Propositional Logic

Definition

• The set of *formulas* of propositional logic is given by the abstract syntax:

Form \ni A, B, C ::= $P \mid \perp \mid (\neg A) \mid (A \land B) \mid (A \lor B) \mid (A \to B)$

where P ranges over a countable set **Prop**, whose elements are called *propositional symbols* or *propositional variables*. (We also let Q, R range over **Prop**.)

- Formulas of the form \perp or *P* are called *atomic*.
- \top abbreviates $(\neg \bot)$ and $(A \leftrightarrow B)$ abbreviates $((A \rightarrow B) \land (B \rightarrow A))$.

Remark

- Conventions to omit parentheses are:
 - outermost parentheses can be dropped;
 - the order of precedence (from the highest to the lowest) of connectives is: \neg , \land , \lor and \rightarrow ;
 - binary connectives are right-associative.
- There are recursion and induction principles (e.g. structural ones) for Form .

Definition

A is a subformula of B when A "occurs in" B.

Definition

- T (true) and F (false) form the set of truth values.
- A valuation is a function \(\rho\): Prop \(->\{F, T\)}\) that assigns truth values to propositional symbols.
- Given a valuation ρ, the interpretation function [[·]]_ρ : Form -> {F, T} is defined recursively as follows:

$$\llbracket \bot \rrbracket_{\rho} = \mathbf{F}$$

$$\llbracket P \rrbracket_{\rho} = \mathbf{T} \quad \text{iff} \quad \rho(P) = \mathbf{T}$$

$$\llbracket \neg A \rrbracket_{\rho} = \mathbf{T} \quad \text{iff} \quad \llbracket A \rrbracket_{\rho} = \mathbf{F}$$

$$\llbracket A \land B \rrbracket_{\rho} = \mathbf{T} \quad \text{iff} \quad \llbracket A \rrbracket_{\rho} = \mathbf{T} \text{ and } \llbracket B \rrbracket_{\rho} = \mathbf{T}$$

$$\llbracket A \lor B \rrbracket_{\rho} = \mathbf{T} \quad \text{iff} \quad \llbracket A \rrbracket_{\rho} = \mathbf{T} \text{ or } \llbracket B \rrbracket_{\rho} = \mathbf{T}$$

$$\llbracket A \lor B \rrbracket_{\rho} = \mathbf{T} \quad \text{iff} \quad \llbracket A \rrbracket_{\rho} = \mathbf{F} \text{ or } \llbracket B \rrbracket_{\rho} = \mathbf{T}$$

Definition

A propositional model \mathcal{M} is a set of proposition symbols, i.e. $\mathcal{M} \subseteq \mathbf{Prop}$. The validity relation $\models \subseteq \mathcal{P}(\mathbf{Prop}) \times \mathbf{Form}$ is defined inductively by:

$\mathcal{M} \models P$	iff	$P\in\mathcal{M}$
$\mathcal{M} \models \neg A$	iff	$\mathcal{M} \not\models A$
$\mathcal{M} \models A \land B$	iff	$\mathcal{M} \models A$ and $\mathcal{M} \models B$
$\mathcal{M} \models A \lor B$	iff	$\mathcal{M} \models A \text{ or } \mathcal{M} \models B$
$\mathcal{M} \models A \rightarrow B$	iff	$\mathcal{M} \not\models A \text{ or } \mathcal{M} \models B$

Remark

The two semantics are equivalent. In fact, valuations are in bijection with propositional models. In particular, each valuation ρ determines a model $\mathcal{M}_{\rho} = \{P \in \mathbf{Prop} \mid \rho(P) = \mathbf{T}\}$ s.t.

$$\mathcal{M}_{\rho} \models A \quad iff \quad \llbracket A \rrbracket_{\rho} = \mathsf{T},$$

which can be proved by induction on A. Henceforth, we adopt the latter semantics.

Definition

- A formula A is valid in a model M (or M satisfies A), iff M ⊨ A. When M ⊭ A, A is said refuted by M.
- A formula A is *satisfiable* iff there exists some model \mathcal{M} such that $\mathcal{M} \models A$. It is *refutable* iff some model refutes A.
- A formula A is valid (also called a tautology) iff every model satisfies A. A formula A is a contradiction iff every model refutes A.

Proposition

Let \mathcal{M} and \mathcal{M}' be two propositional models and let A be a formula. If for any propositional symbol P occuring in A, $\mathcal{M} \models P$ iff $\mathcal{M}' \models P$, then $\mathcal{M} \models A$ iff $\mathcal{M}' \models A$.

Proof.

By induction on A.

Remark

The previous proposition justifies that the truth table method suffices for deciding weather or not a formula is valid, which in turn guarantees that the validity problem of PL is decidable

Definition

A is *logically equivalent* to B, (denoted by $A \equiv B$) iff A and B are valid exactly in the same models.

Some logical equivalences

 $\neg \neg A \equiv A \qquad (double negation)$ $\neg (A \land B) \equiv \neg A \lor \neg B \qquad \neg (A \lor B) \equiv \neg A \land \neg B \qquad (De Morgan's laws)$ $A \rightarrow B \equiv \neg A \lor B \qquad \neg A \equiv A \rightarrow \bot \qquad (interdefinability)$ $A \land (B \lor C) \equiv (A \land B) \lor (A \land C) \qquad A \lor (B \land C) \equiv (A \lor B) \land (A \lor C) \qquad (distributivity)$

Remark

- ullet \equiv is an equivalence relation on Form .
- Given $A \equiv B$, the replacement in a formula C of an occurrence of A by B produces a formula equivalent to C.
- The two previous results allow for equational reasoning in proving logical equivalence.

Definition

Given a propositional formula A, we say that it is in:

- Conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals (atomic formulas or negated atomic formulas), i.e. $A = \bigwedge_i \bigvee_i I_{ij}$, for literals I_{ij} ;
- Disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals, i.e. $A = \bigvee_i \bigwedge_i I_{ij}$, for literals I_{ij} .

Note that in some treatments, \perp is not allowed in literals.

Proposition

Any formula is equivalent to a CNF and to a DNF.

Proof.

The wanted CNF and DNF can be obtained by rewriting of the given formula, using the logical equivalences listed before.

Notation

We let Γ, Γ', \ldots range over sets of formulas and use Γ, A to abbreviate $\Gamma \cup \{A\}$.

Definition

Let Γ be a set of formulas.

- Γ is valid in a model M (or M satisfies Γ), iff M ⊨ A for every formula A ∈ Γ.
 We denote this by M ⊨ Γ.
- Γ is *satisfiable* iff there exists a model \mathcal{M} such that $\mathcal{M} \models \Gamma$, and it is *refutable* iff there exists a model \mathcal{M} such that $\mathcal{M} \not\models \Gamma$.
- Γ is *valid*, denoted by $\models \Gamma$, iff $\mathcal{M} \models \Gamma$ for every model \mathcal{M} , and it is *unsatisfiable* iff it is not satisfiable.

Definition

Let A be a formula and Γ a set of formulas. If every model that validates Γ also validates A, we say that Γ entails A (or A is a logical consequence of Γ). We denote this by $\Gamma \models A$ and call $\models \subseteq \mathcal{P}(\mathbf{Form}) \times \mathbf{Form}$ the semantic entailment or logical consequence relation.

Proposition

- A is valid iff $\models A$, where $\models A$ abbreviates $\emptyset \models A$.
- A is a contradiction iff $A \models \bot$.
- $A \equiv B$ iff $A \models B$ and $B \models A$. (or equivalently, $A \leftrightarrow B$ is valid).

Proposition

The semantic entailment relation satisfies the following properties (of an abstract consequence relation):

- For all $A \in \Gamma$, $\Gamma \models A$.
- If $\Gamma \models A$, then $\Gamma, B \models A$.
- If $\Gamma \models A$ and $\Gamma, A \models B$, then $\Gamma \models B$.

(inclusion) (monotonicity) (cut)

Proposition

Further properties of semantic entailment are:

•
$$\Gamma \models A \land B$$
 iff $\Gamma \models A$ and $\Gamma \models B$
• $\Gamma \models A \lor B$ iff $\Gamma \models A$ or $\Gamma \models B$
• $\Gamma \models A \rightarrow B$ iff $\Gamma, A \models B$
• $\Gamma \models \neg A$ iff $\Gamma, A \models \bot$
• $\Gamma \models A$ iff $\Gamma, \neg A \models \bot$

Proof system

The natural deduction system $\mathcal{N}_{\mathsf{PL}}$

- The proof system we will consider is a "natural deduction in sequent style" (not to confuse with a "sequent calculus"), which we name \mathcal{N}_{PL} .
- The "judgments" (or "assertions") of N_{PL} are sequents Γ ⊢ A, where Γ is a set of formulas (a.k.a. *context* or LHS) and A a formula (a.k.a. *conclusion* or RHS), informally meaning that "A can be proved from the assumptions in Γ".
- Natural deduction systems typically have "introduction" and "elimination" rules for each connective. The set of rules of N_{PL} is below.

Rules of $\mathcal{N}_{\mathsf{PL}}$

(Ax)
$$\overline{\Gamma, A \vdash A}$$
 (RAA) $\overline{\Gamma, \neg A \vdash \bot}$

Introduction Rules:

$$\begin{array}{ccc} (\mathsf{I}_{\wedge}) & \frac{\Gamma \vdash A}{\Gamma \vdash A \wedge B} & (\mathsf{I}_{\vee i}) & \frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{1} \vee A_{2}} & i \in \{1, 2\} \\ \\ & (\mathsf{I}_{\rightarrow}) & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} & (\mathsf{I}_{\neg}) & \frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \end{array}$$

Elimination Rules:

$$\begin{array}{c} (\mathsf{E}_{\wedge i}) & \frac{\Gamma \vdash A_1 \wedge A_2}{\Gamma \vdash A_i} & i \in \{1, 2\} \\ \end{array} \begin{array}{c} (\mathsf{E}_{\vee}) & \frac{\Gamma \vdash A \vee B}{\Gamma \vdash B} \end{array} \begin{array}{c} \Gamma \vdash A \vee B & \Gamma, A \vdash C & \Gamma, B \vdash C \\ \hline \Gamma \vdash C & \Gamma \vdash C \end{array} \end{array}$$

Definition

- A derivation of a sequent Γ ⊢ A is a tree of sequents, built up from instances of the inference rules of N_{PL}, having as root Γ ⊢ A and as leaves instances of (Ax). (The set of N_{PL}-derivations can formally be given as an inductive definition and has associated recursion and inductive principles.)
- Derivations induce a binary relation $\vdash \in \mathcal{P}(Form) \times Form$, called the *derivability/deduction relation*:
 - $(\Gamma, A) \in \vdash$ iff there is a derivation of the sequent $\Gamma \vdash A$ in \mathcal{N}_{PL} ;
 - typically we overload notation and abbreviate (Γ, A) ∈ ⊢ by Γ ⊢ A, reading "Γ ⊢ A is derivable", or "A can be derived (or deduced) from Γ", or "Γ infers A";
- A formula that can be derived from the empty context is called a *theorem*.

Definition

An inference rule is *admissible* in \mathcal{N}_{PL} if every sequent that can be derived making use of that rule can also be derived without it.

Proof system

Proposition

The following rules are admissible in $\mathcal{N}_{\mathsf{PL}}$:

Weakening
$$\frac{\Gamma \vdash A}{\Gamma, B \vdash A}$$
 $Cut \frac{\Gamma \vdash A}{\Gamma \vdash B}$ $(\bot) \frac{\Gamma \vdash \bot}{\Gamma \vdash A}$

Proof.

- Admissibility of weakening is proved by induction on the premise's derivation.
- Cut is actually a *derivable rule* in \mathcal{N}_{PL} , i.e. can be obtained through a combination of \mathcal{N}_{PL} rules.
- Admissibility of (\bot) follows by combining weakening and *RAA*.

Definition

 Γ is said *inconsistent* if $\Gamma \vdash \bot$ and otherwise is said *consistent*.

Proposition

If Γ is consistent, then either $\Gamma \cup \{A\}$ or $\Gamma \cup \{\neg A\}$ is consistent (but not both).

Proof.

If not, one could build a derivation of $\Gamma \vdash \bot$ (how?), and Γ would be inconsistent.

Remark

Traditional presentations of natural deduction take formulas as judgements and not sequents. In these presentations:

- derivations are trees of formulas, whose leaves can be either "open" or "closed";
- open leaves correspond to the assumptions upon which the conclusion formula (the root of the tree) depends;
- some rules allow for the closing of leaves (thus making the conclusion formula not depend on those assumptions).

For example, introduction and elimination rules for implication look like:

In rule (I_{\rightarrow}) , any number of occurrences of A as a leaf may be closed (signalled by the use of square brackets).

Theorem (Soundness)

If $\Gamma \vdash A$, then $\Gamma \models A$.

Proof.

By induction on the derivation of $\Gamma \vdash A$. Some of the cases are illustrated:

• If the last step is

Ax)
$$\overline{\Gamma', A \vdash A}$$

We need to prove $\Gamma', A \models A$, which holds by the inclusion property of semantic entailment.

• If the last step is

$$(\mathsf{I}_{\rightarrow}) \quad \frac{\mathsf{\Gamma}, B \vdash C}{\mathsf{\Gamma} \vdash B \rightarrow C}$$

By IH, we have $\Gamma, B \models C$, which is equivalent to $\Gamma \models B \rightarrow C$, by one of the properties of semantic entailment.

• If the last step is

$$(\mathsf{E}_{\rightarrow}) \quad \frac{\Gamma \vdash B \qquad \Gamma \vdash B \rightarrow A}{\Gamma \vdash A}$$

By IH, we have both $\Gamma \models B$ and $\Gamma \models B \rightarrow A$. From these, we can easily get $\Gamma \models A$.

Definition

 Γ is *maximally consistent* iff it is consistent and furthermore, given any formula A, either A or $\neg A$ belongs to Γ (but not both can belong).

Proposition

Maximally consistent sets are closed for derivability, i.e. given a maximally consistent set Γ and given a formula A, $\Gamma \vdash A$ implies $A \in \Gamma$.

Lemma

If Γ is consistent, then there exists $\Gamma' \supseteq \Gamma$ s.t. Γ' is maximally consistent.

Proof.

Let $\Gamma_0 = \Gamma$ and consider an enumeration A_1, A_2, \ldots of the set of formulas **Form**. For each of these formulas, define Γ_i to be $\Gamma_{i-1} \cup \{A_i\}$ if this is consistent, or $\Gamma_{i-1} \cup \{\neg A_i\}$ otherwise. (Note that one of these sets is consistent.) Then, we take $\Gamma' = \bigcup_i \Gamma_i$. Clearly, by construction, $\Gamma' \supseteq \Gamma$ and for each A_i either $A_i \in \Gamma'$ or $\neg A_i \in \Gamma'$. Also, Γ' is consistent (otherwise some Γ_i would be inconsistent).

Proposition

 Γ is consistent iff Γ is satisfiable.

Proof.

The "if statement" follows from the soundness theorem. Let us proof the converse.

Let Γ' be a maximally consistent extension of Γ (guaranteed to exist by the previous lemma) and define \mathcal{M} as the set of proposition symbols that belong to Γ' .

Claim: $\mathcal{M} \models A$ iff $A \in \Gamma'$.

As $\Gamma' \supseteq \Gamma$, \mathcal{M} is a model of Γ , hence Γ is satisfiable.

The claim is proved by induction on A. Two cases are illustrated.

Case A = P. The claim is immediate by construction of \mathcal{M} .

Case $A = B \rightarrow C$. By IH and the fact that Γ' is maximally consistent, $\mathcal{M} \models B \rightarrow C$ is equivalent to $\neg B \in \Gamma'$ or $C \in \Gamma'$, which in turn is equivalent to $B \rightarrow C \in \Gamma'$. The latter equivalence is proved with the help of the fact that Γ' , being maximally consistent, is closed for derivability.

Theorem (Completeness)

If $\Gamma \models A$ then $\Gamma \vdash A$.

Proof.

Suppose $\Gamma \vdash A$ does not hold. Then, $\Gamma \cup \{\neg A\}$ is consistent (why?) and thus, by the above proposition, $\Gamma \cup \{\neg A\}$ would have a model, contradicting $\Gamma \models A$.

Corolary (Compactness)

A (possibly infinite) set of formulas Γ is satisfiable if and only if every finite subset of Γ is satisfiable.

Proof.

The key observation is that, in \mathcal{N}_{PL} , if $\Gamma \vdash A$, then there exists a finite $\Gamma' \subseteq \Gamma$ s.t. $\Gamma' \vdash A$.

First-Order Logic

Definition

The alphabet of a first-order language is organised into the following categories.

- Logical connectives: \bot , \neg , \land , \lor , \rightarrow , \forall and \exists .
- Auxiliary symbols: ".", ",", "(" and ")".
- Variables: we assume a countable infinite set \mathcal{X} of variables, ranged over by x, y, z, \ldots
- Constant symbols: we assume a countable set C of constant symbols, ranged over by a, b, c,
- Function symbols: we assume a countable set F of function symbols, ranged over by f, g, h, Each function symbol f has a fixed arity ar(f), which is a positive integer.
- Predicate symbols: we assume a countable set P of predicate symbols, ranged over by P, Q, R, Each predicate symbol P has a fixed arity ar(P), which is a non-negative integer. (Predicate symbols with arity 0 play the role of propositions.)

The union of the non-logical symbols of the language is called the *vocabulary* and is denoted by \mathcal{V} , i.e. $\mathcal{V} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$.

Notation

Throughout, and when not otherwise said, we assume a vocabulary $\mathcal{V}_{-} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}_{-}$.

Definition

The set of *terms* of a first-order language over a vocabulary \mathcal{V} is given by:

Term_{$$\mathcal{V}$$} \ni $t, u ::= x | c | f(t_1, \ldots, t_{ar(f)})$

The set of variables occurring in t is denoted by Vars(t).

Definition

The set of *formulas* of a first-order language over a vocabulary \mathcal{V} is given by:

$$\begin{array}{ll} \mathsf{Form}_{\mathcal{V}} & \ni \phi, \psi, \theta & ::= & P(t_1, \dots, t_{\mathsf{ar}(P)}) \mid \bot \mid (\neg \phi) \mid (\phi \land \psi) \mid (\phi \lor \psi) \\ & \mid (\phi \to \psi) \mid (\forall x. \phi) \mid (\exists x. \phi) \end{array}$$

An *atomic formula* has the form \perp or $P(t_1, \ldots, t_{ar(P)})$.

Remark

- We assume the conventions of propositional logic to omit parentheses, and additionally assume that quantifiers have the lowest precedence.
- Nested quantifications such as $\forall x . \forall y . \phi$ are abbreviated to $\forall x, y . \phi$.
- There are recursion and induction principles (e.g. structural ones) for $\text{Term}_{\mathcal{V}}$ and $\text{Form}_{\mathcal{V}}$.

Definition

- A formula ψ that occurs in a formula ϕ is called a *subformula* of ϕ .
- In a quantified formula $\forall x. \phi$ or $\exists x. \phi, x$ is the *quantified variable* and ϕ is the *scope* of the quantification.
- Occurrences of the quantified variable within the respective scope are said to be bound. Variable occurrences that are not bound are said to be *free*.
- The set of *free variables* (resp. *bound variables*) of a formula θ, is denoted FV(θ) (resp. BV(θ)).

Definition

- A *sentence* (or *closed* formula) is a formula without free variables.
- If $FV(\phi) = \{x_1, \ldots, x_n\}$, the *universal closure* of ϕ is the formula $\forall x_1, \ldots, x_n, \phi$ and the *existential closure* of ϕ is the formula $\exists x_1, \ldots, x_n, \phi$.

Definition

- A substitution is a mapping σ : X − > Term_V s.t. the set dom(σ) = {x ∈ X | σ(x) ≠ x}, called the substitution domain, is finite.
- The notation $[t_1/x_1, \ldots, t_n/x_n]$ (for distinct x_i 's) denotes the substitution whose domain is contained in $\{x_1, \ldots, x_n\}$ and maps each x_i to t_i .

Definition

The *application of a substitution* σ *to a term t* is denoted by $t\sigma$ and is defined recursively by:

$$\begin{array}{rcl} x \, \sigma & = & \sigma(x) \\ c \, \sigma & = & c \\ f(t_1, \dots, t_{\mathsf{ar}(f)}) \, \sigma & = & f(t_1 \, \sigma, \dots, t_{\mathsf{ar}(f)} \, \sigma) \end{array}$$

Remark

The result of

 $t[t_1/x_1,\ldots,t_n/x_n]$

corresponds to the simultaneous substitution of t_1, \ldots, t_n for x_1, \ldots, x_n in t. This differs from the application of the corresponding singleton substitutions in sequence,

```
((t [t_1/x_1])...)[t_n/x_n].
```

Notation

Given a function $f : X \longrightarrow Y$, $x \in X$ and $y \in Y$, the notation $f[x \mapsto y]$ stands for the function defined as f except possibly for x, to which y is assigned, called the patching of f in x to y.

Definition

The application of a substitution σ to a formula ϕ , written $\phi \sigma$, is given recursively by:

where $\odot \in \{\land, \lor \rightarrow\}$ and $Q \in \{\forall, \exists\}$.

Remark

- Only free occurrences of variables can change when a substitution is applied to a formula.
- Unrestricted application of substitutions to formulas can cause capturing of variables as in: (∀x. P(x, y)) [g(x)/y] = ∀x. P(x, g(x))
- "Safe substitution" (which we assume throughout) is achieved by imposing that a substitution when applied to a formula should be free for it.

Definition

- A term t is free for x in θ iff x has no free occurrences in the scope of a quantifier $Qy \ (y \neq x)$ s.t. $y \in Vars(t)$.
- A substitution σ is free for θ iff $\sigma(x)$ is free for x in θ , for all $x \in dom(\sigma)$.

Definition

Given a vocabulary \mathcal{V} , a \mathcal{V} -structure is a pair $\mathcal{M} = (D, I)$ where D is a nonempty set, called the *interpretation domain*, and I is called the *interpretation function*, and assigns constants, functions and predicates over D to the symbols of \mathcal{V} as follows:

- for each $c \in C$, the interpretation of c is a constant $I(c) \in D$;
- for each $f \in \mathcal{F}$, the interpretation of f is a function $I(f) : D^{\operatorname{ar}(f)} \to D$;
- for each P ∈ P, the interpretation of P is a function I(P) : D^{ar(P)} → {F, T}. In particular, 0-ary predicate symbols are interpreted as truth values.

 ${\mathcal V}\,$ -structures are also called models for ${\mathcal V}\,$.

Definition

Let *D* be the interpretation domain of a structure. An *assignment* for *D* is a function $\alpha : \mathcal{X} \to D$ from the set of variables to the domain *D*.

Notation

In what follows, we let $\mathcal{M}, \mathcal{M}', ...$ range over the structures of an intended vocabulary, and $\alpha, \alpha', ...$ range over the assignments for the interpretation domain of an intended structure.

Definition

Let $\mathcal{M} = (D, I)$ be a \mathcal{V} -structure and α an assignment for D.

• The value of a term t w.r.t. \mathcal{M} and α is an element of D, denoted by $[t]_{\mathcal{M},\alpha}$, and recursively given by:

$$\begin{split} \llbracket x \rrbracket_{\mathcal{M},\alpha} &= \alpha(x) \\ \llbracket c \rrbracket_{\mathcal{M},\alpha} &= I(c) \\ \llbracket f(t_1,\ldots,t_{\mathsf{ar}(f)}) \rrbracket_{\mathcal{M},\alpha} &= I(f)(\llbracket t_1 \rrbracket_{\mathcal{M},\alpha},\ldots,\llbracket t_{\mathsf{ar}(f)} \rrbracket_{\mathcal{M},\alpha}) \end{split}$$

• The *(truth) value of a formula* ϕ *w.r.t.* \mathcal{M} *and* α , is denoted by $\llbracket \phi \rrbracket_{\mathcal{M},\alpha}$, and recursively given by:

$$\begin{split} \llbracket \bot \rrbracket_{\mathcal{M},\alpha} &= \mathsf{F} \\ \llbracket P(t_1, \dots, t_{\mathsf{ar}(P)}) \rrbracket_{\mathcal{M},\alpha} &= I(P)(\llbracket t_1 \rrbracket_{\mathcal{M},\alpha}, \dots, \llbracket t_{\mathsf{ar}(P)} \rrbracket_{\mathcal{M},\alpha}) \\ \llbracket \neg \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{F} \\ \llbracket \phi \land \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \text{ and} & \llbracket \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \\ \llbracket \phi \lor \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \text{ or} & \llbracket \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \\ \llbracket \phi \to \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{F} \text{ or} & \llbracket \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \\ \llbracket \phi \to \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{F} \text{ or} & \llbracket \psi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} \\ \llbracket \forall x. \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} [x \mapsto a] = \mathsf{T} \text{ for all } a \in D \\ \llbracket \exists x. \phi \rrbracket_{\mathcal{M},\alpha} &= \mathsf{T} & \text{iff} & \llbracket \phi \rrbracket_{\mathcal{M},\alpha} [x \mapsto a] = \mathsf{T} \text{ for some } a \in D \end{split}$$

Remark

Universal and existential quantifications are indeed a gain over PL. They can be read (resp.) as generalised conjunction and disjunction (possibly infinite):

$$\llbracket \forall x. \phi \rrbracket_{\mathcal{M},\alpha} = \bigwedge_{a \in D} \llbracket \phi \rrbracket_{\mathcal{M},\alpha[x \mapsto a]} \qquad \llbracket \exists x. \phi \rrbracket_{\mathcal{M},\alpha} = \bigvee_{a \in D} \llbracket \phi \rrbracket_{\mathcal{M},\alpha[x \mapsto a]}$$

Definition

Let $\mathcal V~$ be a vocabulary and $\mathcal M$ a $\mathcal V~$ -structure.

- \mathcal{M} satisfies ϕ with α , denoted by $\mathcal{M}, \alpha \models \phi$, iff $\llbracket \phi \rrbracket_{\mathcal{M}, \alpha} = \mathbf{T}$.
- \mathcal{M} satisfies ϕ (or that ϕ is valid in \mathcal{M} , or \mathcal{M} is a model of ϕ), denoted by $\mathcal{M} \models \phi$, iff for every assignment α , $\mathcal{M}, \alpha \models \phi$.
- φ is satisfiable if exists M s.t. M ⊨ φ, and it is valid, denoted by ⊨ φ, if M ⊨ φ for every M. φ is unsatisfiable (or a contradiction) if it is not satisfiable, and refutable if it is not valid.

Lemma

Let \mathcal{M} be a structure, t and u terms, ϕ a formula, and α , α' assignments.

- If for all $x \in Vars(t)$, $\alpha(x) = \alpha'(x)$, then $\llbracket t \rrbracket_{\mathcal{M},\alpha} = \llbracket t \rrbracket_{\mathcal{M},\alpha'}$
- If for all $x \in FV(\phi)$, $\alpha(x) = \alpha'(x)$, then $\mathcal{M}, \alpha \models \phi$ iff $\mathcal{M}, \alpha' \models \phi$.

•
$$\llbracket t \llbracket u/x \rrbracket \rrbracket_{\mathcal{M},\alpha} = \llbracket t \rrbracket_{\mathcal{M},\alpha[x \mapsto \llbracket u \rrbracket_{\mathcal{M},\alpha}]}$$

• If t is free for x in ϕ , then $\mathcal{M}, \alpha \models \phi[t/x]$ iff $\mathcal{M}, \alpha[x \mapsto \llbracket \mathcal{M} \rrbracket_{\alpha,t}] \models \phi$.

Proposition (Lifting validity of PL)

Let $\lceil \cdot \rceil$: **Prop** - > **Form**_{\mathcal{V}}, be a mapping from the set of proposition symbols to first-order formulas and denote also by $\lceil \cdot \rceil$ its homomorphic extension to all propositional formulas. Then, for all propositional formulas A and B:

- $\mathcal{M}, \alpha \models \lceil A \rceil$ iff $\overline{\mathcal{M}_{\alpha}} \models_{PL} A$, where $\overline{\mathcal{M}_{\alpha}} = \{P \mid \mathcal{M}, \alpha \models \lceil P \rceil\}$.
- If $\models_{PL} A$, then $\models_{FOL} [A]$.
- If $A \equiv_{PL} B$, then $\lceil A \rceil \equiv_{FOL} \lceil B \rceil$.

Some properties of logical equivalence

- The properties of logical equivalence listed for PL hold for FOL.
- The following equivalences hold:

$$\neg \forall x. \phi \equiv \exists x. \neg \phi \qquad \neg \exists x. \phi \equiv \forall x. \neg \phi$$
$$\forall x. \phi \land \psi \equiv (\forall x. \phi) \land (\forall x. \psi) \qquad \exists x. \phi \lor \psi \equiv (\exists x. \phi) \lor (\exists x. \psi)$$

- For $Q \in \{\forall, \exists\}$, if y is free for x in ϕ and $y \notin FV(\phi)$, then $Qx \cdot \phi \equiv Qy \cdot \phi [y/x]$.
- For $Q \in \{\forall, \exists\}$, if $x \notin FV(\phi)$, then $Qx \cdot \phi \equiv \phi$.
- For $Q \in \{\forall, \exists\}$ and $\odot \in \{\land, \lor\}$, if $x \notin FV(\psi)$, then $Qx \cdot \phi \odot \psi \equiv (Qx \cdot \phi) \odot \psi$.

Definition

A formula is in *prenex form* if it is of the form $Q_1x_1.Q_2x_2...Q_nx_n.\psi$ (possibly with n = 0) where each Q_i is a quantifier (either \forall or \exists) and ψ is a quantifier-free formula.

Proposition

For any formula of first-order logic, there exists an equivalent formula in prenex form.

Proof.

Such a prenex form can be obtained by rewriting, using the logical equivalences listed before.

Remark

Unlike PL, the validity problem of FOL is not decidable, but it is semi-decidable, i.e. there are procedures s.t., given a formula ϕ , they terminate with "yes" if ϕ is valid but may fail to terminate if ϕ is not valid.

Definition

- \mathcal{M} satisfies Γ with α , denoted by $\mathcal{M}, \alpha \models \Gamma$, if $\mathcal{M}, \alpha \models \phi$ for every $\phi \in \Gamma$.
- The notions of satisfiable, valid, unsatisfiable and refutable set of formulas are defined in the expected way.
- Γ entails ϕ (or ϕ is a logical consequence of Γ), denoted by $\Gamma \models \phi$, iff for every structure \mathcal{M} and assignment α , if $\mathcal{M}, \alpha \models \Gamma$ then $\mathcal{M}, \alpha \models \phi$.
- ϕ is *logically equivalent* to ψ , denoted by $\phi \equiv \psi$, iff $\llbracket \phi \rrbracket_{\mathcal{M},\alpha} = \llbracket \psi \rrbracket_{\mathcal{M},\alpha}$ for every structure \mathcal{M} and assignment α .

Some properties of semantic entailment

- The properties of semantic entailment listed for PL hold for FOL.
- If t is free for x in ϕ and $\Gamma \models \forall x . \phi$, then $\Gamma \models \phi [t/x]$.
- If $x \notin FV(\Gamma)$ and $\Gamma \models \phi$, then $\Gamma \models \forall x. \phi$.
- If t is free for x in ϕ and $\Gamma \models \phi[t/x]$, then $\Gamma \models \exists x. \phi$.
- If $x \notin FV(\Gamma \cup \{\psi\})$, $\Gamma \models \exists x. \phi$ and $\Gamma, \phi \models \psi$, then $\Gamma \models \psi$.

Proof system

The natural deduction system $\mathcal{N}_{\mathsf{FOL}}$

- The proof system for FOL we consider is a natural deduction system in sequent style extending $\mathcal{N}_{PL}.$
- The various definitions made in the context of \mathcal{N}_{PL} carry over to \mathcal{N}_{FOL} . The difference is that \mathcal{N}_{FOL} deals with first-order formulas and it has additional introduction and elimination rules to deal with the quantifiers.

Quantifier rules of \mathcal{N}_{FOL}

$$(\mathsf{I}_{\forall}) \quad \frac{\mathsf{\Gamma} \vdash \phi \left[y/x \right]}{\mathsf{\Gamma} \vdash \forall x. \phi} \text{ (a)} \qquad \qquad (\mathsf{E}_{\forall})$$

$$(\mathsf{I}_{\exists}) \quad \frac{\Gamma \vdash \phi \left[t/x \right]}{\Gamma \vdash \exists x. \phi} \qquad (\mathsf{E}_{\exists}) \quad \frac{\Gamma \vdash \exists x. \phi \qquad \Gamma, \phi \left[y/x \right] \vdash \theta}{\Gamma \vdash \theta} (\mathsf{b})$$

 $\frac{\Gamma \vdash \forall x. \phi}{\Gamma \vdash \phi [t/x]}$

(a) y ∉ FV(Γ) and either x = y or y ∉ FV(φ).
(b) y ∉ FV(Γ ∪ {θ}) and either x = y or y ∉ FV(φ).
(c) Recall that we assume safe substitution, i.e. in a substitution φ[t/x], we assume that t is free for x in φ.

Remark

The properties of N_{PL} can be extended to N_{FOL} , in particular the soundness and completeness theorems.

Theorem (Adequacy)

 $\Gamma \models \varphi \text{ iff } \Gamma \vdash \varphi.$

First-order theories

Definition

Let \mathcal{V} be a vocabulary of a first-order language.

- A first-order theory T is a set of V -sentences that is closed under derivability (i.e., T ⊢ φ implies φ ∈ T). A T-structure is a V -structure that validates every formula of T.
- A formula ϕ is \mathcal{T} -valid (resp. \mathcal{T} -satisfiable) if every (resp. some) \mathcal{T} -structure validates ϕ . $\mathcal{T} \models \phi$ denotes the fact that ϕ is \mathcal{T} -valid.
- Other concepts regarding validity of first-order formulas are carried over to theories in the obvious way.

Definition

A subset $\mathcal{A} \subseteq \mathcal{T}$ is called an *axiom set* for the theory \mathcal{T} when \mathcal{T} is the deductive closure of \mathcal{A} , i.e. $\psi \in \mathcal{T}$ iff $\mathcal{A} \vdash \psi$, or equivalently, iff $\vdash \psi$ can be derived in \mathcal{N}_{FOL} with an axiom-schema:

$$\overline{\Gamma \vdash \phi} \text{ if } \phi \in \mathcal{A}$$

First-order theories

Equality theory

The *theory of equality* \mathcal{T}_{E} for \mathcal{V} (which is assumed to have a binary equality predicate symbol "=") has the following axiom set:

- reflexivity: $\forall x . x = x$
- symmetry: $\forall x, y . x = y \rightarrow y = x$
- transitivity: $\forall x, y, z. x = y \land y = z \rightarrow x = z$
- congruence for function symbols: for every $f \in \mathcal{F}$ with ar(f) = n,

$$\forall \overline{x}, \overline{y}. x_1 = y_1 \land \ldots \land x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$$

• congruence for predicate symbols: for every $P \in \mathcal{P}$ with ar(P) = n,

$$\forall \overline{x}, \overline{y}. x_1 = y_1 \land \ldots \land x_n = y_n \rightarrow P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)$$

Theorem

A sentence ϕ is valid in all normal structures (i.e. structures which interpret = as the equality relation over the interpretation domain) iff $\phi \in T_{\mathsf{E}}$.