ρ1, ρ3, and ρ5

I need a refined abstraction function α and a corresponding
post# such that the execution of AbstReach along the
counterexample path does not compute a set of states that
contains some error states

post#(post#(post#(α(ϕinit), ρ1), ρ3), ρ5) ∧ ϕerr |= false .

need for refinement of abstraction

I need a more precise over-approximation that will prevent
ϕ#
reach from including error states

I need a more precise over-approximation that will prevent α
from including states that lead to error states along the path
ρ1, ρ3, and ρ5

I need a refined abstraction function α and a corresponding
post# such that the execution of AbstReach along the
counterexample path does not compute a set of states that
contains some error states

post#(post#(post#(α(ϕinit), ρ1), ρ3), ρ5) ∧ ϕerr |= false .

over-approximation along counterexample path

I goal:

post#(post#(post#(α(ϕinit), ρ1), ρ3), ρ5) ∧ ϕerr |= false .

I define sets of states ψ1, . . . , ψ4 such that

ϕinit |= ψ1

post(ψ1, ρ1) |= ψ2

post(ψ2, ρ3) |= ψ3

post(ψ3, ρ5) |= ψ4

ψ4 ∧ ϕerr |= false

I thus, ψ1, . . . , ψ4 guarantee that no error state can be reached
may approximate / still allow additional states

I example choice for ψ1, . . . , ψ4

ψ1 ψ2 ψ3 ψ4

at `1 at `2 ∧ y ≥ z at `3 ∧ x ≥ z false

refinement of predicate abstraction
I given sets of states ψ1, . . . , ψ4 such that

ϕinit |= ψ1

post(ψ1, ρ1) |= ψ2

post(ψ2, ρ3) |= ψ3

post(ψ3, ρ5) |= ψ4

ψ4 ∧ ϕerr |= false

I add ψ1, . . . , ψ4 to the set of predicates Preds
I formal property (discussed later) guarantees:

α(ϕinit) |= ψ1

post#(ψ1, ρ1) |= ψ2

post#(ψ2, ρ3) |= ψ3

post#(ψ3, ρ5) |= ψ4

ψ4 ∧ ϕerr |= false

proves: no error state reachable along path ρ1, ρ3, and ρ5

next . . .

I approach for analysing counterexample computed by
AbstReach

I algorithms MakePath, FeasiblePath, and RefinePath

path computation

1
2
3
4
5
6

function MakePath
input
ψ - reachable abstract state
Parent - predecessor relation

begin
path := empty sequence
ϕ′ := ψ
while exist ϕ and ρ such that (ϕ, ρ, ϕ′) ∈ Parent do

path := ρ . path
ϕ′ := ϕ

return path
end

path computation

I input: rechable abstract state ψ + Parent relation

I view Parent as a tree where ψ occurs as a node

I output: sequence of program transitions that labels the tree
edges on path from root to ψ

I sequence is constructed iteratively by a backward traversal
starting from the input node

I variable path keeps track of the construction

I in example, call MakePath(ϕ5,Parent)

I path, initially empty, is extended with transitions ρ5, ρ3, ρ1
I corresponding edges: (ϕ3, ρ5, ϕ5), (ϕ2, ρ3, ϕ3), (ϕ1, ρ1, ϕ1)

I output: path = ρ1ρ3ρ5

feasibility of a path

1

2
3
4
5

function FeasiblePath
input
ρ1 . . . ρn - path

begin
ϕ := post(ϕinit , ρ1 ◦ . . . ◦ ρn)

if ϕ ∧ ϕerr 6|= false then
return true

else
return false

end

feasibility of a path

I input: sequence of program transitions ρ1 . . . ρn
I checks if there is a computation that produced by this

sequence

I check uses the post-condition function and the relational
composition of transition

I apply FeasiblePath on example path ρ1ρ3ρ5
I relational composition of transitions yields

ρ1 ◦ ρ3 ◦ ρ5 = false .

I FeasiblePath sets ϕ to false and then returns false

counterexample-guided discovery of predicates

1

2

3

4

5

function RefinePath
input
ρ1 . . . ρn - path

begin
ϕ0, . . . , ϕn := compute such that

(ϕinit |= ϕ0) ∧
(post(ϕ0, ρ1) |= ϕ1) ∧ . . . ∧ (post(ϕn−1, ρn) |= ϕn) ∧
(ϕn ∧ ϕerr |= false)

return {ϕ0, . . . , ϕn}
end

I omitted: particular algorithm for finding ϕ0, . . . , ϕn

counterexample guided discovery of predicates

I input: sequence of program transitions ρ1 . . . ρn
I output: sets of states ϕ0, . . . , ϕn such that

I ϕinit |= ϕ0

I post(ϕi−1, ρi) |= ϕi

I ϕn ∧ ϕerr |= false for i ∈ 1..n

I if ϕ0, . . . , ϕn are added to Preds
then the resulting α and post# guarantee that

α(ϕinit) |= ϕ0

post#(ϕ0, ρ1) |= ϕ1

. . .

post#(ϕn−1, ρn) |= ϕn

ϕn ∧ ϕerr |= false .

I in example, application of RefinePath on ρ1ρ3ρ5 yields
sequence of sets of states ψ1, . . . , ψ4

next . . .

I algorithm for counterexample-guided abstraction refinement

I put together all building blocks into an algorithm
AbstRefineLoop that verifies safety using predicate
abstraction and counterexample guided refinement

predicate abstraction and refinement loop

1
2
3
4
5
6
7
8
9
10
11

function AbstRefineLoop
begin

Preds := ∅
repeat

(ReachStates#,Parent) := AbstReach(Preds)
if exists ψ ∈ ReachStates# such that ψ ∧ ϕerr 6|= false

then
path := MakePath(ψ,Parent)
if FeasiblePath(path) then

return “counterexample path: path ”
else

Preds := RefinePath(path) ∪ Preds
else

return “program is correct”
end.

algorithmAbstRefineLoop

I input: program, output: proof or counterexample

I compute ϕ#
reach using an abstraction defined wrt. set of

predicates Preds (initially empty)

I over-approximation ϕ#
reach : set of formulas ReachStates#

where each formula represents a set of states

I if set of error states disjoint from over-approximation: stop

I otherwise, consider a formula ψ in ReachStates# that
witnesses overlap with error states

I refinement is only possible if overlap is caused by imprecision

I construct path, sequence of program transitions leading to ψ

I analyze path using FeasiblePath

I if path feasible: stop

I otherwise (path is not feasible), compute a set of predicates
that refines the abstraction function

that’s it!

