Propositional Logic

Syntax

Definition

- The set of formulas of propositional logic is given by the abstract syntax:

Form $\quad \ni \quad A, B, C \quad::=P|\perp|(\neg A)|(A \wedge B)|(A \vee B) \mid(A \rightarrow B)$
where P ranges over a countable set Prop, whose elements are called propositional symbols or propositional variables. (We also let Q, R range over Prop .)

- Formulas of the form \perp or P are called atomic.
- \top abbreviates $(\neg \perp)$ and $(A \leftrightarrow B)$ abbreviates $((A \rightarrow B) \wedge(B \rightarrow A)$).

Remark

- Conventions to omit parentheses are:
- outermost parentheses can be dropped;
- the order of precedence (from the highest to the lowest) of connectives is: \neg, \wedge, \vee and \rightarrow;
- binary connectives are right-associative.
- There are recursion and induction principles (e.g. structural ones) for Form

Definition

A is a subformula of B when A "occurs in" B.

Semantics

Definition

- \mathbf{T} (true) and \mathbf{F} (false) form the set of truth values.
- A valuation is a function ρ : Prop $->\{\mathbf{F}, \mathbf{T}\}$ that assigns truth values to propositional symbols.
- Given a valuation ρ, the interpretation function $\llbracket \rrbracket_{\rho}$: Form $->\{\mathbf{F}, \mathbf{T}\}$ is defined recursively as follows:

$$
\begin{array}{rll}
\llbracket \perp \rrbracket_{\rho} & =\mathbf{F} & \\
\llbracket P \rrbracket_{\rho} & =\mathbf{T} & \text { iff } \\
\llbracket(P)=\mathbf{T} \\
\llbracket \neg A \rrbracket_{\rho} & =\mathbf{T} & \text { iff } \\
\llbracket A \rrbracket_{\rho}=\mathbf{F} \\
\llbracket A \wedge B \rrbracket_{\rho} & =\mathbf{T} & \text { iff } \\
\llbracket A \rrbracket_{\rho}=\mathbf{T} \text { and } \llbracket B \rrbracket_{\rho}=\mathbf{T} \\
\llbracket A \vee B \rrbracket_{\rho}=\mathbf{T} & \text { iff } & \llbracket A \rrbracket_{\rho}=\mathbf{T} \text { or } \llbracket B \rrbracket_{\rho}=\mathbf{T} \\
\llbracket A \rightarrow B \rrbracket_{\rho}=\mathbf{T} & \text { iff } & \llbracket A \rrbracket_{\rho}=\mathbf{F} \text { or } \llbracket B \rrbracket_{\rho}=\mathbf{T}
\end{array}
$$

Semantics

Definition

A propositional model \mathcal{M} is a set of proposition symbols, i.e. $\mathcal{M} \subseteq$ Prop . The validity relation $\vDash \subseteq \mathcal{P}$ (Prop $) \times$ Form is defined inductively by:

$$
\begin{array}{lll}
\mathcal{M} \models P & \text { iff } & P \in \mathcal{M} \\
\mathcal{M} \models \neg A & \text { iff } & \mathcal{M} \not \models A \\
\mathcal{M} \models A \wedge B & \text { iff } \mathcal{M} \models A \text { and } \mathcal{M} \models B \\
\mathcal{M} \models A \vee B & \text { iff } \mathcal{M} \models A \text { or } \mathcal{M} \models B \\
\mathcal{M} \models A \rightarrow B & \text { iff } & \mathcal{M} \not \models A \text { or } \mathcal{M} \models B
\end{array}
$$

Remark

The two semantics are equivalent. In fact, valuations are in bijection with propositional models. In particular, each valuation ρ determines a model $\mathcal{M}_{\rho}=\{P \in$ Prop $\mid \rho(P)=\mathbf{T}\}$ s.t.

$$
\mathcal{M}_{\rho} \models A \quad \text { iff } \quad \llbracket A \rrbracket_{\rho}=\mathbf{T}
$$

which can be proved by induction on A. Henceforth, we adopt the latter semantics.

Definition

- A formula A is valid in a model \mathcal{M} (or \mathcal{M} satisfies A), iff $\mathcal{M} \models A$. When $\mathcal{M} \not \models A, A$ is said refuted by \mathcal{M}.
- A formula A is satisfiable iff there exists some model \mathcal{M} such that $\mathcal{M} \models A$. It is refutable iff some model refutes A.
- A formula A is valid (also called a tautology) iff every model satisfies A. A formula A is a contradiction iff every model refutes A.

Semantics

Proposition

Let \mathcal{M} and \mathcal{M}^{\prime} be two propositional models and let A be a formula. If for any propositional symbol P occuring in $A, \mathcal{M} \models P$ iff $\mathcal{M}^{\prime} \models P$, then $\mathcal{M} \models A$ iff $\mathcal{M}^{\prime} \models A$.

Proof.

By induction on A.

Remark

The previous proposition justifies that the truth table method suffices for deciding weather or not a formula is valid, which in turn guarantees that the validity problem of $P L$ is decidable

Definition

A is logically equivalent to B, (denoted by $A \equiv B$) iff A and B are valid exactly in the same models.

Some logical equivalences

$$
\neg \neg A \equiv A
$$

$$
\neg(A \wedge B) \equiv \neg A \vee \neg B
$$

$$
\neg(A \vee B) \equiv \neg A \wedge \neg B
$$

$$
A \rightarrow B \equiv \neg A \vee B
$$

$$
\neg A \equiv A \rightarrow \perp
$$

(double negation)
(De Morgan's laws) (interdefinability)
(distributivity)

$$
A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C) \quad A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C) \quad \text { (distributivity) }
$$

Semantics

Remark

- \equiv is an equivalence relation on Form
- Given $A \equiv B$, the replacement in a formula C of an occurrence of A by B produces a formula equivalent to C.
- The two previous results allow for equational reasoning in proving logical equivalence.

Definition

Given a propositional formula A, we say that it is in:

- Conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals (atomic formulas or negated atomic formulas), i.e. $A=\bigwedge_{i} \bigvee_{j} \Lambda_{i j}$, for literals $I_{i j}$;
- Disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals, i.e. $A=\bigvee_{i} \bigwedge_{j} l_{i j}$, for literals $l_{i j}$.

Note that in some treatments, \perp is not allowed in literals.

Proposition

Any formula is equivalent to a CNF and to a DNF.

Proof.

The wanted CNF and DNF can be obtained by rewriting of the given formula, using the logical equivalences listed before.

Semantics

Notation

We let $\Gamma, \Gamma^{\prime}, \ldots$ range over sets of formulas and use Γ, A to abbreviate $\Gamma \cup\{A\}$ ．

Definition

Let 「 be a set of formulas．
－Γ is valid in a model \mathcal{M}（or \mathcal{M} satisfies Γ ），iff $\mathcal{M} \models A$ for every formula $A \in \Gamma$ ． We denote this by $\mathcal{M} \models \Gamma$ ．
－「 is satisfiable iff there exists a model \mathcal{M} such that $\mathcal{M} \models \Gamma$ ，and it is refutable iff there exists a model \mathcal{M} such that $\mathcal{M} \not \models \Gamma$ ．
－「 is valid，denoted by $\models \Gamma$ ，iff $\mathcal{M} \models \Gamma$ for every model \mathcal{M} ，and it is unsatisfiable iff it is not satisfiable．

Definition

Let A be a formula and Γ a set of formulas．If every model that validates Γ also validates A ，we say that Γ entails A（or A is a logical consequence of Γ ）．
We denote this by $\Gamma \models A$ and call $\models \subseteq \mathcal{P}$（Form ）$\times$ Form the semantic entailment or logical consequence relation．

Semantics

Proposition

- A is valid iff $\models A$, where $\models A$ abbreviates $\emptyset \models A$.
- A is a contradiction iff $A \models \perp$.
- $A \equiv B$ iff $A \models B$ and $B \models A$. (or equivalently, $A \leftrightarrow B$ is valid).

Proposition

The semantic entailment relation satisfies the following properties (of an abstract consequence relation):

- For all $A \in \Gamma, \Gamma \models A$.
- If $\Gamma \models A$, then $\Gamma, B \models A$.
- If $\Gamma \models A$ and $\Gamma, A \models B$, then $\Gamma \models B$.

$$
I T I \vDash A \text { ana } I, A \vDash B \text {, tnen } I \vDash D \text {. }
$$

(cut)

Proposition

Further properties of semantic entailment are:

- $\Gamma \models A \wedge B$ iff $\Gamma \models A$ and $\Gamma \models B$
- $\Gamma \models A \vee B$ iff $\Gamma \models A$ or $\Gamma \models B$
- 「 $\models A \rightarrow B$ iff $\Gamma, A \models B$
- $\Gamma \models \neg A$ iff $\Gamma, A \models \perp$
- 「 $\vDash A$ iff $\quad \Gamma, \neg A \models \perp$

Proof system

The natural deduction system $\mathcal{N}_{\text {PL }}$

- The proof system we will consider is a "natural deduction in sequent style" (not to confuse with a "sequent calculus"), which we name $\mathcal{N}_{\text {PL }}$.
- The "judgments" (or "assertions") of $\mathcal{N}_{\mathrm{PL}}$ are sequents $\Gamma \vdash A$, where Γ is a set of formulas (a.k.a. context or LHS) and A a formula (a.k.a. conclusion or RHS), informally meaning that " A can be proved from the assumptions in Γ ".
- Natural deduction systems typically have "introduction" and "elimination" rules for each connective. The set of rules of $\mathcal{N}_{\text {PL }}$ is below.

Rules of $\mathcal{N}_{\text {PL }}$

$$
(\mathrm{Ax}) \frac{\Gamma, A \vdash A}{\Gamma, A} \quad(\mathrm{RAA}) \frac{\Gamma, \neg A \vdash \perp}{\Gamma \vdash A}
$$

Introduction Rules:

$$
\begin{aligned}
\left(\mathrm{I}_{\wedge}\right) & \frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \wedge B} \\
& \left(\mathrm{I}_{\vee i}\right) \frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{1} \vee A_{2}} i \in\{1,2\} \\
& \quad\left(\mathrm{I}_{\neg}\right) \frac{\Gamma, A \vdash \perp}{\Gamma \vdash A \vdash B}
\end{aligned}
$$

Elimination Rules:

$$
\begin{aligned}
&\left(\mathrm{E}_{\wedge i}\right) \frac{\Gamma \vdash A_{1} \wedge A_{2}}{\Gamma \vdash A_{i}} i \in\{1,2\} \quad\left(\mathrm{E}_{\vee}\right) \\
& \\
&\left(\mathrm{E}_{\rightarrow}\right) \frac{\Gamma \vdash A \vdash A \vee B \quad \Gamma, A \vdash C}{\Gamma \vdash C} \Gamma, B \vdash C \\
& \Gamma \vdash B\left(\mathrm{E}_{\neg}\right) \frac{\Gamma \vdash A \rightarrow B}{\Gamma \vdash B}
\end{aligned}
$$

Definition

- A derivation of a sequent $\Gamma \vdash A$ is a tree of sequents, built up from instances of the inference rules of $\mathcal{N}_{\mathrm{PL}}$, having as root $\Gamma \vdash A$ and as leaves instances of (Ax). (The set of $\mathcal{N}_{\mathrm{PL}}$-derivations can formally be given as an inductive definition and has associated recursion and inductive principles.)
- Derivations induce a binary relation $\vdash \in \mathcal{P}$ (Form) \times Form , called the derivability/deduction relation:
- $(\Gamma, A) \in \vdash$ iff there is a derivation of the sequent $\Gamma \vdash A$ in $\mathcal{N}_{\mathrm{PL}}$;
- typically we overload notation and abbreviate $(\Gamma, A) \in \vdash$ by $\Gamma \vdash A$, reading " $\Gamma \vdash A$ is derivable", or " A can be derived (or deduced) from Γ ", or " Γ infers $A^{\prime \prime}$;
- A formula that can be derived from the empty context is called a theorem.

Definition

An inference rule is admissible in $\mathcal{N}_{\mathrm{PL}}$ if every sequent that can be derived making use of that rule can also be derived without it.

Proof system

Proposition

The following rules are admissible in $\mathcal{N}_{\mathrm{PL}}$:
Weakening $\frac{\Gamma \vdash A}{\Gamma, B \vdash A}$

$$
C u t \frac{\Gamma \vdash A \quad \Gamma, A \vdash B}{\Gamma \vdash B}
$$

$(\perp) \frac{\Gamma \vdash \perp}{\Gamma \vdash A}$

Proof.

- Admissibility of weakening is proved by induction on the premise's derivation.
- Cut is actually a derivable rule in $\mathcal{N}_{\text {PL }}$, i.e. can be obtained through a combination of $\mathcal{N}_{\mathrm{PL}}$ rules.
- Admissibility of (\perp) follows by combining weakening and RAA.

Definition

Γ is said inconsistent if $\Gamma \vdash \perp$ and otherwise is said consistent.

Proposition

If Γ is consistent, then either $\Gamma \cup\{A\}$ or $\Gamma \cup\{\neg A\}$ is consistent (but not both).

Proof.

If not, one could build a derivation of $\Gamma \vdash \perp$ (how?), and Γ would be inconsistent.

Remark

Traditional presentations of natural deduction take formulas as judgements and not sequents. In these presentations:

- derivations are trees of formulas, whose leaves can be either "open" or "closed";
- open leaves correspond to the assumptions upon which the conclusion formula (the root of the tree) depends;
- some rules allow for the closing of leaves (thus making the conclusion formula not depend on those assumptions).
For example, introduction and elimination rules for implication look like:

$$
\left(E_{\rightarrow}\right) \frac{A \rightarrow B \quad A}{B} \quad \begin{gathered}
{[A]} \\
\vdots \\
\\
\end{gathered}
$$

In rule $\left(I_{\rightarrow}\right)$, any number of occurrences of A as a leaf may be closed (signalled by the use of square brackets).

Adequacy of the proof system

Theorem (Soundness)
If $\Gamma \vdash A$, then $\Gamma \models A$.

Proof.

By induction on the derivation of $\Gamma \vdash A$. Some of the cases are illustrated:

- If the last step is

$$
(A x) \overline{\Gamma^{\prime}, A \vdash A}
$$

We need to prove $\Gamma^{\prime}, A \models A$, which holds by the inclusion property of semantic entailment.

- If the last step is

$$
\left(I_{\rightarrow}\right) \frac{\Gamma, B \vdash C}{\Gamma \vdash B \rightarrow C}
$$

By IH , we have $\Gamma, B \models C$, which is equivalent to $\Gamma \models B \rightarrow C$, by one of the properties of semantic entailment.

- If the last step is

$$
\left(\mathrm{E}_{\rightarrow}\right) \frac{\Gamma \vdash B \quad \Gamma \vdash B \rightarrow A}{\Gamma \vdash A}
$$

By IH, we have both $\Gamma \models B$ and $\Gamma \models B \rightarrow A$. From these, we can easily get $\Gamma \models A$.

Adequacy of the proof system

Definition

Γ is maximally consistent iff it is consistent and furthermore, given any formula A, either A or $\neg A$ belongs to Γ (but not both can belong).

Proposition

Maximally consistent sets are closed for derivability, i.e. given a maximally consistent set Γ and given a formula $A, \Gamma \vdash A$ implies $A \in \Gamma$.

Lemma

If Γ is consistent, then there exists $\Gamma^{\prime} \supseteq \Gamma$ s.t. Γ^{\prime} is maximally consistent.

Proof.

Let $\Gamma_{0}=\Gamma$ and consider an enumeration A_{1}, A_{2}, \ldots of the set of formulas Form . For each of these formulas, define Γ_{i} to be $\Gamma_{i-1} \cup\left\{A_{i}\right\}$ if this is consistent, or $\Gamma_{i-1} \cup\left\{\neg A_{i}\right\}$ otherwise. (Note that one of these sets is consistent.) Then, we take $\Gamma^{\prime}=\bigcup_{i} \Gamma_{i}$. Clearly, by construction, $\Gamma^{\prime} \supseteq \Gamma$ and for each A_{i} either $A_{i} \in \Gamma^{\prime}$ or $\neg A_{i} \in \Gamma^{\prime}$. Also, Γ^{\prime} is consistent (otherwise some Γ_{i} would be inconsistent).

Adequacy of the proof system

Proposition

Γ is consistent iff Γ is satisfiable.

Proof.

The "if statement" follows from the soundness theorem. Let us proof the converse.
Let Γ^{\prime} be a maximally consistent extension of Γ (guaranteed to exist by the previous lemma) and define \mathcal{M} as the set of proposition symbols that belong to Γ^{\prime}.

Claim: $\mathcal{M} \equiv A \quad$ iff $\quad A \in \Gamma^{\prime}$.
As $\Gamma^{\prime} \supseteq \Gamma, \mathcal{M}$ is a model of Γ, hence Γ is satisfiable.
The claim is proved by induction on A. Two cases are illustrated.
Case $A=P$. The claim is immediate by construction of \mathcal{M}.
Case $A=B \rightarrow C$. By IH and the fact that Γ^{\prime} is maximally consistent, $\mathcal{M} \models B \rightarrow C$ is equivalent to $\neg B \in \Gamma^{\prime}$ or $C \in \Gamma^{\prime}$, which in turn is equivalent to $B \rightarrow C \in \Gamma^{\prime}$. The latter equivalence is proved with the help of the fact that Γ^{\prime}, being maximally consistent, is closed for derivability.

Adequacy of the proof system

Theorem (Completeness)

If $\Gamma \models A$ then $\Gamma \vdash A$.

Proof.

Suppose $\Gamma \vdash A$ does not hold. Then, $\Gamma \cup\{\neg A\}$ is consistent (why?) and thus, by the above proposition, $\Gamma \cup\{\neg A\}$ would have a model, contradicting $\Gamma \models A$.

Corolary (Compactness)

A (possibly infinite) set of formulas Γ is satisfiable if and only if every finite subset of Γ is satisfiable.

Proof.

The key observation is that, in $\mathcal{N}_{\mathrm{PL}}$, if $\Gamma \vdash A$, then there exists a finite $\Gamma^{\prime} \subseteq \Gamma$ s.t. $\Gamma^{\prime} \vdash A$.

First-Order Logic

Syntax

Definition

The alphabet of a first-order language is organised into the following categories.

- Logical connectives: $\perp, \neg, \wedge, \vee, \rightarrow, \forall$ and \exists.
- Auxiliary symbols: ".", ",", "(" and ")".
- Variables: we assume a countable infinite set \mathcal{X} of variables, ranged over by x, y, z, \ldots
- Constant symbols: we assume a countable set \mathcal{C} of constant symbols, ranged over by a, b, c, \ldots
- Function symbols: we assume a countable set \mathcal{F} of function symbols, ranged over by f, g, h, \ldots. Each function symbol f has a fixed arity $\operatorname{ar}(f)$, which is a positive integer.
- Predicate symbols: we assume a countable set \mathcal{P} of predicate symbols, ranged over by P, Q, R, \ldots Each predicate symbol P has a fixed arity $\operatorname{ar}(P)$, which is a non-negative integer. (Predicate symbols with arity 0 play the role of propositions.)

The union of the non-logical symbols of the language is called the vocabulary and is denoted by \mathcal{V}, i.e. $\mathcal{V}=\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$.

Notation

Throughout, and when not otherwise said, we assume a vocabulary $\mathcal{V}=\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$.

Syntax

Definition

The set of terms of a first-order language over a vocabulary \mathcal{V} is given by:

$$
\operatorname{Term}_{\mathcal{V}} \ni t, u::=x|c| f\left(t_{1}, \ldots, t_{\operatorname{ar}(f)}\right)
$$

The set of variables occurring in t is denoted by $\operatorname{Vars}(t)$.

Definition

The set of formulas of a first-order language over a vocabulary \mathcal{V} is given by:

$$
\begin{aligned}
\text { Form }_{\mathcal{V}} \ni \phi, \psi, \theta::= & P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)|\perp|(\neg \phi)|(\phi \wedge \psi)|(\phi \vee \psi) \\
& |(\phi \rightarrow \psi)|(\forall x \cdot \phi) \mid(\exists x \cdot \phi)
\end{aligned}
$$

An atomic formula has the form \perp or $P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)$.

Remark

- We assume the conventions of propositional logic to omit parentheses, and additionally assume that quantifiers have the lowest precedence.
- Nested quantifications such as $\forall x . \forall y . \phi$ are abbreviated to $\forall x, y . \phi$.
- There are recursion and induction principles (e.g. structural ones) for Term \mathcal{V} and Form $\mathcal{V}_{\mathcal{V}}$.

Syntax

Definition

- A formula ψ that occurs in a formula ϕ is called a subformula of ϕ.
- In a quantified formula $\forall x . \phi$ or $\exists x . \phi, x$ is the quantified variable and ϕ is the scope of the quantification.
- Occurrences of the quantified variable within the respective scope are said to be bound. Variable occurrences that are not bound are said to be free.
- The set of free variables (resp.bound variables) of a formula θ, is denoted $\mathrm{FV}(\theta)$ (resp. $\mathrm{BV}(\theta)$).

Definition

- A sentence (or closed formula) is a formula without free variables.
- If $\operatorname{FV}(\phi)=\left\{x_{1}, \ldots, x_{n}\right\}$, the universal closure of ϕ is the formula $\forall x_{1}, \ldots, x_{n} . \phi$ and the existential closure of ϕ is the formula $\exists x_{1}, \ldots, x_{n} . \phi$.

Definition

- A substitution is a mapping $\sigma: \mathcal{X}->\operatorname{Term}_{\mathcal{V}}$ s.t. the set $\operatorname{dom}(\sigma)=\{x \in \mathcal{X} \mid \sigma(x) \neq x\}$, called the substitution domain, is finite.
- The notation $\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]$ (for distinct x_{i} 's) denotes the substitution whose domain is contained in $\left\{x_{1}, \ldots, x_{n}\right\}$ and maps each x_{i} to t_{i}.

Syntax

Definition

The application of a substitution σ to a term t is denoted by $t \sigma$ and is defined recursively by:

$$
\begin{aligned}
x \sigma & =\sigma(x) \\
c \sigma & =c \\
f\left(t_{1}, \ldots, t_{\operatorname{ar}(f)}\right) \sigma & =f\left(t_{1} \sigma, \ldots, t_{\operatorname{ar}(f)} \sigma\right)
\end{aligned}
$$

Remark

The result of

$$
t\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right]
$$

corresponds to the simultaneous substitution of t_{1}, \ldots, t_{n} for x_{1}, \ldots, x_{n} in t. This differs from the application of the corresponding singleton substitutions in sequence,

$$
\left(\left(t\left[t_{1} / x_{1}\right]\right) \ldots\right)\left[t_{n} / x_{n}\right] .
$$

Notation

Given a function $f: X \longrightarrow Y, x \in X$ and $y \in Y$, the notation $f[x \mapsto y]$ stands for the function defined as f except possibly for x, to which y is assigned, called the patching of f in x to y.

Syntax

Definition

The application of a substitution σ to a formula ϕ, written $\phi \sigma$, is given recursively by:

$$
\begin{aligned}
\perp \sigma & =\perp \\
P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right) \sigma & =P\left(t_{1} \sigma, \ldots, t_{\operatorname{ar}(P)} \sigma\right) \\
(\neg \phi) \sigma & =\neg(\phi \sigma) \\
(\phi \odot \psi) \sigma & =(\phi \sigma) \odot(\psi \sigma) \\
(Q x \cdot \phi) \sigma & =Q x \cdot(\phi(\sigma[x \mapsto x]))
\end{aligned}
$$

where $\odot \in\{\wedge, \vee \rightarrow\}$ and $Q \in\{\forall, \exists\}$.

Remark

- Only free occurrences of variables can change when a substitution is applied to a formula.
- Unrestricted application of substitutions to formulas can cause capturing of variables as in: $(\forall x . P(x, y))[g(x) / y]=\forall x . P(x, g(x))$
- "Safe substitution" (which we assume throughout) is achieved by imposing that a substitution when applied to a formula should be free for it.

Definition

- A term t is free for x in θ iff x has no free occurrences in the scope of a quantifier $Q y(y \neq x)$ s.t. $y \in \operatorname{Vars}(t)$.
- A substitution σ is free for θ iff $\sigma(x)$ is free for x in θ, for all $x \in \operatorname{dom}(\sigma)$.

Semantics

Definition

Given a vocabulary \mathcal{V}, a \mathcal{V}-structure is a pair $\mathcal{M}=(D, I)$ where D is a nonempty set, called the interpretation domain, and l is called the interpretation function, and assigns constants, functions and predicates over D to the symbols of \mathcal{V} as follows:

- for each $c \in \mathcal{C}$, the interpretation of c is a constant $I(c) \in D$;
- for each $f \in \mathcal{F}$, the interpretation of f is a function $I(f): D^{\operatorname{ar}(f)} \rightarrow D$;
- for each $P \in \mathcal{P}$, the interpretation of P is a function $I(P): D^{\operatorname{ar}(P)} \rightarrow\{\mathbf{F}, \mathbf{T}\}$. In particular, 0 -ary predicate symbols are interpreted as truth values.
\mathcal{V}-structures are also called models for \mathcal{V}.

Definition

Let D be the interpretation domain of a structure. An assignment for D is a function $\alpha: \mathcal{X} \rightarrow D$ from the set of variables to the domain D.

Notation

In what follows, we let $\mathcal{M}, \mathcal{M}^{\prime}, \ldots$ range over the structures of an intended vocabulary, and $\alpha, \alpha^{\prime}, \ldots$ range over the assignments for the interpretation domain of an intended structure.

Semantics

Definition

Let $\mathcal{M}=(D, I)$ be a \mathcal{V}-structure and α an assignment for D.

- The value of a term t w.r.t. \mathcal{M} and α is an element of D, denoted by $\llbracket t \rrbracket_{\mathcal{M}, \alpha}$, and recursively given by:

$$
\begin{array}{ll}
\llbracket x \rrbracket_{\mathcal{M}, \alpha} & =\alpha(x) \\
\llbracket c \rrbracket_{\mathcal{M}, \alpha} & = \\
\llbracket f\left(t_{1}, \ldots, t_{\operatorname{ar}(f)}\right) \rrbracket_{\mathcal{M}, \alpha} & =I(f)\left(\llbracket t_{1} \rrbracket_{\mathcal{M}, \alpha}, \ldots, \llbracket t_{\operatorname{ar}(f)} \rrbracket_{\mathcal{M}, \alpha}\right)
\end{array}
$$

- The (truth) value of a formula ϕ w.r.t. \mathcal{M} and α, is denoted by $\llbracket \phi \rrbracket_{\mathcal{M}, \alpha}$, and recursively given by:

$$
\begin{array}{lll}
\llbracket \perp \rrbracket_{\mathcal{M}, \alpha}=\mathbf{F} & \\
\llbracket P\left(t_{1}, \ldots, t_{\mathrm{ar}(P)}\right) \rrbracket_{\mathcal{M}, \alpha} & = & I(P)\left(\llbracket t_{1} \rrbracket_{\mathcal{M}, \alpha}, \ldots, \llbracket t_{\operatorname{ar}(P)} \rrbracket_{\mathcal{M}, \alpha}\right) \\
\llbracket \neg \phi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} & \text { iff } & \llbracket \phi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{F} \\
\llbracket \phi \wedge \psi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} & \text { iff } & \llbracket \phi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} \text { and } \llbracket \psi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} \\
\llbracket \phi \vee \psi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} & \text { iff } & \llbracket \phi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} \text { or } \llbracket \psi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} \\
\llbracket \phi \rightarrow \psi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} & \text { iff } & \llbracket \phi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{F} \text { or } \llbracket \psi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} \\
\llbracket \forall x \cdot \phi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} & \text { iff } & \llbracket \phi \rrbracket_{\mathcal{M}, \alpha[x \mapsto a]}=\mathbf{T} \text { for all } a \in D \\
\llbracket \exists x \cdot \phi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T} & \text { iff } & \llbracket \phi \rrbracket_{\mathcal{M}, \alpha[x \mapsto a]}=\mathbf{T} \text { for some } a \in D
\end{array}
$$

Semantics

Remark

Universal and existential quantifications are indeed a gain over PL. They can be read (resp.) as generalised conjunction and disjunction (possibly infinite):

$$
\llbracket \forall x \cdot \phi \rrbracket_{\mathcal{M}, \alpha}=\bigwedge_{a \in D} \llbracket \phi \rrbracket_{\mathcal{M}, \alpha[x \mapsto a]} \quad \llbracket \exists x . \phi \rrbracket_{\mathcal{M}, \alpha}=\bigvee_{a \in D} \llbracket \phi \rrbracket_{\mathcal{M}, \alpha[x \mapsto a]}
$$

Definition

Let \mathcal{V} be a vocabulary and \mathcal{M} a \mathcal{V}-structure.

- \mathcal{M} satisfies ϕ with α, denoted by $\mathcal{M}, \alpha \models \phi$, iff $\llbracket \phi \rrbracket_{\mathcal{M}, \alpha}=\mathbf{T}$.
- \mathcal{M} satisfies ϕ (or that ϕ is valid in \mathcal{M}, or \mathcal{M} is a model of ϕ), denoted by $\mathcal{M} \models \phi$, iff for every assignment $\alpha, \mathcal{M}, \alpha \models \phi$.
- ϕ is satisfiable if exists \mathcal{M} s.t. $\mathcal{M} \models \phi$, and it is valid, denoted by $\models \phi$, if $\mathcal{M} \models \phi$ for every $\mathcal{M} . \phi$ is unsatisfiable (or a contradiction) if it is not satisfiable, and refutable if it is not valid.

Lemma

Let \mathcal{M} be a structure, t and u terms, ϕ a formula, and α, α^{\prime} assignments.

- If for all $x \in \operatorname{Vars}(t), \alpha(x)=\alpha^{\prime}(x)$, then $\llbracket t \rrbracket_{\mathcal{M}, \alpha}=\llbracket t \rrbracket_{\mathcal{M}, \alpha^{\prime}}$
- If for all $x \in \operatorname{FV}(\phi), \alpha(x)=\alpha^{\prime}(x)$, then $\mathcal{M}, \alpha \models \phi \quad$ iff $\quad \mathcal{M}, \alpha^{\prime} \models \phi$.
- $\llbracket t[u / x] \rrbracket_{\mathcal{M}, \alpha}=\llbracket t \rrbracket_{\left.\mathcal{M}, \alpha[x \mapsto \llbracket u]_{\mathcal{M}, \alpha}\right]}$
- If t is free for x in ϕ, then $\mathcal{M}, \alpha \models \phi[t / x] \quad$ iff $\quad \mathcal{M}, \alpha\left[x \mapsto \llbracket \mathcal{M} \rrbracket_{\alpha, t}\right] \vDash \phi$.

Semantics

Proposition (Lifting validity of PL)

Let $\lceil\cdot\rceil$: Prop $->$ Form $_{\mathcal{V}}$, be a mapping from the set of proposition symbols to first-order formulas and denote also by $\lceil\cdot\rceil$ its homomorphic extension to all propositional formulas. Then, for all propositional formulas A and B :

- $\mathcal{M}, \alpha \models\lceil A\rceil \quad$ iff $\overline{\mathcal{M}_{\alpha}} \models_{P L} A$, where $\overline{\mathcal{M}_{\alpha}}=\{P \mid \mathcal{M}, \alpha \models\lceil P\rceil\}$.
- If $\models_{P L} A$, then $\models_{F O L}\lceil A\rceil$.
- If $A \equiv_{P L} B$, then $\lceil A\rceil \equiv_{F O L}\lceil B\rceil$.

Some properties of logical equivalence

- The properties of logical equivalence listed for PL hold for FOL.
- The following equivalences hold:

$$
\begin{aligned}
\neg \forall x \cdot \phi & \equiv \exists x \cdot \neg \phi & \neg \exists x \cdot \phi & \equiv \forall x \cdot \neg \phi \\
\forall x \cdot \phi \wedge \psi & \equiv(\forall x \cdot \phi) \wedge(\forall x \cdot \psi) & \exists x \cdot \phi \vee \psi & \equiv(\exists x \cdot \phi) \vee(\exists x \cdot \psi)
\end{aligned}
$$

- For $Q \in\{\forall, \exists\}$, if y is free for x in ϕ and $y \notin \operatorname{FV}(\phi)$, then $Q x . \phi \equiv Q y . \phi[y / x]$.
- For $Q \in\{\forall, \exists\}$, if $x \notin \mathrm{FV}(\phi)$, then $Q x . \phi \equiv \phi$.
- For $Q \in\{\forall, \exists\}$ and $\odot \in\{\wedge, \vee\}$, if $x \notin \mathrm{FV}(\psi)$, then $Q x . \phi \odot \psi \equiv(Q x . \phi) \odot \psi$.

Semantics

Definition

A formula is in prenex form if it is of the form $Q_{1} x_{1} \cdot Q_{2} x_{2} \ldots Q_{n} x_{n} \cdot \psi$ (possibly with $n=0$) where each Q_{i} is a quantifier (either \forall or \exists) and ψ is a quantifier-free formula .

Proposition

For any formula of first-order logic, there exists an equivalent formula in prenex form.

Proof.

Such a prenex form can be obtained by rewriting, using the logical equivalences listed before.

Remark

Unlike PL, the validity problem of FOL is not decidable, but it is semi-decidable, i.e. there are procedures s.t., given a formula ϕ, they terminate with "yes" if ϕ is valid but may fail to terminate if ϕ is not valid.

Semantics

Definition

- \mathcal{M} satisfies Γ with α, denoted by $\mathcal{M}, \alpha \models \Gamma$, if $\mathcal{M}, \alpha \models \phi$ for every $\phi \in \Gamma$.
- The notions of satisfiable, valid, unsatisfiable and refutable set of formulas are defined in the expected way.
- 「 entails ϕ (or ϕ is a logical consequence of Γ), denoted by $\Gamma \models \phi$, iff for every structure \mathcal{M} and assignment α, if $\mathcal{M}, \alpha \models \Gamma$ then $\mathcal{M}, \alpha \models \phi$.
- ϕ is logically equivalent to ψ, denoted by $\phi \equiv \psi$, iff $\llbracket \phi \rrbracket_{\mathcal{M}, \alpha}=\llbracket \psi \rrbracket_{\mathcal{M}, \alpha}$ for every structure \mathcal{M} and assignment α.

Some properties of semantic entailment

- The properties of semantic entailment listed for PL hold for FOL.
- If t is free for x in ϕ and $\Gamma \models \forall x . \phi$, then $\Gamma \models \phi[t / x]$.
- If $x \notin \mathrm{FV}(\Gamma)$ and $\Gamma \models \phi$, then $\Gamma \models \forall x$. ϕ.
- If t is free for x in ϕ and $\Gamma \models \phi[t / x]$, then $\Gamma \models \exists x . \phi$.
- If $x \notin \operatorname{FV}(\Gamma \cup\{\psi\})$, $\Gamma \models \exists x . \phi$ and $\Gamma, \phi \models \psi$, then $\Gamma \models \psi$.

Proof system

The natural deduction system $\mathcal{N}_{\text {FOL }}$

- The proof system for FOL we consider is a natural deduction system in sequent style extending $\mathcal{N}_{\text {PL }}$.
- The various definitions made in the context of $\mathcal{N}_{\text {PL }}$ carry over to $\mathcal{N}_{\text {FOL }}$. The difference is that $\mathcal{N}_{\text {FOL }}$ deals with first-order formulas and it has additional introduction and elimination rules to deal with the quantifiers.

Quantifier rules of $\mathcal{N}_{\text {FOL }}$

$$
\begin{aligned}
& \text { (I } \mathrm{I}_{\forall} \text {) } \frac{\Gamma \vdash \phi[y / x]}{\Gamma \vdash \forall x \cdot \phi}(\mathrm{a})\left(\mathrm{E}_{\forall}\right) \frac{\Gamma \vdash \forall x \cdot \phi}{\Gamma \vdash \phi[t / x]} \\
&\left(\mathrm{I}_{\exists}\right) \frac{\Gamma \vdash \phi[t / x]}{\Gamma \vdash \exists x \cdot \phi}\left(\mathrm{E}_{\exists}\right) \frac{\Gamma \vdash \exists x \cdot \phi}{\Gamma, \phi[y / x] \vdash \theta} \\
& \text { (b) }
\end{aligned}
$$

(a) $y \notin \mathrm{FV}(\Gamma)$ and either $x=y$ or $y \notin \mathrm{FV}(\phi)$.
(b) $y \notin \mathrm{FV}(\Gamma \cup\{\theta\})$ and either $x=y$ or $y \notin \mathrm{FV}(\phi)$.
(c) Recall that we assume safe substitution, i.e. in a substitution $\phi[t / x]$, we assume that t is free for x in ϕ.

Remark

The properties of $\mathcal{N}_{\mathrm{PL}}$ can be extended to $\mathcal{N}_{\mathrm{FOL}}$, in particular the soundness and completeness theorems.

Theorem (Adequacy)

$\ulcorner\models \varphi$ iff $\Gamma \vdash \varphi$.

First-order theories

Definition

Let \mathcal{V} be a vocabulary of a first-order language.

- A first-order theory \mathcal{T} is a set of \mathcal{V}-sentences that is closed under derivability (i.e., $\mathcal{T} \vdash \phi$ implies $\phi \in \mathcal{T}$). A \mathcal{T}-structure is a \mathcal{V}-structure that validates every formula of \mathcal{T}.
- A formula ϕ is \mathcal{T}-valid (resp. \mathcal{T}-satisfiable) if every (resp. some) \mathcal{T}-structure validates $\phi . \mathcal{T} \models \phi$ denotes the fact that ϕ is \mathcal{T}-valid.
- Other concepts regarding validity of first-order formulas are carried over to theories in the obvious way.

Definition

A subset $\mathcal{A} \subseteq \mathcal{T}$ is called an axiom set for the theory \mathcal{T} when \mathcal{T} is the deductive closure of \mathcal{A}, i.e. $\psi \in \mathcal{T}$ iff $\mathcal{A} \vdash \psi$, or equivalently, iff $\vdash \psi$ can be derived in $\mathcal{N}_{\text {FOL }}$ with an axiom-schema:

$$
\overline{\Gamma \vdash \phi} \text { if } \phi \in \mathcal{A}
$$

First-order theories

Equality theory

The theory of equality \mathcal{T}_{E} for \mathcal{V} (which is assumed to have a binary equality predicate symbol " $=$ ") has the following axiom set:

- reflexivity: $\forall x . x=x$
- symmetry: $\forall x, y . x=y \rightarrow y=x$
- transitivity: $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
- congruence for function symbols: for every $f \in \mathcal{F}$ with $\operatorname{ar}(f)=n$,

$$
\forall \bar{x}, \bar{y} \cdot x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

- congruence for predicate symbols: for every $P \in \mathcal{P}$ with $\operatorname{ar}(P)=n$,

$$
\forall \bar{x}, \bar{y} \cdot x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)
$$

Theorem

A sentence ϕ is valid in all normal structures (i.e. structures which interpret $=$ as the equality relation over the interpretation domain) iff $\phi \in \mathcal{T}_{\mathrm{E}}$.

