Generation of Verification Conditions (cont'd)

Andreas Podelski

November 21, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• given a Hoare triple $\{\phi\} \in \{\psi\}$,

- given a Hoare triple $\{\phi\} \in \{\psi\}$,
- construct a backwards derivation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- given a Hoare triple $\{\phi\} \in \{\psi\}$,
- construct a backwards derivation
- derivation = sequence of Hoare triples, each Hoare triple is an axiom (skip, update) or it is inferred by one of the inference rules (seq, cond, while)

- given a Hoare triple $\{\phi\} \in \{\psi\}$,
- construct a backwards derivation
- derivation = sequence of Hoare triples, each Hoare triple is an axiom (skip, update) or it is inferred by one of the inference rules (seq, cond, while)
- ► Hoare triple uses given postcondition and *weakest precondition*

derivation unique

- given a Hoare triple $\{\phi\} \in \{\psi\}$,
- construct a backwards derivation
- derivation = sequence of Hoare triples, each Hoare triple is an axiom (skip, update) or it is inferred by one of the inference rules (seq, cond, while)
- ► Hoare triple uses given postcondition and *weakest precondition*

- derivation unique
- verification condition = set of side conditions

• wp(skip,
$$\psi$$
) = ψ

• wp(skip,
$$\psi$$
) = ψ

• wp(
$$x := e, \psi$$
) = $\psi[e/x]$

• wp(skip,
$$\psi$$
) = ψ

• wp(
$$x := e, \psi$$
) = $\psi[e/x]$

• wp(
$$C_1$$
; C_2 , ψ) = wp(C_1 , wp(C_2 , ψ))

(ロ)、

• wp(skip,
$$\psi$$
) = ψ

• wp(
$$x := e, \psi$$
) = $\psi[e/x]$

- $\blacktriangleright \operatorname{wp}(C_1; C_2, \psi) = \operatorname{wp}(C_1, \operatorname{wp}(C_2, \psi))$
- wp(if *b* then C_1 else C_2, ψ) = $(\neg b \lor \phi_1) \land (b \lor \phi_2)$ where

$$\phi_1 = wp(C_1, \psi)$$

$$\phi_2 = wp(C_2, \psi)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• wp(skip,
$$\psi$$
) = ψ

• wp(x :=
$$e, \psi$$
) = $\psi[e/x]$

- $\blacktriangleright \operatorname{wp}(C_1; C_2, \psi) = \operatorname{wp}(C_1, \operatorname{wp}(C_2, \psi))$
- wp(if *b* then C_1 else C_2, ψ) = $(\neg b \lor \phi_1) \land (b \lor \phi_2)$ where

$$\phi_1 = wp(C_1, \psi)$$

$$\phi_2 = wp(C_2, \psi)$$

• wp(while *b* do $\{\theta\}$ C_0, ψ) = θ

▶ for command *C* of form: skip, update, seq, cond,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ for command *C* of form: skip, update, seq, cond,

add one implication:

 $\phi \rightarrow wp(C, \psi)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- ▶ for command *C* of form: skip, update, seq, cond,
- add one implication:

$$\phi \rightarrow \mathsf{wp}(\mathcal{C}, \psi)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• for command *C* of form: while *b* do $\{\theta\}$ *C*₀,

- ▶ for command *C* of form: skip, update, seq, cond,
- add one implication:

$$\phi \rightarrow \mathsf{wp}(\mathcal{C}, \psi)$$

- for command *C* of form: while *b* do $\{\theta\}$ *C*₀ ,
- add two implications:

$$\begin{array}{l} \phi \to \theta \\ \theta \wedge \neg b \to \psi \end{array}$$

and add verification condition for Hoare triple $\{\theta \land b\} C_0 \{\theta\}$

Adequacy of Verification Condition

• let Φ be the verification condition for $\{\phi\} \ C \ \{\psi\}$

Adequacy of Verification Condition

• let Φ be the verification condition for $\{\phi\} \in \{\psi\}$

 let Γ be a set of assertions
 (e.g., axioms for bounded integer arithmetic, axioms for factorial function, ...)

Adequacy of Verification Condition

- let Φ be the verification condition for $\{\phi\} \in \{\psi\}$
- let Γ be a set of assertions
 (e.g., axioms for bounded integer arithmetic, axioms for factorial function, ...)

$$\mathsf{\Gamma} \models \Phi \quad \text{iff} \quad \mathsf{\Gamma} \vdash \{\phi\} \ C \ \{\psi\}$$