Reachability Analysis

Andreas Podelski

December 6, 2011

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

relations as formulas

- ▶ formula with free variables in V and V' = binary relation over program states
 - first component of each pair assigns values to V
 - second component of the pair assigns values to V'

program $\mathbf{P} = (V, pc, \varphi_{init}, \mathcal{R}, \varphi_{err})$

- V finite tuple of program variables
- ▶ pc program counter variable (pc included in V)
- φ_{init} initiation condition given by formula over V
- *R* a finite set of *transition relations*
- φ_{err} an error condition given by a formula over V
- ► transition relation \(\rho \in \mathcal{R}\) given by formula over the variables \(V\) and their primed versions \(V'\)

transition relation ρ expressed by logica formula

$$\begin{array}{ll} \rho_{1} \equiv & (\textit{move}(\ell_{1},\ell_{2}) \land y \geq z \land \textit{skip}(x,y,z)) \\ \rho_{2} \equiv & (\textit{move}(\ell_{2},\ell_{2}) \land x+1 \leq y \land x'=x+1 \land \textit{skip}(y,z)) \\ \rho_{3} \equiv & (\textit{move}(\ell_{2},\ell_{3}) \land x \geq y \land \textit{skip}(x,y,z)) \\ \rho_{4} \equiv & (\textit{move}(\ell_{3},\ell_{4}) \land x \geq z \land \textit{skip}(x,y,z)) \\ \rho_{5} \equiv & (\textit{move}(\ell_{3},\ell_{5}) \land x+1 \leq z \land \textit{skip}(x,y,z)) \end{array}$$

abbreviations:

$$move(\ell, \ell') \equiv (pc = \ell \land pc' = \ell')$$

skip $(v_1, \dots, v_n) \equiv (v'_1 = v_1 \land \dots \land v'_n = v_n)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1: assume(y >= z);
2: while (x < y) {
 x++;
 }
3: assert(x >= z);
4: exit
5: error

$$x = x + 1$$

•

$$\begin{split} \rho_1 &= (\textit{move}(\ell_1, \ell_2) \land y \ge z \land \textit{skip}(x, y, z)) \\ \rho_2 &= (\textit{move}(\ell_2, \ell_2) \land x + 1 \le y \land x' = x + 1 \land \textit{skip}(y, z)) \\ \rho_3 &= (\textit{move}(\ell_2, \ell_3) \land x \ge y \land \textit{skip}(x, y, z)) \\ \rho_4 &= (\textit{move}(\ell_3, \ell_4) \land x \ge z \land \textit{skip}(x, y, z)) \\ \rho_5 &= (\textit{move}(\ell_3, \ell_5) \land x + 1 \le z \land \textit{skip}(x, y, z)) \end{split}$$

correctness: safety

- a state is reachable if it occurs in some program computation
- a program is safe if no error state is reachable
- ... if and only if no error state lies in φ_{reach} ,

$$\varphi_{err} \land \varphi_{reach} \models false$$
.

where $\varphi_{reach} = \text{set of reachable program states}$

1: assume(y >= z);
2: while (x < y) {
 x++;
 }
3: assert(x >= z);
4: exit
5: error

$$\rho_4 x \ge z$$

 $\rho_5 x < z$
 ℓ_1
 $\rho_1 y \ge z$
 $\ell_2 \supset \rho_2 x < y \land x' = x + 1$
 $\rho_5 x < z$

. set of reachable states:

$$\varphi_{reach} = (pc = \ell_1 \lor pc = \ell_2 \land y \ge z \lor pc = \ell_3 \land y \ge z \land x \ge y \lor pc = \ell_4 \land y \ge z \land x \ge y)$$

post operator

- ▶ let φ be a formula over V and ρ a formula over V and V'
- define a post-condition function post by:

$$post(\varphi, \rho) = (\exists V : \varphi \land \rho)[V/V']$$

an application $post(\varphi,\rho)$ computes the image of the set φ under the relation ρ

post distributes over disjunction wrt. each argument:

$$post(\varphi, \rho_1 \lor \rho_2) = (post(\varphi, \rho_1) \lor post(\varphi, \rho_2))$$
$$post(\varphi_1 \lor \varphi_2, \rho) = (post(\varphi_1, \rho) \lor post(\varphi_2, \rho))$$

• ρ has no primed variables

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ρ has no primed variables
 post(φ, ρ) = φ ∧ ρ

- ρ has no primed variables $post(\phi, \rho) = \phi \land \rho$
- ρ has only primed variables

- ρ has no primed variables $post(\phi, \rho) = \phi \land \rho$
- ρ has only primed variables
 post(φ, ρ) = ρ[V/V']

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- ρ has no primed variables $post(\phi, \rho) = \phi \land \rho$
- ρ has only primed variables post(φ, ρ) = ρ[V/V']
- ρ is an update of x by an expression e without x, say
 ρ = x := e(y, z)

- ρ has no primed variables
 post(φ, ρ) = φ ∧ ρ
- ρ has only primed variables post(φ, ρ) = ρ[V/V']

•
$$\rho$$
 is an update of x by an expression e without x, say
 $\rho = x := e(y, z)$
 $post(\phi, \rho) = \exists x \phi \land x = e$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

iteration of post

 $post^n(\varphi, \rho) = n$ -fold application of post to φ under ρ

$$post^{n}(\varphi, \rho) = \begin{cases} \varphi & \text{if } n = 0 \\ post(post^{n-1}(\varphi, \rho), \rho) & \text{otherwise} \end{cases}$$

characterize φ_{reach} using iterates of *post*:

$$\begin{split} \varphi_{\text{reach}} &= \varphi_{\text{init}} \lor \text{post}(\varphi_{\text{init}}, \rho_{\mathcal{R}}) \lor \text{post}(\text{post}(\varphi_{\text{init}}, \rho_{\mathcal{R}}), \rho_{\mathcal{R}}) \lor \dots \\ &= \bigvee_{i \ge 0} \text{post}^{i}(\varphi_{\text{init}}, \rho_{\mathcal{R}}) \end{split}$$

n-th disjunct = iterate for natural number *n* (disjunction = " ω iteration")

finite iteration post may suffice

"fixpoint reached in *n* steps" if

$$\bigvee_{i=0}^{n} post^{i}(\varphi_{init}, \rho_{\mathcal{R}}) = \bigvee_{i=0}^{n+1} post^{i}(\varphi_{init}, \rho_{\mathcal{R}})$$

then
$$\bigvee_{i=0}^{n} post^{i}(\varphi_{init}, \rho_{\mathcal{R}}) = \bigvee_{i\geq 0} post^{i}(\varphi_{init}, \rho_{\mathcal{R}})$$

'distributed' iteration of $\textit{post}(\cdot, ho_\mathcal{R})$

- $\rho_{\mathcal{R}}$ is itself a disjunction: $\rho_{\mathcal{R}} = \rho_1 \lor \ldots \lor \rho_m$
- $post(\phi, \rho)$ distributes over disjunction in both arguments
- ▶ in 'distributed' disjunction $\Phi = \{\phi_k \mid k \in M\}$, every disjunct ϕ_k corresponds to a sequence of transitions $\rho_{j_1}, \ldots, \rho_{j_n}$

$$\phi_k = post(post(\dots post(\varphi_{init}, \rho_{j_1}), \dots), \rho_{j_n})$$

▶ φ_k ≠ Ø only if sequence of transitions ρ_{j1},..., ρ_{jn} corresponds to path in control flow graph of program since:

$$post(pc = \ell_i \land \ldots, move(\ell_j, \ell_{\ldots}) \land \ldots) = \emptyset \text{ if } i \neq j$$

chaotic fixpoint iteration follows paths in control flow graph

'distributed' fixpoint test: 'local' entailment

 "fixpoint reached in *n* steps" if (but not only if): every application of *post*(·, ·) to any disjunct φ_k in Φ is contained in one of the disjuncts φ_{k'} in Φ is

$$\forall k \in M \ \forall j = 1, \dots, m \ \exists k' \in M : post(\phi_k, \rho_j) \subseteq \phi_{k'}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

compute φ_{reach} for example program (1)

apply post on set of initial states:

$$egin{aligned} \mathsf{post}(\mathsf{pc} = \ell_1,
ho_\mathcal{R}) \ &= \mathsf{post}(\mathsf{pc} = \ell_1,
ho_1) \ &= \mathsf{pc} = \ell_2 \land y \geq z \end{aligned}$$

apply post on successor states:

$$post(pc = \ell_2 \land y \ge z, \rho_{\mathcal{R}})$$

= $post(pc = \ell_2 \land y \ge z, \rho_2) \lor post(pc = \ell_2 \land y \ge z, \rho_3)$
= $pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x \ge y$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

compute φ_{reach} for example program (2)

repeat the application step once again:

$$post(pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x \ge y, \rho_{\mathcal{R}})$$

$$= post(pc = \ell_2 \land y \ge z \land x \le y, \rho_{\mathcal{R}}) \lor post(pc = \ell_3 \land y \ge z \land x \le y, \rho_{\mathcal{R}}) \lor post(pc = \ell_2 \land y \ge z \land x \le y, \rho_2) \lor post(pc = \ell_2 \land y \ge z \land x \le y, \rho_3) \lor post(pc = \ell_3 \land y \ge z \land x \ge y, \rho_4) \lor post(pc = \ell_3 \land y \ge z \land x \ge y, \rho_5)$$

$$= pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x \ge y$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

compute φ_{reach} for example program

disjunction obtained by iteratively applying post to φ_{init} :

$$pc = \ell_1 \lor$$

$$pc = \ell_2 \land y \ge z \lor$$

$$pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x \ge y \lor$$

$$pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x = y \lor$$

$$pc = \ell_4 \land y \ge z \land x \ge y$$

disjunction in a logically equivalent, simplified form:

$$pc = \ell_1 \lor$$

$$pc = \ell_2 \land y \ge z \lor$$

$$pc = \ell_3 \land y \ge z \land x \ge y \lor$$

$$pc = \ell_4 \land y \ge z \land x \ge y$$

above disjunction = φ_{reach} since any further application of post does not produce any additional disjuncts

 \blacktriangleright program is safe if there exists a safe inductive invariant φ

- \blacktriangleright program is safe if there exists a safe inductive invariant φ
- inductive:

$$arphi_{\mathit{init}} \models arphi$$
 and $\mathit{post}(arphi,
ho_\mathcal{R}) \models arphi$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- \blacktriangleright program is safe if there exists a safe inductive invariant φ
- inductive:

$$arphi_{\mathit{init}} \models arphi$$
 and $\mathit{post}(arphi,
ho_\mathcal{R}) \models arphi$.

safe:

$$\varphi \land \varphi_{\textit{err}} \models \textit{false}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- \blacktriangleright program is safe if there exists a safe inductive invariant φ
- inductive:

$$arphi_{\mathit{init}} \models arphi$$
 and $\mathit{post}(arphi,
ho_\mathcal{R}) \models arphi$.

safe:

$$\varphi \land \varphi_{\textit{err}} \models \textit{false}$$

justification:

1. " $\varphi_{\textit{reach}}$ is the strongest inductive invariant"

$$\varphi_{\textit{reach}} \models \varphi$$

2. program safe if φ_{reach} does not contain an error state:

$$\varphi_{reach} \land \varphi_{err} \models false$$

weakest inductive invariant:

- weakest inductive invariant: true (set of all states) contains error states
- strongest inductive invariant (does not contain error states)

$$pc = \ell_1 \lor$$
$$(pc = \ell_2 \land y \ge z) \lor$$
$$(pc = \ell_3 \land y \ge z \land x \ge y) \lor$$
$$(pc = \ell_4 \land y \ge z \land x \ge y)$$

- weakest inductive invariant: true (set of all states) contains error states
- strongest inductive invariant (does not contain error states)

$$pc = \ell_1 \lor$$
$$(pc = \ell_2 \land y \ge z) \lor$$
$$(pc = \ell_3 \land y \ge z \land x \ge y) \lor$$
$$(pc = \ell_4 \land y \ge z \land x \ge y)$$

a slightly weaker inductive invariant also proves the safety of our examples:

$$pc = \ell_1 \lor (pc = \ell_2 \land y \ge z) \lor (pc = \ell_3 \land y \ge z \land x \ge y) \lor pc = \ell_4$$

- weakest inductive invariant: true (set of all states) contains error states
- strongest inductive invariant (does not contain error states)

$$pc = \ell_1 \lor (pc = \ell_2 \land y \ge z) \lor (pc = \ell_3 \land y \ge z \land x \ge y) \lor (pc = \ell_4 \land y \ge z \land x \ge y)$$

a slightly weaker inductive invariant also proves the safety of our examples:

$$pc = \ell_1 \lor$$
$$(pc = \ell_2 \land y \ge z) \lor$$
$$(pc = \ell_3 \land y \ge z \land x \ge y) \lor$$
$$pc = \ell_4$$

► can we drop another conjunct in one of the disjuncts?

1: assume(y >= z);
2: while (x < y) {
 x++;
 }
3: assert(x >= z);
4: exit
5: error

$$\rho_4 x \ge z$$

 $\rho_5 x < z$
 ℓ_1
 $\rho_1 y \ge z$
 $\ell_2 \supset \rho_2 x < y \land x' = x + 1$
 $\rho_5 x < z$

inductive invariant (strict superset of reachable states):

$$\varphi_{reach} = (pc = \ell_1 \lor pc = \ell_2 \land y \ge z \lor pc = \ell_3 \land y \ge z \land x \ge y \lor pc = \ell_4)$$

fixpoint iteration

- computation of reachable program states = iterative application of post on initial program states until a fixpoint is reached
 - i.e., no new program states are obtained by applying post

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

in general, iteration process does not *converge* i.e., does not reach fixpoint in finite number of iterations

example: fixpoint iteration diverges

$$\rho_2 \equiv (move(\ell_2, \ell_2) \land x + 1 \le y \land x' = x + 1 \land skip(y, z))$$

$$post(at_-\ell_2 \land x \le z, \rho_2) = (at_-\ell_2 \land x - 1 \le z \land x \le y)$$

$$post^2(at_-\ell_2 \land x \le z, \rho_2) = (at_-\ell_2 \land x - 2 \le z \land x \le y)$$

$$post^3(at_-\ell_2 \land x \le z, \rho_2) = (at_-\ell_2 \land x - 3 \le z \land x \le y)$$

. . .

 $post^n(at_-\ell_2 \land x \le z, \rho_2) = (at_-\ell_2 \land x - n \le z \land x \le y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

example: fixpoint not reached after n steps, $n \ge 1$

set of states reachable after applying post twice not included in the union of previous two sets:

$$(at_{-}\ell_{2} \land x - 2 \le z \land x \le y) \not\models$$

$$at_{-}\ell_{2} \land x \le z \lor$$

$$at_{-}\ell_{2} \land x - 1 \le z \land x \le y$$

set of states reachable after *n*-fold application of *post* still contains previously unreached states:

$$\forall n \ge 1 : (at_{-}\ell_{2} \land x - n \le z \land x \le y) \quad \not\models \\ at_{-}\ell_{2} \land x \le z \lor \\ \bigvee_{1 \le i < n} (at_{-}\ell_{2} \land x - i \le z \land x \le y)$$

abstraction of φ_{reach} by $\varphi_{reach}^{\#}$

- ▶ instead of computing φ_{reach} , compute over-approximation $\varphi_{reach}^{\#}$ such that $\varphi_{reach}^{\#} \supseteq \varphi_{reach}$
- \blacktriangleright check whether $\varphi^\#_{\mathit{reach}}$ contains any error states
- ▶ if $\varphi_{reach}^{\#} \land \varphi_{err} \models false$ holds then $\varphi_{reach} \land \varphi_{err} \models false$, and hence the program is safe
- compute $\varphi^{\#}_{\textit{reach}}$ by applying iteration
- instead of iteratively applying *post*, use over-approximation *post*[#] such that always

$$\textit{post}(\varphi, \rho) \models \textit{post}^{\#}(\varphi, \rho)$$

 decompose computation of *post*[#] into two steps: first, apply *post* and then, over-approximate result using a function α such that

$$\forall arphi : arphi \models lpha(arphi)$$
 ,

abstraction of *post* by $post^{\#}$

• given an abstraction function α , define $post^{\#}$:

$$post^{\#}(\varphi, \rho) = \alpha(post(\varphi, \rho))$$

• compute $\varphi_{reach}^{\#}$:

$$\varphi_{reach}^{\#} = \alpha(\varphi_{init}) \lor \\post^{\#}(\alpha(\varphi_{init}), \rho_{\mathcal{R}}) \lor \\post^{\#}(post^{\#}(\alpha(\varphi_{init}), \rho_{\mathcal{R}}), \rho_{\mathcal{R}}) \lor \dots \\= \bigvee_{i \ge 0} (post^{\#})^{i}(\alpha(\varphi_{init}), \rho_{\mathcal{R}})$$

• consequence: $\varphi_{reach} \models \varphi_{reach}^{\#}$

predicate abstraction

- construct abstraction using a given set of building blocks, so-called predicates
- predicate = formula over the program variables V
- ▶ fix finite set of predicates Preds = {p₁,..., p_n}
- \blacktriangleright over-approximation of φ by conjunction of predicates in Preds

$$\alpha(\varphi) = \bigwedge \{ p \in Preds \mid \varphi \models p \}$$

 computation requires n entailment checks (n = number of predicates) example: compute $\alpha(at_{-}\ell_{2} \land y \ge z \land x + 1 \le y)$

• Preds = {
$$at_-\ell_1, \ldots, at_-\ell_5, y \ge z, x \ge y$$
}

1. check logical consequence between argument to the abstraction function and each of the predicates:

	$y \ge z$	$x \ge y$	$at\ell_1$	$at\ell_2$	$at\ell_3$	$at\ell_4$	$at\ell_5$
$at_{-}\ell_{2}$ \wedge							
$y \ge z \land$		¥	¥	Þ	¥	¥	¥
$x+1 \leq y$							

2. result of abstraction = conjunction over entailed predicates

$$\alpha(\begin{array}{c} at_{-}\ell_{2} \land \\ y \ge z \land x+1 \le y \end{array}) = at_{-}\ell_{2} \land y \ge z$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

trivial abstraction $\alpha(\varphi) = true$

result of applying predicate abstraction is true if

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

trivial abstraction $\alpha(\varphi) = true$

 result of applying predicate abstraction is *true* if none of the predicates is entailed by φ
 ("predicates are too specific")

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

trivial abstraction $\alpha(\varphi) = true$

result of applying predicate abstraction is *true* if none of the predicates is entailed by φ
 ("predicates are too specific")
 ... always the case if *Preds* = Ø

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

example: predicate abstraction to compute $\varphi^{\#}_{reach}$

• Preds = {false,
$$at_-\ell_1, \ldots, at_-\ell_5, y \ge z, x \ge y$$
}

• over-approximation of the set of initial states φ_{init} :

$$\varphi_1 = lpha(\mathsf{at}_-\ell_1) = \mathsf{at}_-\ell_1$$

▶ apply $post^{\#}$ on φ_1 wrt. each program transition:

$$\varphi_2 = post^{\#}(\varphi_1, \rho_1) = \alpha(\underbrace{at_-\ell_2 \land y \ge z}_{post(\varphi_1, \rho_1)}) = at_-\ell_2 \land y \ge z$$

$$\mathsf{post}^\#(arphi_1,
ho_2) = \dots = \mathsf{post}^\#(arphi_1,
ho_5) = igwedge \{\mathsf{false}, \dots\} = \mathsf{false}$$

・ロト・(部)・・(目)・・(目)・ のへで

apply $post^{\#}$ to $\varphi_2 = (at_-\ell_2 \land y \ge z)$

- application of ρ₁, ρ₄, and ρ₅ on φ₂ results in *false* (since ρ₁, ρ₄, and ρ₅ are applicable only if either at₋ℓ₁ or at₋ℓ₃ hold)
- ▶ for p₂ we obtain

$$\textit{post}^{\#}(\varphi_2, \rho_2) = \alpha(\textit{at}_{-}\ell_2 \land y \ge z \land x \le y) = \textit{at}_{-}\ell_2 \land y \ge z$$

result is φ_2 and, therefore, is discarded

• for ρ_3 we obtain

$$post^{\#}(\varphi_2, \rho_3) = \alpha(at_-\ell_3 \land y \ge z \land x \ge y)$$
$$= at_-\ell_3 \land y \ge z \land x \ge y$$
$$= \varphi_3$$

apply $\textit{post}^{\#}$ to $\varphi_3 \ = \ (\textit{at}_{-}\ell_3 \land y \ge z \land x \ge y)$

- ρ₁, ρ₂, and ρ₃: inconsistency with program counter valuation
 in φ₃
- ▶ for *ρ*₄ we obtain:

$$post^{\#}(\varphi_{3},\rho_{4}) = \alpha(at_{-}\ell_{4} \land y \ge z \land x \ge y \land x \ge z)$$
$$= at_{-}\ell_{4} \land y \ge z \land x \ge y$$
$$= \varphi_{4}$$

• for ρ_5 (assertion violation) we obtain:

$$post^{\#}(\varphi_3, \rho_5) = \alpha(at_-\ell_5 \land y \ge z \land x \ge y \land x + 1 \le z)$$

= false

 any further application of program transitions does not compute any additional reachable states

• thus,
$$\varphi_{reach}^{\#} = \varphi_1 \vee \ldots \vee \varphi_4$$

▶ since $\varphi_{reach}^{\#} \wedge at_{-}\ell_{5} \models false$, the program is proven safe

algorithm $\operatorname{ABSTREACH}$

```
begin
   \alpha := \lambda \varphi . \land \{ p \in Preds \mid \varphi \models p \}
    post^{\#} := \lambda(\varphi, \rho) \cdot \alpha(post(\varphi, \rho))
    ReachStates<sup>#</sup> := {\alpha(\varphi_{init})}
    Parent := \emptyset
    Worklist := ReachStates<sup>#</sup>
    while Worklist \neq \emptyset do
         \varphi := choose from Worklist
         Worklist := Worklist \setminus {\varphi}
         for each \rho \in \mathcal{R} do
             \varphi' := post^{\#}(\varphi, \rho)
             if \varphi' \not\models \bigvee ReachStates^{\#} then
                   ReachStates^{\#} := \{\varphi'\} \cup ReachStates^{\#}
                   Parent := {(\varphi, \rho, \varphi')} \cup Parent
                   Worklist := \{\varphi'\} \cup Worklist
   return (ReachStates<sup>#</sup>, Parent)
end
```