Reachability Analysis

Andreas Podelski

December 6, 2011

relations as formulas

» formula with free variables in V and V' =
binary relation over program states
» first component of each pair assigns values to V
» second component of the pair assigns values to V'

program P = (V, pc, Yinit, R, Perr)

V - finite tuple of program variables

v

» pc - program counter variable (pc included in V)
> @init - Initiation condition given by formula over V
» R - a finite set of transition relations

Werr - an error condition given by a formula over V

v

v

transition relation p € R given by
formula over the variables V and their primed versions V'’

transition relation p expressed by logica formula

p1 = (move(l1,la) Ny > z N\ skip(x, y, z))

p2 = (move(la,l2) Ax+1<yAx =x+1Askip(y,z))
p3 = (move(la,03) A x >y A skip(x,y,z))

pa = (move(l3, ly) N x > z A\ skip(x,y, z))

ps = (move(ls, ls) Ax +1 < z Askip(x,y, z))

abbreviations:

move({,¢') = (pc =LA pc =1)
skip(vi, ..., vp)

(Vi=viA...Av,=v,)

4.
. error

assume(y >= z);

while (x < y) {
X++;

}

3

assert(x >= z);
exit

yz>z

@ x<yAx =x+1
X2y

(o
Xﬁ\z

Ay > z A skip(x,y, z))
Ax+1<yAx =x+1Askip(y,z))
A x>y A skip(x,y,z))

A x >z A skip(x,y,z))
Ax+1<zAskip(x,y,z))

correctness: safety

> a state is reachable if it occurs in some program computation
> a program is safe if no error state is reachable

> ... if and only if no error state lies in ©each,

Perr N\ Preach ': false .

where ©,each = set of reachable program states

1: assume(y >= z);
2: while (x < y) {
Kbt pry =22z

} @ px<yAx =x+1
3: assert(x >= z); pP3IX >y
4: exit @
5: error > A

set of reachable states:

Preach = (pc = {1 V
pc=bANy>zV
pc=U03ANy>zAx>yV
pc=LlaNy >z Ax>y)

post operator

» let ¢ be a formula over V and p a formula over V and V’

» define a post-condition function post by:

post(p,p) = (Vi Ap)[V/V]

an application post(p, p) computes the image of the set ¢
under the relation p

> post distributes over disjunction wrt. each argument:

post(p, p1 V p2) = (post(p, p1) V post(p, p2))
post(p1 V 2, p) = (post(1,p) V post(p2, p))

application of post(¢, p) in examples

> p has no primed variables

application of post(¢, p) in examples

> p has no primed variables
post(¢,p) = ¢ Ap

application of post(¢, p) in examples

> p has no primed variables
post(¢,p) = ¢ Ap
> p has only primed variables

application of post(¢, p) in examples

> p has no primed variables
post(¢,p) = ¢ Ap

> p has only primed variables
post(¢, p) = p[V/V']

application of post(¢, p) in examples

> p has no primed variables
post(¢,p) = ¢ Ap

> p has only primed variables
post(¢, p) = p[V/V']

> pis an update of x by an expression e without x, say
p = x:=eyz)

application of post(¢, p) in examples

> p has no primed variables
post(¢,p) = ¢ Ap
> p has only primed variables
post(¢, p) = p[V/V']
> pis an update of x by an expression e without x, say
p = x:=ey,z)
post(¢,p) = Ixp Ax =e

iteration of post

post”(p, p) = n-fold application of post to ¢ under p

© ifn=20
post”(ip,p) = {

post(post" (¢, p),p) otherwise

characterize @yeach Using iterates of post:
Preach = Pinit V POSt(Pinit, pR) V post(post(init, PrR), PR) V - - -
= \/;20 post’.(go,-,,,-t, PR)

n-th disjunct = iterate for natural number n (disjunction = “w
iteration”)

finite iteration post may suffice

“fixpoint reached in n steps” if

/7o POst!(@init, pr) = V1o POSt! (@init, pR)

then \/[_g post!(@init, PR) = iz POSt' (Pinit, PR)

‘distributed’ iteration of post(-, pr)

> pr is itself a disjunction: pr =p1 V...V pm
» post(¢, p) distributes over disjunction in both arguments

> in ‘distributed’ disjunction ® = {¢y | k € M}, every disjunct
¢y corresponds to a sequence of transitions pj,, ..., pj,

¢k = post(post(... post(@inits Pj1)s---)s Pjn)

> ¢k # 0 only if sequence of transitions pj,,. .., pj, corresponds
to path in control flow graph of program
since:

post(pc =i A ..., move({j, L YN...) = 0 if i#]

» chaotic fixpoint iteration follows paths in control flow graph

‘distributed’ fixpoint test: ‘local’ entailment

» “fixpoint reached in n steps” if (but not only if):
every application of post(-,-) to any disjunct ¢4 in ® is
contained in one of the disjuncts ¢, in ® is

Vke MVj=1,...,m3k' € M: post(¢x, pj) C b

compute @each for example program (1)

apply post on set of initial states:

post(pc = {1, pRr)
= post(pc = 41, p1)
=pc=UlNy>z

apply post on successor states:

post(pc =l Ny > z,pRr)
= post(pc = la Ny > z,p2) V post(pc = la Ny > z,p3)
=pc=UbANy>2zAXx<yVpc=U0ANy>zAx>y

compute @each for example program (2)
repeat the application step once again:

post(pc=la ANy >zAx<yV
pc=U03Ny>zZAX>y,pr)

= post(pc =l Ny >zAx <y, pr)V
post(pc =03 ANy >zZAX>Yy,pR)

=post(pc=l ANy >zAx<y,p2)V
post(pc =la Ny > zAx<y,p3)V
post(pc =l3 Ny >zAx >y, ps)V
post(pc =03 Ny >zAx>y,ps)

=pc=LbANy>zAx<yV
pc=l3ANy>zAx=yV
pc=UliNy>zAx>y

compute ©,eacy for example program
disjunction obtained by iteratively applying post to jnit:

pc=1¥1V

pc=UlANy>2zV
pc=UbANy>zAx<yVpc=U0bANy>zAx>yV
pc=UbANy>zAx<yVpc=L3ANy>zAx=yV
pc=UliNy>zAx>y

disjunction in a logically equivalent, simplified form:
pc=1¥01V
pc=LANy>zV

pc=Ll3ANy>zAx>yV
pc=LlisNy>zAx>y

above disjunction = ,esch Since any further application of post
does not produce any additional disjuncts

checking safety = finding safe inductive invariant

» program is safe if there exists a safe inductive invariant ¢

checking safety = finding safe inductive invariant

» program is safe if there exists a safe inductive invariant ¢

» inductive:

init = ¢ and post(p, pr) = ¢ -

checking safety = finding safe inductive invariant

» program is safe if there exists a safe inductive invariant ¢

» inductive:

init = ¢ and post(p, pr) = ¢ -

» safe:
© A Perr = false

checking safety = finding safe inductive invariant

» program is safe if there exists a safe inductive invariant ¢

» inductive:
@init =@ and post(p, pr) = ¥ .
» safe:
© A Perr = false
» justification:

1. "“Qreach is the strongest inductive invariant”

Preach): @

2. program safe if ©,each does not contain an error state:

Preach I\ Perr 'Z false

inductive invariants for example program

» weakest inductive invariant:

inductive invariants for example program

» weakest inductive invariant: true (set of all states)
contains error states

» strongest inductive invariant (does not contain error states)

pc =141V
(pc=bNy>z)V
(pc=lzsNy>zAx>y)V
(pc=tlaNy>zAx>Yy)

inductive invariants for example program

» weakest inductive invariant: true (set of all states)
contains error states

» strongest inductive invariant (does not contain error states)

pc =141V
(pc=bNy>z)V
(pc=lzsNy>zAx>y)V
(pc=tlaNy>zAx>Yy)

» a slightly weaker inductive invariant also proves the safety of

our examples:

pc =141V
(pc=laNy>2z)V
(pc=lsNy>zAx>y)V
pc = {4

inductive invariants for example program

>

weakest inductive invariant: true (set of all states)
contains error states
strongest inductive invariant (does not contain error states)

pc =141V
(pc=bNy>z)V
(pc=lzsNy>zAx>y)V
(pc=tlaNy>zAx>Yy)
a slightly weaker inductive invariant also proves the safety of
our examples:
pc =141V
(pc=laNy>2z)V
(pc=lsNy>zAx>y)V
pc = {4

can we drop another conjunct in one of the disjuncts?

N =

4.
5:

assume(y >= z);

while (x < y) {
X++;

}

assert(x >= z);

exit

error

pPLy=>z

‘!’ px<yAx =x+1
p3x 2y

(5
/‘\

inducﬂveinvaﬁant(stﬁctsupemetofreachabk states):

Preach = (pC =0V

pc=bANy>zV
pc=U03ANy>zAx>yV
pc = {4)

fixpoint iteration

» computation of reachable program states =
iterative application of post on initial program states until
a fixpoint is reached

i.e., N0 new program states are obtained by applying post

> in general, iteration process does not converge
i.e., does not reach fixpoint in finite number of iterations

example: fixpoint iteration diverges

p2 = (move(ly, o) ANx+1 <y Ax' = x+ 1A skip(y, z))

post(at_lo Ax < z,pp) = (at-loANx—1<zAx<y)
post?(at_la Ax < z,p2) = (at_lp Ax—2<zAx<y)
post3(at_lo Ax < z,pp) = (at_ laAx—3<zAx<y)

post"(at_la Ax < z,pp) = (at_-loAx—n<zAx<y)

example: fixpoint not reached after n steps, n > 1

> set of states reachable after applying post twice not included
in the union of previous two sets:

(at_lo Ax—2<zAx<y) [
at_ b Ax<zV
at o ANx—1<zAx<y

> set of states reachable after n-fold application of post still
contains previously unreached states:

Vn>1:(atlboAx—n<zAx<y)
at_ o ANx<zV
V1§i<n(atf€2/\X—l'§Z/\X§y)

abstraction of ©,esch by sﬁﬁach

>

instead of computing ¢ each,
compute over-approximation ¢/ , such that gof;ch D Vreach

check whether @f;ch contains any error states

if gofiach A Yerr = false holds then vreach A werr = false,
and hence the program is safe

compute gof;ch by applying iteration

instead of iteratively applying post, use
over-approximation post™ such that always

post(p, p) = post™ (¢, p)

decompose computation of post# into two steps:
first, apply post and
then, over-approximate result using a function « such that

Vo a(p) .

abstraction of post by post™

» given an abstraction function o, define post™:

post™ (¢, p) = a(post(p, p))
» compute gof;ch:
Soﬁach - a(‘Pinit) \
post™ (a(pinit), pr) V

post™ (post™ (a(piit), PR), PR) V - ..

= \/izo(post#)i(a(@init)y PR)

) #
> CONSEqUENCE: Preach = ®reach

predicate abstraction

» construct abstraction using a given set of building blocks,
so-called predicates

» predicate = formula over the program variables V
» fix finite set of predicates Preds = {p1,...,pn}

> over-approximation of ¢ by conjunction of predicates in Preds

a(p) = N{p € Preds | ¢ = p}

» computation requires n entailment checks
(n = number of predicates)

example: compute a(at_lo ANy > zAx+1<y)

> Preds = {at_{1,...,at_ls,y >z, x>y}

1. check logical consequence between argument to the
abstraction function and each of the predicates:

‘ y>z ‘ X2y ‘ at_{, ‘ at_4» ‘ at_l3 | at_l, ‘ at_/Us
at_fr N
y>zA = = 7 = I P~ P~
x+1<y

2. result of abstraction = conjunction over entailed predicates

t_ly A
-~) = at_loNy >z

a(yZz/\X—}—lg)/

trivial abstraction a(p) = true

» result of applying predicate abstraction is true if

trivial abstraction a(p) = true

» result of applying predicate abstraction is true if
none of the predicates is entailed by ¢
(“predicates are too specific”)

trivial abstraction a(p) = true

» result of applying predicate abstraction is true if
none of the predicates is entailed by ¢
(“predicates are too specific”)

... always the case if Preds = ()

example: predicate abstraction to compute goﬁach

> Preds = {false,at_(1,...,at_ls,y > z,x >y}

> over-approximation of the set of initial states @jujq:
Y1 = oz(atll) = at_{
» apply post™ on @1 wrt. each program transition:

= post#(cpl,pl) =aat_lhoNy>z)=at lh Ny >z
—_———

post(¢p1,p1)

post™ (o1, p2) = - - = post™ (1, ps) = N\{false, ...} = false

apply post™ to ¢, = (at_ly Ny > z)

> application of p1, pa, and ps on @y results in false
(since p1, pa, and ps are applicable only if either at_¢; or
at_{3 hold)

» for py we obtain
post™ (g, p2) = afat_lo Ay > zAx<y)=at oAy >z

result is o and, therefore, is discarded

» for p3 we obtain

post™ (o, p3) = afat Lz Ny >z Ax>y)
=at l3\Ny>zAx>y
= ¥3

apply post” to w3 = (at_ 3Ny >z Ax>y)

>

p1, p2, and p3: inconsistency with program counter valuation
n @3
for ps we obtain:
post#(gog,m) =aat by Ny >zAXx>yAx>2)
=at laNy>zAx>y
= ¥4

for ps (assertion violation) we obtain:

post™ (p3,p5) = afat ls Ay > zAx>yAx+1<2)
= false
any further application of program transitions does not
compute any additional reachable states
thus, gpﬁach =p1V...Vy

since npﬁach A at_Us |= false, the program is proven safe

algorithm ABSTREACH
begin

a = Ap. N\{p € Preds | ¢ = p}

post? = X(¢, p) . a(post(g, p))
ReachStates* := {a(pinit) }

Parent := ()

Worklist := ReachStates™

while Worklist # () do
¢ := choose from Worklist
Worklist = Worklist \ {¢}
for each p € R do

/

¢ = post®(p,p)

if ¢’ £ \/ ReachStates™ then
ReachStates™ := {y'} U ReachStates™

Parent := {(¢, p,¢')} U Parent

Worklist := {¢'} U Worklist

return (ReachStates™ , Parent)
end

