Abstraction

Andreas Podelski

December 12, 2011

abstraction of *post* by *post*[#]

 instead of iteratively applying post, use over-approximation post[#] such that always

$$\textit{post}(\varphi, \rho) \models \textit{post}^{\#}(\varphi, \rho)$$

- decompose computation of post[#] into two steps: first, apply post and then, over-approximate result
- define abstraction function α such that always

$$\varphi \models \alpha(\varphi)$$
.

• for a given abstraction function α , define $post^{\#}$:

$$\textit{post}^{\#}(\varphi, \rho) = \alpha(\textit{post}(\varphi, \rho))$$

abstraction of φ_{reach} by $\varphi_{reach}^{\#}$

- instead of computing φ_{reach}, compute over-approximation φ[#]_{reach} such that φ[#]_{reach} ⊇ φ_{reach}
- check whether φ[#]_{reach} contains any error states
 if φ[#]_{reach} ∧ φ_{err} ⊨ false
 then φ_{reach} ∧ φ_{err} ⊨ false, i.e., program is safe

• compute $\varphi^{\#}_{\textit{reach}}$ by applying iteration

$$\varphi_{reach}^{\#} = \alpha(\varphi_{init}) \lor \\post^{\#}(\alpha(\varphi_{init}), \rho_{\mathcal{R}}) \lor \\post^{\#}(post^{\#}(\alpha(\varphi_{init}), \rho_{\mathcal{R}}), \rho_{\mathcal{R}}) \lor \dots \\= \bigvee_{i \ge 0} (post^{\#})^{i} (\alpha(\varphi_{init}), \rho_{\mathcal{R}})$$

• consequence: $\varphi_{reach} \models \varphi_{reach}^{\#}$

predicate abstraction

- construct abstraction α(φ) using a given set of building blocks, so-called predicates
- predicate = formula over the program variables V
- ▶ fix finite set of predicates Preds = {p₁,..., p_n}
- \blacktriangleright over-approximation of φ by conjunction of predicates in Preds

$$\alpha(\varphi) = \bigwedge \{ p \in Preds \mid \varphi \models p \}$$

computation of α(φ) requires n entailment checks
 (n = number of predicates)

example: compute $\alpha(at_{-}\ell_{2} \land y \ge z \land x + 1 \le y)$

•
$$Preds = \{at_-\ell_1, \ldots, at_-\ell_5, y \ge z, x \ge y\}$$

1. to compute $\alpha(\varphi)$, check logical consequence between φ and each of the predicates:

	$y \ge z$	$x \ge y$	${\it at}\ell_1$	$at\ell_2$	$at\ell_3$	$at\ell_4$	$at\ell_5$
$at_{-}\ell_{2} \wedge$							
$y \ge z \land$		⊭	¥	Þ	¥	¥	¥
$x+1 \leq y$							

2. result of abstraction = conjunction over entailed predicates

$$\alpha(\begin{array}{c} at_{-}\ell_{2} \land \\ y \ge z \land x+1 \le y \end{array}) = at_{-}\ell_{2} \land y \ge z$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

trivial abstraction $\alpha(\varphi) = true$

result of applying predicate abstraction is *true* if none of the predicates is entailed by φ
 ("predicates are too specific")
 ... always the case if *Preds* = Ø

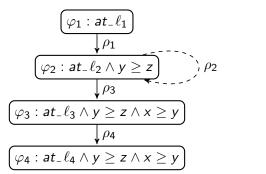
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

algorithm $\operatorname{ABSTREACH}$

```
begin
   \alpha := \lambda \varphi . \land \{ p \in Preds \mid \varphi \models p \}
    post^{\#} := \lambda(\varphi, \rho) \cdot \alpha(post(\varphi, \rho))
    ReachStates<sup>#</sup> := {\alpha(\varphi_{init})}
    Parent := \emptyset
    Worklist := ReachStates<sup>#</sup>
    while Worklist \neq \emptyset do
         \varphi := choose from Worklist
         Worklist := Worklist \setminus \{\varphi\}
         for each \rho \in \mathcal{R} do
             \varphi' := post^{\#}(\varphi, \rho)
             if \varphi' \notin ReachStates^{\#} then
                   ReachStates^{\#} := \{\varphi'\} \cup ReachStates^{\#}
                   Parent := {(\varphi, \rho, \varphi')} \cup Parent
                   Worklist := \{\varphi'\} \cup Worklist
   return (ReachStates<sup>#</sup>, Parent)
end
```

◆□▶ ◆圖▶ ◆言▶ ◆言▶ ─言 ─の��

Abstract Reachability Graph



$$\begin{split} \varphi_1 &= \alpha(\varphi_{init}) \\ \varphi_2 &= post^{\#}(\varphi_1, \rho_1) \\ post^{\#}(\varphi_2, \rho_2) &\models \varphi_2 \\ \varphi_3 &= post^{\#}(\varphi_2, \rho_3) \\ \varphi_4 &= post^{\#}(\varphi_3, \rho_4) \end{split}$$

- $Preds = \{ false, at_-\ell_1, \dots, at_-\ell_5, y \ge z, x \ge y \}$
- ▶ nodes $\varphi_1, \ldots, \varphi_4 \in \mathit{ReachStates}^\#$
- ▶ labeled edges ∈ Parent
- dotted edge : entailment relation (here, $post^{\#}(\varphi_2, \rho_2) \models \varphi_2$)

example: predicate abstraction to compute $\varphi^{\#}_{reach}$

• Preds = {false,
$$at_-\ell_1, \ldots, at_-\ell_5, y \ge z, x \ge y$$
}

• over-approximation of the set of initial states φ_{init} :

$$\varphi_1 = \alpha(\mathsf{at}_-\ell_1) = \mathsf{at}_-\ell_1$$

▶ apply $post^{\#}$ on φ_1 wrt. each program transition:

$$\varphi_2 = post^{\#}(\varphi_1, \rho_1) = \alpha(\underbrace{at_-\ell_2 \land y \ge z}_{post(\varphi_1, \rho_1)}) = at_-\ell_2 \land y \ge z$$

$$\mathsf{post}^\#(arphi_1,
ho_2) = \dots = \mathsf{post}^\#(arphi_1,
ho_5) = igwedge \{\mathsf{false}, \dots\} = \mathsf{false}$$

・ロト・(部)・・(目)・・(目)・ のへで

apply $post^{\#}$ to $\varphi_2 = (at_-\ell_2 \land y \ge z)$

- application of ρ₁, ρ₄, and ρ₅ on φ₂ results in *false* (since ρ₁, ρ₄, and ρ₅ are applicable only if either at₋ℓ₁ or at₋ℓ₃ hold)
- ▶ for *ρ*₂ we obtain

$$\textit{post}^{\#}(\varphi_2, \rho_2) = \alpha(\textit{at}_{-}\ell_2 \land y \ge z \land x \le y) = \textit{at}_{-}\ell_2 \land y \ge z$$

result is φ_2 which is already in *ReachStates*[#]: nothing to do • for ρ_3 we obtain

$$post^{\#}(\varphi_2, \rho_3) = \alpha(at_-\ell_3 \land y \ge z \land x \ge y)$$
$$= at_-\ell_3 \land y \ge z \land x \ge y$$
$$= \varphi_3$$

new node φ_3 in *ReachStates*[#], new edge in *Parent*

apply $post^{\#}$ to $\varphi_3 = (at_-\ell_3 \land y \ge z \land x \ge y)$

- application of ρ_1 , ρ_2 , and ρ_3 on φ_3 results in *false*
- ▶ for *ρ*₄ we obtain:

$$post^{\#}(\varphi_{3}, \rho_{4}) = \alpha(at_{-}\ell_{4} \land y \ge z \land x \ge y \land x \ge z)$$
$$= at_{-}\ell_{4} \land y \ge z \land x \ge y$$
$$= \varphi_{4}$$

new node φ₄ in *ReachStates[#]*, new edge in *Parent*for ρ₅ (assertion violation) we obtain:

$$post^{\#}(\varphi_3, \rho_5) = lpha(at_-\ell_5 \land y \ge z \land x \ge y \land x + 1 \le z)$$

= false

 any further application of program transitions does not compute any additional reachable states

• thus,
$$\varphi_{reach}^{\#} = \varphi_1 \vee \ldots \vee \varphi_4$$

▶ since $\varphi_{reach}^{\#} \wedge at_{-}\ell_{5} \models false$, the program is proven safe

abstraction $\alpha(\varphi)$

monotonicity

$$\varphi_1 \models \varphi_2$$
 implies $\alpha(\varphi_1) \models \alpha(\varphi_2)$

idempotency

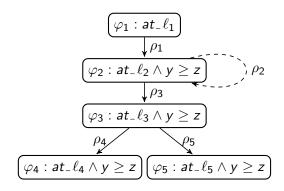
$$\alpha(\alpha(\varphi_1)) = \alpha(\varphi_1)$$

extensiveness

$$\varphi_1 \models \alpha(\varphi_1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Abstract reachability computation with $Preds = \{ false, at_{-}\ell_{1}, \dots, at_{-}\ell_{5}, y \geq z \}$



$$\begin{split} \varphi_1 &= \alpha(\varphi_{init}) \\ \varphi_2 &= post^{\#}(\varphi_1, \rho_1) \\ post^{\#}(\varphi_2, \rho_2) &\models \varphi_2 \\ \varphi_3 &= post^{\#}(\varphi_2, \rho_3) \\ \varphi_4 &= post^{\#}(\varphi_3, \rho_4) \\ \varphi_5 &= post^{\#}(\varphi_3, \rho_5) \end{split}$$

▶ omitting just one predicate (in the example: x ≥ y) may lead to an over-approximation φ[#]_{reach} such that

$$\varphi_{\mathsf{reach}}^{\#} \land \varphi_{\mathsf{err}} \not\models \mathsf{false}$$

that is, ABSTREACH without the predicate $x \ge y$ fails to prove safety

counterexample path

• Parent relation records sequence leading to φ_5

- apply ρ_1 to φ_1 and obtain φ_2
- apply ho_3 to $arphi_2$ and obtain $arphi_3$
- apply ho_5 to $arphi_3$ and obtain $arphi_5$
- counterexample path: sequence of program transitions ρ₁, ρ₃, and ρ₅
- ► Using this path and the functions a and post[#] corresponding to the current set of predicates we obtain

$$\varphi_5 = post^{\#}(post^{\#}(post^{\#}(\alpha(\varphi_{init}), \rho_1), \rho_3), \rho_5)$$

that is, φ_5 is equal to the over-approximation of the post-condition computed along the counterexample path

analysis of counterexample path

- check if the counterexample path also leads to the error states when no over-approximation is applied
- compute

$$post(post(post(\varphi_{init}, \rho_1), \rho_3), \rho_5)$$

= $post(post(at_{-}\ell_2 \land y \ge z, \rho_3), \rho_5)$
= $post(at_{-}\ell_3 \land y \ge z \land x \ge y, \rho_5)$
= false .

- by executing the program transitions ρ₁, ρ₃, and ρ₅ is not possible to reach any error
- conclude that the over-approximation is too coarse when dealing with the above path

need for refinement of abstraction

 \blacktriangleright need a more precise over-approximation that will prevent $\varphi^\#_{\it reach}$ from including error states

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

need for refinement of abstraction

- \blacktriangleright need a more precise over-approximation that will prevent $\varphi^\#_{\it reach}$ from including error states
- need a more precise over-approximation that will prevent α from including states that lead to error states along the path ρ_1 , ρ_3 , and ρ_5

- ロ ト - 4 回 ト - 4 □ - 4

need for refinement of abstraction

- \blacktriangleright need a more precise over-approximation that will prevent $\varphi^\#_{\it reach}$ from including error states
- need a more precise over-approximation that will prevent α from including states that lead to error states along the path ρ_1 , ρ_3 , and ρ_5
- need a refined abstraction function α and a corresponding post[#] such that the execution of ABSTREACH along the counterexample path does not compute a set of states that contains some error states

 $post^{\#}(post^{\#}(post^{\#}(\alpha(\varphi_{init}), \rho_1), \rho_3), \rho_5) \land \varphi_{err} \models false$.

くしゃ (雪) (雪) (雪) (雪) (雪) (雪) (

over-approximation along counterexample path

► goal:

 $post^{\#}(post^{\#}(post^{\#}(\alpha(\varphi_{init}), \rho_1), \rho_3), \rho_5) \land \varphi_{err} \models false$.

• define sets of states ψ_1, \ldots, ψ_4 such that

 $\begin{array}{l} \varphi_{\textit{init}} \models \psi_1 \\ \textit{post}(\psi_1, \rho_1) \models \psi_2 \\ \textit{post}(\psi_2, \rho_3) \models \psi_3 \\ \textit{post}(\psi_3, \rho_5) \models \psi_4 \\ \psi_4 \land \varphi_{err} \models \textit{false} \end{array}$

▶ thus, ψ₁,...,ψ₄ guarantee that no error state can be reached may approximate / still allow additional states

example choice for
$$\psi_1, \dots, \psi_4$$

$$\begin{array}{c|c|c|c|c|c|c|c|} \hline \psi_1 & \psi_2 & \psi_3 & \psi_4 \\ \hline \hline at_-\ell_1 & at_-\ell_2 \land y \ge z & at_-\ell_3 \land x \ge z & false \\ \hline \hline \end{array}$$

refinement of predicate abstraction

• given sets of states ψ_1, \ldots, ψ_4 such that

$$\varphi_{init} \models \psi_1$$

$$post(\psi_1, \rho_1) \models \psi_2$$

$$post(\psi_2, \rho_3) \models \psi_3$$

$$post(\psi_3, \rho_5) \models \psi_4$$

$$\psi_4 \land \varphi_{err} \models false$$

- ▶ add ψ_1, \ldots, ψ_4 to the set of predicates *Preds*
- formal property (discussed later) guarantees:

$$\begin{aligned} \alpha(\varphi_{init}) &\models \psi_1 \\ post^{\#}(\psi_1, \rho_1) &\models \psi_2 \\ post^{\#}(\psi_2, \rho_3) &\models \psi_3 \\ post^{\#}(\psi_3, \rho_5) &\models \psi_4 \\ \psi_4 \land \varphi_{err} &\models false \end{aligned}$$

proves: no error state reachable along path ρ_1 , ρ_3 , and ρ_5

next . . .

- ► approach for analysing counterexample computed by ABSTREACH
- ▶ algorithms MAKEPATH, FEASIBLEPATH, and REFINEPATH

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

path computation

function MAKEPATH input

 ψ - reachable abstract state

Parent - predecessor relation

begin

```
 \begin{array}{lll} & path := \text{ empty sequence} \\ 2 & \varphi' := \psi \\ 3 & \text{while exist } \varphi \text{ and } \rho \text{ such that } (\varphi, \rho, \varphi') \in \textit{Parent do} \\ 4 & path := \rho \text{ . path} \\ 5 & \varphi' := \varphi \\ 6 & \text{return path} \\ & \text{end} \end{array}
```

path computation

- input: rechable abstract state $\psi + Parent$ relation
- view *Parent* as a tree where ψ occurs as a node
- \blacktriangleright output: sequence of program transitions that labels the tree edges on path from root to ψ
- sequence is constructed iteratively by a backward traversal starting from the input node
- variable path keeps track of the construction
- in example, call MAKEPATH(φ_5 , Parent)
- ▶ *path*, initially empty, is extended with transitions ρ_5 , ρ_3 , ρ_1
- ► corresponding edges: $(\varphi_3, \rho_5, \varphi_5)$, $(\varphi_2, \rho_3, \varphi_3)$, $(\varphi_1, \rho_1, \varphi_1)$
- output: $path = \rho_1 \rho_3 \rho_5$

feasibility of a path

$\begin{array}{l} \textbf{function} \ \mathbf{F} \mathbf{E} \mathbf{A} \mathbf{S} \mathbf{I} \mathbf{B} \mathbf{E} \mathbf{P} \mathbf{A} \mathbf{T} \mathbf{H} \\ \textbf{input} \end{array}$

 $\rho_1 \dots \rho_n$ - path **begin**

1	$\varphi := post(\varphi_{init}, \rho_1 \circ \ldots \circ \rho_n)$
2	if $\varphi \land \varphi_{err} \not\models false$ then
3	return true
4	else
5	return false
	end

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

feasibility of a path

- input: sequence of program transitions $\rho_1 \dots \rho_n$
- checks if there is a computation that produced by this sequence
- check uses the post-condition function and the relational composition of transition
- apply FEASIBLEPATH on example path $\rho_1 \rho_3 \rho_5$
- relational composition of transitions yields

$$\rho_1 \circ \rho_3 \circ \rho_5 = false$$
.

• FEASIBLEPATH sets φ to *false* and then returns *false*

counterexample-guided discovery of predicates

function REFINEPATH input

 $\rho_1 \dots \rho_n$ - path **begin**

 $\varphi_0, \dots, \varphi_n := \text{ compute such that}$ $(\varphi_{init} \models \varphi_0) \land$ $(post(\varphi_0, \rho_1) \models \varphi_1) \land \dots \land (post(\varphi_{n-1}, \rho_n) \models \varphi_n) \land$ $(\varphi_n \land \varphi_{err} \models false)$

5 return $\{\varphi_0, \ldots, \varphi_n\}$ end

• omitted: particular algorithm for finding $\varphi_0, \ldots, \varphi_n$

counterexample guided discovery of predicates

- input: sequence of program transitions $\rho_1 \dots \rho_n$
- output: sets of states $\varphi_0, \ldots, \varphi_n$ such that
 - $\varphi_{init} \models \varphi_0$
 - $post(\varphi_{i-1}, \rho_i) \models \varphi_i$
 - $\varphi_n \land \varphi_{err} \models false \text{ for } i \in 1..n$
- if φ₀,..., φ_n are added to *Preds* then the resulting α and *post[#]* guarantee that

. . .

$$\begin{array}{l} \alpha(\varphi_{\textit{init}}) \models \varphi_0 \\ \textit{post}^{\#}(\varphi_0, \rho_1) \models \varphi_1 \end{array}$$

$$post^{\#}(\varphi_{n-1}, \rho_n) \models \varphi_n$$

 $\varphi_n \land \varphi_{err} \models false$.

In example, application of REFINEPATH on ρ₁ρ₃ρ₅ yields sequence of sets of states ψ₁,...,ψ₄

next . . .

algorithm for counterexample-guided abstraction refinement

 put together all building blocks into an algorithm ABSTREFINELOOP that verifies safety using predicate abstraction and counterexample guided refinement predicate abstraction and refinement loop

```
function AbstRefineLoop
   begin
      Preds := \emptyset
1
2
      repeat
         (ReachStates^{\#}, Parent) := ABSTREACH(Preds)
3
         if exists \psi \in ReachStates^{\#} such that \psi \wedge \varphi_{err} \not\models false
4
5
   then
6
             path := MAKEPATH(\psi, Parent)
7
            if FEASIBLEPATH(path) then
8
                return "counterexample path: path"
9
            else
                Preds := REFINEPATH(path) ∪ Preds
10
11
         else
            return "program is correct"
   end.
```

algorithmABSTREFINELOOP

- input: program, output: proof or counterexample
- ► compute \u03c6[#]_{reach} using an abstraction defined wrt. set of predicates *Preds* (initially empty)
- ► over-approximation \u03c6[#]_{reach} : set of formulas ReachStates[#] where each formula represents a set of states
- if set of error states disjoint from over-approximation: stop
- ▶ otherwise, consider a formula \u03c6 in ReachStates[#] that witnesses overlap with error states
- refinement is only possible if overlap is caused by imprecision
- \blacktriangleright construct *path*, sequence of program transitions leading to ψ
- ► analyze *path* using FEASIBLEPATH
- if path feasible: stop
- otherwise (*path* is not feasible), compute a set of predicates that refines the abstraction function

that's it!