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relations as formulas

I formula with free variables in V and V ′ =
binary relation over program states

I first component of each pair assigns values to V
I second component of the pair assigns values to V ′



program P = (V , pc , ϕinit ,R, ϕerr )

I V - finite tuple of program variables

I pc - program counter variable (pc included in V )

I ϕinit - initiation condition given by formula over V

I R - a finite set of transition relations

I ϕerr - an error condition given by a formula over V

I transition relation ρ ∈ R given by
formula over the variables V and their primed versions V ′



transition relation ρ expressed by logica formula

ρ1 ≡ (move(`1, `2) ∧ y ≥ z ∧ skip(x , y , z))

ρ2 ≡ (move(`2, `2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

ρ3 ≡ (move(`2, `3) ∧ x ≥ y ∧ skip(x , y , z))

ρ4 ≡ (move(`3, `4) ∧ x ≥ z ∧ skip(x , y , z))

ρ5 ≡ (move(`3, `5) ∧ x + 1 ≤ z ∧ skip(x , y , z))

abbreviations:

move(`, `′) ≡ (pc = ` ∧ pc ′ = `′)

skip(v1, . . . , vn) ≡ (v ′1 = v1 ∧ . . . ∧ v ′n = vn)



1: assume(y >= z);

2: while (x < y) {

x++;

}

3: assert(x >= z);

4: exit

5: error

.
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ρ1 = (move(`1, `2) ∧ y ≥ z ∧ skip(x , y , z))

ρ2 = (move(`2, `2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

ρ3 = (move(`2, `3) ∧ x ≥ y ∧ skip(x , y , z))

ρ4 = (move(`3, `4) ∧ x ≥ z ∧ skip(x , y , z))

ρ5 = (move(`3, `5) ∧ x + 1 ≤ z ∧ skip(x , y , z))



correctness: safety

I a state is reachable if it occurs in some program computation

I a program is safe if no error state is reachable

I . . . if and only if no error state lies in ϕreach,

ϕerr ∧ ϕreach |= false .

where ϕreach = set of reachable program states



1: assume(y >= z);

2: while (x < y) {

x++;

}
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set of reachable states:

ϕreach = (pc = `1 ∨
pc = `2 ∧ y ≥ z ∨
pc = `3 ∧ y ≥ z ∧ x ≥ y ∨
pc = `4 ∧ y ≥ z ∧ x ≥ y)



post operator

I let ϕ be a formula over V and ρ a formula over V and V ′

I define a post-condition function post by:

post(ϕ, ρ) = (∃V : ϕ ∧ ρ)[V /V ′]

an application post(ϕ, ρ) computes the image of the set ϕ
under the relation ρ

I post distributes over disjunction wrt. each argument:

post(ϕ, ρ1 ∨ ρ2) = (post(ϕ, ρ1) ∨ post(ϕ, ρ2))

post(ϕ1 ∨ ϕ2, ρ) = (post(ϕ1, ρ) ∨ post(ϕ2, ρ))



application of post(φ, ρ) in examples

I ρ has no primed variables

post(φ, ρ) = φ ∧ ρ

I ρ has only primed variables
post(φ, ρ) = ρ[V /V ′]

I ρ is an update of x by an expression e without x , say
ρ = x := e(y , z)
post(φ, ρ) = ∃xφ ∧ x = e
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iteration of post

postn(ϕ, ρ) = n-fold application of post to ϕ under ρ

postn(ϕ, ρ) =

{
ϕ if n = 0

post(postn−1(ϕ, ρ), ρ) otherwise

characterize ϕreach using iterates of post:

ϕreach = ϕinit ∨ post(ϕinit , ρR) ∨ post(post(ϕinit , ρR), ρR) ∨ . . .

=
∨

i≥0 post i (ϕinit , ρR)

n-th disjunct = iterate for natural number n (disjunction = “ω
iteration”)



finite iteration post may suffice

“fixpoint reached in n steps” if∨n
i=0 post i (ϕinit , ρR) =

∨n+1
i=0 post i (ϕinit , ρR)

then
∨n

i=0 post i (ϕinit , ρR) =
∨

i≥0 post i (ϕinit , ρR)



‘distributed’ iteration of post(·, ρR)

I ρR is itself a disjunction: ρR = ρ1 ∨ . . . ∨ ρm
I post(φ, ρ) distributes over disjunction in both arguments

I in ‘distributed’ disjunction Φ = {φk | k ∈ M}, every disjunct
φk corresponds to a sequence of transitions ρj1 , . . . , ρjn

φk = post(post(. . . post(ϕinit , ρj1), . . .), ρjn)

I φk 6= ∅ only if sequence of transitions ρj1 , . . . , ρjn corresponds
to path in control flow graph of program
since:

post(pc = `i ∧ . . . , move(`j , `...) ∧ . . .) = ∅ if i 6= j

I chaotic fixpoint iteration follows paths in control flow graph



‘distributed’ fixpoint test: ‘local’ entailment

I “fixpoint reached in n steps” if (but not only if):
every application of post(·, ·) to any disjunct φk in Φ is
contained in one of the disjuncts φk ′ in Φ is

∀k ∈ M ∀j = 1, . . . ,m ∃k ′ ∈ M : post(φk , ρj) ⊆ φk ′



compute ϕreach for example program (1)

apply post on set of initial states:

post(pc = `1, ρR)

= post(pc = `1, ρ1)

= pc = `2 ∧ y ≥ z

apply post on successor states:

post(pc = `2 ∧ y ≥ z , ρR)

= post(pc = `2 ∧ y ≥ z , ρ2) ∨ post(pc = `2 ∧ y ≥ z , ρ3)

= pc = `2 ∧ y ≥ z ∧ x ≤ y ∨ pc = `3 ∧ y ≥ z ∧ x ≥ y



compute ϕreach for example program (2)

repeat the application step once again:

post(pc = `2 ∧ y ≥ z ∧ x ≤ y ∨
pc = `3 ∧ y ≥ z ∧ x ≥ y , ρR)

= post(pc = `2 ∧ y ≥ z ∧ x ≤ y , ρR) ∨
post(pc = `3 ∧ y ≥ z ∧ x ≥ y , ρR)

= post(pc = `2 ∧ y ≥ z ∧ x ≤ y , ρ2) ∨
post(pc = `2 ∧ y ≥ z ∧ x ≤ y , ρ3) ∨
post(pc = `3 ∧ y ≥ z ∧ x ≥ y , ρ4) ∨
post(pc = `3 ∧ y ≥ z ∧ x ≥ y , ρ5)

= pc = `2 ∧ y ≥ z ∧ x ≤ y ∨
pc = `3 ∧ y ≥ z ∧ x = y ∨
pc = `4 ∧ y ≥ z ∧ x ≥ y



compute ϕreach for example program
disjunction obtained by iteratively applying post to ϕinit :

pc = `1 ∨
pc = `2 ∧ y ≥ z ∨
pc = `2 ∧ y ≥ z ∧ x ≤ y ∨ pc = `3 ∧ y ≥ z ∧ x ≥ y ∨
pc = `2 ∧ y ≥ z ∧ x ≤ y ∨ pc = `3 ∧ y ≥ z ∧ x = y ∨
pc = `4 ∧ y ≥ z ∧ x ≥ y

disjunction in a logically equivalent, simplified form:

pc = `1 ∨
pc = `2 ∧ y ≥ z ∨
pc = `3 ∧ y ≥ z ∧ x ≥ y ∨
pc = `4 ∧ y ≥ z ∧ x ≥ y

above disjunction = ϕreach since any further application of post
does not produce any additional disjuncts



checking safety = finding safe inductive invariant

I program is safe if there exists a safe inductive invariant ϕ

I inductive:

ϕinit |= ϕ and post(ϕ, ρR) |= ϕ .

I safe:
ϕ ∧ ϕerr |= false

I justification:
1. “ϕreach is the strongest inductive invariant”

ϕreach |= ϕ

2. program safe if ϕreach does not contain an error state:

ϕreach ∧ ϕerr |= false
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inductive invariants for example program
I weakest inductive invariant:

true (set of all states)
contains error states

I strongest inductive invariant (does not contain error states)

pc = `1 ∨
(pc = `2 ∧ y ≥ z) ∨
(pc = `3 ∧ y ≥ z ∧ x ≥ y) ∨
(pc = `4 ∧ y ≥ z ∧ x ≥ y)

I a slightly weaker inductive invariant also proves the safety of
our examples:

pc = `1 ∨
(pc = `2 ∧ y ≥ z) ∨
(pc = `3 ∧ y ≥ z ∧ x ≥ y) ∨
pc = `4

I can we drop another conjunct in one of the disjuncts?
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1: assume(y >= z);

2: while (x < y) {

x++;

}

3: assert(x >= z);

4: exit

5: error

.

`1

`2

ρ1 y ≥ z

ρ2 x < y ∧ x ′ = x + 1

`3

ρ3 x ≥ y

`4

ρ4 x ≥ z
`5

ρ5 x < z

inductive invariant (strict superset of reachable states):

ϕreach = (pc = `1 ∨
pc = `2 ∧ y ≥ z ∨
pc = `3 ∧ y ≥ z ∧ x ≥ y ∨
pc = `4)



fixpoint iteration

I computation of reachable program states =
iterative application of post on initial program states until
a fixpoint is reached
i.e., no new program states are obtained by applying post

I in general, iteration process does not converge
i.e., does not reach fixpoint in finite number of iterations



example: fixpoint iteration diverges

ρ2 ≡ (move(`2, `2) ∧ x + 1 ≤ y ∧ x ′ = x + 1 ∧ skip(y , z))

post(at `2 ∧ x ≤ z , ρ2) = (at `2 ∧ x − 1 ≤ z ∧ x ≤ y)

post2(at `2 ∧ x ≤ z , ρ2) = (at `2 ∧ x − 2 ≤ z ∧ x ≤ y)

post3(at `2 ∧ x ≤ z , ρ2) = (at `2 ∧ x − 3 ≤ z ∧ x ≤ y)

. . .

postn(at `2 ∧ x ≤ z , ρ2) = (at `2 ∧ x − n ≤ z ∧ x ≤ y)



example: fixpoint not reached after n steps, n ≥ 1

I set of states reachable after applying post twice not included
in the union of previous two sets:

(at `2 ∧ x − 2 ≤ z ∧ x ≤ y) 6|=
at `2 ∧ x ≤ z ∨
at `2 ∧ x − 1 ≤ z ∧ x ≤ y

I set of states reachable after n-fold application of post still
contains previously unreached states:

∀n ≥ 1 : (at `2 ∧ x − n ≤ z ∧ x ≤ y) 6|=
at `2 ∧ x ≤ z ∨∨

1≤i<n(at `2 ∧ x − i ≤ z ∧ x ≤ y)



abstraction of ϕreach by ϕ#
reach

I instead of computing ϕreach,
compute over-approximation ϕ#

reach such that ϕ#
reach ⊇ ϕreach

I check whether ϕ#
reach contains any error states

I if ϕ#
reach ∧ ϕerr |= false holds then ϕreach ∧ ϕerr |= false,

and hence the program is safe

I compute ϕ#
reach by applying iteration

I instead of iteratively applying post, use
over-approximation post# such that always

post(ϕ, ρ) |= post#(ϕ, ρ)

I decompose computation of post# into two steps:
first, apply post and
then, over-approximate result using a function α such that

∀ϕ : ϕ |= α(ϕ) .



abstraction of post by post#

I given an abstraction function α, define post#:

post#(ϕ, ρ) = α(post(ϕ, ρ))

I compute ϕ#
reach:

ϕ#
reach = α(ϕinit) ∨

post#(α(ϕinit), ρR) ∨
post#(post#(α(ϕinit), ρR), ρR) ∨ . . .

=
∨

i≥0(post#)i (α(ϕinit), ρR)

I consequence: ϕreach |= ϕ#
reach



predicate abstraction

I construct abstraction using a given set of building blocks,
so-called predicates

I predicate = formula over the program variables V

I fix finite set of predicates Preds = {p1, . . . , pn}
I over-approximation of ϕ by conjunction of predicates in Preds

α(ϕ) =
∧
{p ∈ Preds | ϕ |= p}

I computation requires n entailment checks
(n = number of predicates)



example: compute α(at `2 ∧ y ≥ z ∧ x + 1 ≤ y)

I Preds = {at `1, . . . , at `5, y ≥ z , x ≥ y}
1. check logical consequence between argument to the

abstraction function and each of the predicates:

y ≥ z x ≥ y at `1 at `2 at `3 at `4 at `5
at `2 ∧
y ≥ z ∧
x + 1 ≤ y

|= 6|= 6|= |= 6|= 6|= 6|=

2. result of abstraction = conjunction over entailed predicates

α(
at `2 ∧
y ≥ z ∧ x + 1 ≤ y

) = at `2 ∧ y ≥ z



trivial abstraction α(ϕ) = true

I result of applying predicate abstraction is true if

none of the predicates is entailed by ϕ
(“predicates are too specific”)
. . . always the case if Preds = ∅
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example: predicate abstraction to compute ϕ#
reach

I Preds = {false, at `1, . . . , at `5, y ≥ z , x ≥ y}

I over-approximation of the set of initial states ϕinit :

ϕ1 = α(at `1) = at `1

I apply post# on ϕ1 wrt. each program transition:

ϕ2 = post#(ϕ1, ρ1) = α(at `2 ∧ y ≥ z︸ ︷︷ ︸
post(ϕ1,ρ1)

) = at `2 ∧ y ≥ z

post#(ϕ1, ρ2) = · · · = post#(ϕ1, ρ5) =
∧
{false, . . . } = false



apply post# to ϕ2 = (at `2 ∧ y ≥ z)

I application of ρ1, ρ4, and ρ5 on ϕ2 results in false
(since ρ1, ρ4, and ρ5 are applicable only if either at `1 or
at `3 hold)

I for ρ2 we obtain

post#(ϕ2, ρ2) = α(at `2 ∧ y ≥ z ∧ x ≤ y) = at `2 ∧ y ≥ z

result is ϕ2 and, therefore, is discarded

I for ρ3 we obtain

post#(ϕ2, ρ3) = α(at `3 ∧ y ≥ z ∧ x ≥ y)

= at `3 ∧ y ≥ z ∧ x ≥ y

= ϕ3



apply post# to ϕ3 = (at `3 ∧ y ≥ z ∧ x ≥ y)

I ρ1, ρ2, and ρ3: inconsistency with program counter valuation
in ϕ3

I for ρ4 we obtain:

post#(ϕ3, ρ4) = α(at `4 ∧ y ≥ z ∧ x ≥ y ∧ x ≥ z)

= at `4 ∧ y ≥ z ∧ x ≥ y

= ϕ4

I for ρ5 (assertion violation) we obtain:

post#(ϕ3, ρ5) = α(at `5 ∧ y ≥ z ∧ x ≥ y ∧ x + 1 ≤ z)

= false

I any further application of program transitions does not
compute any additional reachable states

I thus, ϕ#
reach = ϕ1 ∨ . . . ∨ ϕ4

I since ϕ#
reach ∧ at `5 |= false, the program is proven safe



algorithm AbstReach

begin
α := λϕ .

∧
{p ∈ Preds | ϕ |= p}

post# := λ(ϕ, ρ) . α(post(ϕ, ρ))
ReachStates# := {α(ϕinit)}
Parent := ∅
Worklist := ReachStates#

while Worklist 6= ∅ do
ϕ := choose from Worklist
Worklist := Worklist \ {ϕ}
for each ρ ∈ R do

ϕ′ := post#(ϕ, ρ)
if ϕ′ 6|=

∨
ReachStates# then

ReachStates# := {ϕ′} ∪ ReachStates#

Parent := {(ϕ, ρ, ϕ′)} ∪ Parent
Worklist := {ϕ′} ∪Worklist

return (ReachStates#,Parent)
end


