Generation of Verification Conditions

Andreas Podelski

November 15, 2011

given a Hoare triple {φ} C {ψ},
 a derivation is a sequence of Hoare triples,
 each Hoare triple is an axiom (skip, update)
 or it is inferred by one of the inference rules (seq, cond, while)

given a Hoare triple {φ} C {ψ},
 a derivation is a sequence of Hoare triples,
 each Hoare triple is an axiom (skip, update)
 or it is inferred by one of the inference rules (seq, cond, while)

mechanization:

given a Hoare triple {φ} C {ψ},
 a derivation is a sequence of Hoare triples,
 each Hoare triple is an axiom (skip, update)
 or it is inferred by one of the inference rules (seq, cond, while)

mechanization:

construct a derivation assuming that side conditions hold,

and then check side conditions
 "discharge the verification condition"

given a Hoare triple {φ} C {ψ},
 a derivation is a sequence of Hoare triples,
 each Hoare triple is an axiom (skip, update)
 or it is inferred by one of the inference rules (seq, cond, while)

mechanization:

- construct a derivation assuming that side conditions hold,
- and then check side conditions
 "discharge the verification condition"
- if check does not succeed: try another derivation

given a Hoare triple {φ} C {ψ},
 a derivation is a sequence of Hoare triples,
 each Hoare triple is an axiom (skip, update)
 or it is inferred by one of the inference rules (seq, cond, while)

mechanization:

- construct a derivation assuming that side conditions hold,
- and then check side conditions
 "discharge the verification condition"
- if check does not succeed: try another derivation
- next:

deterministic strategy to construct unique derivation

System $\mathcal{H}(1)$

► Hoare triple {\$\phi\$} C {\$\psi\$} derivable in \$\mathcal{H}\$ if exists a derivation using the axioms and inference rules of \$\mathcal{H}\$

System \mathcal{H} (1)

► Hoare triple {\$\phi\$} C {\$\psi\$} derivable in \$\mathcal{H}\$ if exists a derivation using the axioms and inference rules of \$\mathcal{H}\$

skip

 $\overline{\{\phi\} \ {\rm skip} \ \{\phi\}}$

System \mathcal{H} (1)

▶ Hoare triple {\$\phi\$} C {\$\psi\$} derivable in \$\mathcal{H}\$ if exists a derivation using the axioms and inference rules of \$\mathcal{H}\$
 ▶ skip

 $\{\phi\}$ skip $\{\phi\}$

assignment

$$\overline{\{\psi[e/x]\}\ x := e\ \{\psi\}}$$

(日) (日) (日) (日) (日) (日) (日) (日)

System \mathcal{H} (2)

► sequential command $C \equiv C_1$; C_2 $\frac{\{\phi\} C_1 \{\phi'\} \quad \{\phi'\} C \{\psi\}}{\{\phi\} C \{\psi\}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

System \mathcal{H} (2)

► sequential command
$$C \equiv C_1$$
; C_2
$$\frac{\{\phi\} C_1 \{\phi'\} \quad \{\phi'\} C \{\psi\}}{\{\phi\} C \{\psi\}}$$

• conditional command $C \equiv \mathbf{if} \ b \ \mathbf{then} \ C_1 \ \mathbf{else} \ C_2$

$$\frac{\{\phi \land b\} \ C_1 \ \{\psi\} \qquad \{\phi \land \neg b\} \ C \ \{\psi\}}{\{\phi\} \ C \ \{\psi\}}$$

System $\mathcal{H}(3)$

• while command $C \equiv$ while $b \operatorname{do} \{\theta\} C_0$

$$\frac{\{\theta \land b\} C_0 \{\theta\}}{\{\theta\} C \{\theta \land \neg b\}}$$

System $\mathcal{H}(3)$

• while command $C \equiv$ while $b \operatorname{do} \{\theta\} C_0$

 $\frac{\{\theta \land b\} \ C_0 \ \{\theta\}}{\{\theta\} \ C \ \{\theta \land \neg b\}}$

strengthen precondition, weaken postcondition

$$\frac{\{\phi\}\ C\ \{\psi\}}{\{\phi'\}\ C\ \{\psi'\}} \quad \text{if} \quad \phi' \to \phi \quad \text{and} \quad \psi \to \psi'$$

System $\mathcal{H}(3)$

• while command $C \equiv$ while $b \operatorname{do} \{\theta\} C_0$

 $\frac{\{\theta \land b\} \ C_0 \ \{\theta\}}{\{\theta\} \ C \ \{\theta \land \neg b\}}$

strengthen precondition, weaken postcondition

$$\frac{\{\phi\}\ C\ \{\psi\}}{\{\phi'\}\ C\ \{\psi'\}} \quad \text{if} \quad \phi' \to \phi \quad \text{and} \quad \psi \to \psi'$$

System \mathcal{H} (3)

• while command $C \equiv$ while $b \operatorname{do} \{\theta\} C_0$

 $\frac{\{\theta \land b\} \ C_0 \ \{\theta\}}{\{\theta\} \ C \ \{\theta \land \neg b\}}$

strengthen precondition, weaken postcondition

$$\frac{\{\phi\}\ C\ \{\psi\}}{\{\phi'\}\ C\ \{\psi'\}} \quad \text{if} \quad \phi' \to \phi \quad \text{and} \quad \psi \to \psi'$$

 Hoare triple derivable in all logicals models in which implications in side condition are valid

backward construction of derivation

• given Hoare triple $\{\phi\} \subset \{\psi\}$, "gives inference rule and gives accur

"guess inference rule and guess assumptions" generate Hoare triples from which we could infer $\{\phi\} C \{\psi\}$... and collect side conditions of inference rule (if any)

backward construction of derivation

▶ given Hoare triple {φ} C {ψ},
 "guess inference rule and guess assumptions"
 generate Hoare triples from which we could infer {φ} C {ψ}
 ... and collect side conditions of inference rule (if any)

 repeat on generated Hoare triples to generate new Hoare triples until every Hoare triple is an axiom

mechanize backward inference

▶ given Hoare triple {\$\phi\$} C {\$\psi\$}, from what Hoare triples could we have inferred it? ... using what inference rule?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

mechanize backward inference

▶ given Hoare triple {\$\phi\$} C {\$\psi\$}, from what Hoare triples could we have inferred it? ... using what inference rule?

next:

go through each form of command *C* (skip, update, seq, cond, while)

 $\frac{???}{\{\phi\} \text{ skip } \{\psi\}}$

$\frac{???}{\{\phi\} \text{ skip } \{\psi\}}$

derivation can use what axiom and what inference rule?

$\frac{???}{\{\phi\} \text{ skip } \{\psi\}}$

derivation can use what axiom and what inference rule?

axiom for skip

 $\overline{\{\phi\} \operatorname{skip} \{\phi\}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

►

 $\frac{???}{\{\phi\} \text{ skip } \{\psi\}}$

- derivation can use what axiom and what inference rule?
- axiom for skip

$$\overline{\{\phi\}}\ {
m skip}\ \{\phi\}$$

'strengthen precondition, weaken postcondition' inference rule

$$\frac{\{\phi\}\ C\ \{\psi\}}{\{\phi'\}\ C\ \{\psi'\}} \ \text{ if } \ \phi'\to\phi \ \text{ and } \ \psi\to\psi'$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$???$$
 $\{\phi\}$ skip $\{\psi\}$

 possible derivation sequence: axiom for (skip), followed by weaking of postcondition

$$\frac{\{\phi\} \operatorname{skip} \{\phi\}}{\{\phi\} \operatorname{skip} \{\psi\}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$???$$
 $\{\phi\}$ skip $\{\psi\}$

 possible derivation sequence: axiom for (skip), followed by weaking of postcondition

$$\frac{\{\phi\} \operatorname{skip} \{\phi\}}{\{\phi\} \operatorname{skip} \{\psi\}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• side condition:
$$\phi \to \psi$$

$$???$$
 $\{\phi\}$ skip $\{\psi\}$

 possible derivation sequence: axiom for (skip), followed by weaking of postcondition

$$\frac{\{\phi\} \operatorname{skip} \{\phi\}}{\{\phi\} \operatorname{skip} \{\psi\}}$$

- side condition: $\phi \to \psi$
- possible derivation sequence: axiom for (skip), followed by strengthening of precondition

$$\frac{\{\psi\} \operatorname{skip} \{\psi\}}{\{\phi\} \operatorname{skip} \{\psi\}}$$

$$\frac{???}{\{\phi\} \text{ skip } \{\psi\}}$$

 possible derivation sequence: axiom for (skip), followed by weaking of postcondition

$$\frac{\{\phi\} \operatorname{skip} \{\phi\}}{\{\phi\} \operatorname{skip} \{\psi\}}$$

- side condition: $\phi \to \psi$
- possible derivation sequence: axiom for (skip), followed by strengthening of precondition

$$\frac{\{\psi\} \operatorname{skip} \{\psi\}}{\{\phi\} \operatorname{skip} \{\psi\}}$$

• same side condition: $\phi \to \psi$

$\overline{\{\phi\} \ {\rm skip} \ \{\psi\}} \ \ {\rm if} \ \ \phi \to \psi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$\overline{\{\phi\} \ {\rm skip} \ \{\psi\}} \ \ {\rm if} \ \ \phi \to \psi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

old axiom & strengthening of precondition

$$\overline{\{\phi\}}\ {
m skip}\ \{\psi\} \ \ {
m if}\ \ \phi o \psi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- old axiom & strengthening of precondition
- φ is a precondition for ψ under skip if and only if
 φ → ψ is valid

$$\overline{\{\phi\} \ {\rm skip} \ \{\psi\}} \ \ {\rm if} \ \ \phi \to \psi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- old axiom & strengthening of precondition
- φ is a precondition for ψ under skip if and only if

 $\phi \rightarrow \psi$ is valid

• ψ is the weakest precondition for ψ under **skip**

$$\overline{\{\phi\} \ x := e \ \{\psi\}}$$
 if $\phi \to \psi[e/x]$

$$\overline{\{\phi\} \ x := e \ \{\psi\}}$$
 if $\phi \to \psi[e/x]$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

old axiom & strengthening of precondition

$$\overline{\{\phi\} x := e \{\psi\}} \quad \text{if} \quad \phi \to \psi[e/x]$$

- old axiom & strengthening of precondition
- φ is a precondition for ψ under x := e
 if and only if
 φ → ψ[e/x] is valid

$$\overline{\{\phi\} x := e \{\psi\}} \quad \text{if} \quad \phi \to \psi[e/x]$$

- old axiom & strengthening of precondition
- φ is a precondition for ψ under x := e
 if and only if
 φ → ψ[e/x] is valid
- $\psi[e/x]$ is the weakest precondition for ψ under x := e

old rule:

 $\frac{\{\phi\} \ C_1 \ \{\theta\} \qquad \{\theta\} \ C_2 \ \{\psi\}}{\{\phi\} \ C_1 \ ; \ C_2 \ \{\psi\}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► old rule:

$$\frac{\{\phi\} C_1 \{\theta\} \quad \{\theta\} C_2 \{\psi\}}{\{\phi\} C_1 ; C_2 \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\} \ C_1 \ \{\phi_2\} \qquad \{\phi_2\} \ C_2 \ \{\psi\}}{\{\phi\} \ C_1 \ ; \ C_2 \ \{\psi\}} \phi \to \phi_1$$

old rule:

$$\frac{\{\phi\} C_1 \{\theta\} \{\theta\} C_2 \{\psi\}}{\{\phi\} C_1; C_2 \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\} \ C_1 \ \{\phi_2\} \qquad \{\phi_2\} \ C_2 \ \{\psi\}}{\{\phi\} \ C_1 \ ; \ C_2 \ \{\psi\}} \phi \to \phi_1$$

In the weakest precondition of ψ under C₂ and let φ₁ be the weakest precondition of φ₂ under C₁

old rule:

$$\frac{\{\phi\} C_1 \{\theta\} \{\theta\} C_2 \{\psi\}}{\{\phi\} C_1; C_2 \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\} \ C_1 \ \{\phi_2\} \qquad \{\phi_2\} \ C_2 \ \{\psi\}}{\{\phi\} \ C_1 \ ; \ C_2 \ \{\psi\}} \phi \to \phi_1$$

- In the weakest precondition of ψ under C₂ and let φ₁ be the weakest precondition of φ₂ under C₁
- φ is a precondition for ψ under C₁; C₂
 if and only if
 φ → φ₁ is valid

old rule:

$$\frac{\{\phi\} C_1 \{\theta\} \{\theta\} C_2 \{\psi\}}{\{\phi\} C_1; C_2 \{\psi\}}$$

new rule:

$$\frac{\{\phi_1\} \ C_1 \ \{\phi_2\} \qquad \{\phi_2\} \ C_2 \ \{\psi\}}{\{\phi\} \ C_1 \ ; \ C_2 \ \{\psi\}} \phi \to \phi_1$$

- ► let φ₂ be the weakest precondition of ψ under C₂ and let φ₁ be the weakest precondition of φ₂ under C₁
- φ is a precondition for ψ under C₁; C₂

 if and only if

 φ₁ is valid
- the weakest precondition of ψ under C₁; C₂ is the weakest precondition of (the weakest precondition of ψ under C₂) under C₁

► old rule:

$$\frac{\{\phi \land b\} C_1 \{\psi\} \qquad \{\phi \land \neg b\} C_2 \{\psi\}}{\{\phi\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \{\psi\}}$$

old rule:

$$\frac{\{\phi \land b\} C_1 \{\psi\} \qquad \{\phi \land \neg b\} C_2 \{\psi\}}{\{\phi\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \{\psi\}}$$

new rule:

 $\begin{array}{c|c} \{\phi_1\} \ C_1 \ \{\psi\} & \{\phi_2\} \ C_2 \ \{\psi\} \\ \hline \{\phi\} \ \text{if b then C_1 else C_2} \ \{\psi\} & \phi \to (\neg b \lor \phi_1) \ \text{and} \ \phi \to (b \lor \phi_2) \end{array} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

old rule:

$$\frac{\{\phi \land b\} C_1 \{\psi\} \qquad \{\phi \land \neg b\} C_2 \{\psi\}}{\{\phi\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \{\psi\}}$$

new rule:

 $\begin{array}{c|c} \frac{\{\phi_1\} \ C_1 \ \{\psi\} \qquad \{\phi_2\} \ C_2 \ \{\psi\} \\ \hline \{\phi\} \ \text{if } b \ \text{then} \ C_1 \ \text{else} \ C_2 \ \{\psi\} \end{array} \phi \rightarrow (\neg b \lor \phi_1) \ \text{and} \ \phi \rightarrow (b \lor \phi_2) \end{array}$

 let φ₁ be the weakest precondition of ψ under C₁ and let φ₂ be the weakest precondition of ψ under C₂

old rule:

$$\frac{\{\phi \land b\} C_1 \{\psi\} \qquad \{\phi \land \neg b\} C_2 \{\psi\}}{\{\phi\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \{\psi\}}$$

new rule:

 $\frac{\{\phi_1\}\ C_1\ \{\psi\}\qquad \{\phi_2\}\ C_2\ \{\psi\}}{\{\phi\}\ \text{if }b \text{ then } C_1 \text{ else } C_2\ \{\psi\}} \quad \phi \to (\neg b \lor \phi_1) \text{ and } \phi \to (b \lor \phi_2)$

- let φ₁ be the weakest precondition of ψ under C₁ and let φ₂ be the weakest precondition of ψ under C₂
- ▶ φ is a precondition for ψ under if b then C₁ else C₂ if and only if

 $\phi \rightarrow ((\neg b \lor \phi_1) \land (b \lor \phi_2))$ is valid

old rule:

$$\frac{\{\phi \land b\} C_1 \{\psi\} \qquad \{\phi \land \neg b\} C_2 \{\psi\}}{\{\phi\} \text{ if } b \text{ then } C_1 \text{ else } C_2 \{\psi\}}$$

new rule:

 $\frac{\{\phi_1\}\ C_1\ \{\psi\}\qquad \{\phi_2\}\ C_2\ \{\psi\}}{\{\phi\}\ \text{if }b\ \text{then}\ C_1\ \text{else}\ C_2\ \{\psi\}}\quad \phi\to (\neg b\lor\phi_1)\ \text{and}\ \phi\to (b\lor\phi_2)$

- let φ₁ be the weakest precondition of ψ under C₁ and let φ₂ be the weakest precondition of ψ under C₂
- ϕ is a precondition for ψ under **if** *b* **then** C_1 **else** C_2 if and only if $\phi \rightarrow ((\neg b \lor \phi_1) \land (b \lor \phi_2))$ is valid
- ► the weakest precondition of \(\psi\) under if b then C₁ else C₂ is the conjunction of \(\neg b \\lor \phi_1\) and b \\(\neg \phi_2\)

► old rule:

$$\frac{\{\theta \land b\} C_0 \{\theta\}}{\{\theta\} \text{ while } b \text{ do } \{\theta\} C_0 \{\theta \land \neg b\}}$$

φ is a precondition for ψ under while b do {θ} C₀ if and only if
 φ → θ and θ ∧ ¬b → ψ are valid and {θ ∧ b} C₀ {θ}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► old rule:

$$\frac{\{\theta \land b\} C_0 \{\theta\}}{\{\theta\} \text{ while } b \text{ do } \{\theta\} C_0 \{\theta \land \neg b\}}$$
► new rule = old rule & strengthening & weakening

$$\frac{\{\theta \land b\} C_0 \{\theta\}}{\{\phi\} \text{ while } b \text{ do } \{\theta\} C_0 \{\psi\}} \quad \phi \to \theta \text{ and } \theta \land \neg b \to \psi$$

- ϕ is a precondition for ψ under while b do $\{\theta\}$ C_0 if and only if $\phi \to \theta$ and $\theta \land \neg b \to \psi$ are valid and $\{\theta \land b\}$ C_0 $\{\theta\}$
- θ is the weakest precondition for ψ under while $b \operatorname{do} \{\theta\} C_0$

• wp(skip,
$$\psi$$
) = ψ

• wp(skip,
$$\psi$$
) = ψ

• wp(
$$x := e, \psi$$
) = $\psi[e/x]$

• wp(skip,
$$\psi$$
) = ψ

• wp(
$$x := e, \psi$$
) = $\psi[e/x]$

• wp(
$$C_1$$
; C_2 , ψ) = wp(C_1 , wp(C_2 , ψ))

(ロ)、

• wp(skip,
$$\psi$$
) = ψ

• wp(
$$x := e, \psi$$
) = $\psi[e/x]$

- $\blacktriangleright \operatorname{wp}(C_1; C_2, \psi) = \operatorname{wp}(C_1, \operatorname{wp}(C_2, \psi))$
- wp(if *b* then C_1 else C_2, ψ) = $(\neg b \lor \phi_1) \land (b \lor \phi_2)$ where

$$\phi_1 = wp(C_1, \psi)$$

$$\phi_2 = wp(C_2, \psi)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• wp(skip,
$$\psi$$
) = ψ

• wp(
$$x := e, \psi$$
) = $\psi[e/x]$

- $\blacktriangleright \operatorname{wp}(C_1; C_2, \psi) = \operatorname{wp}(C_1, \operatorname{wp}(C_2, \psi))$
- wp(if *b* then C_1 else C_2, ψ) = $(\neg b \lor \phi_1) \land (b \lor \phi_2)$ where

$$\phi_1 = \mathsf{wp}(C_1, \psi)$$

$$\phi_2 = \mathsf{wp}(C_2, \psi)$$

• wp(while *b* do $\{\theta\}$ C_0, ψ) = θ

▶ for command *C* of form: skip, update, seq, cond,

▶ for command *C* of form: skip, update, seq, cond,

• to check Hoare triple $\{\phi\} \in \{\psi\}$,

- ▶ for command *C* of form: skip, update, seq, cond,
- to check Hoare triple $\{\phi\} \in \{\psi\}$,
- check validity of verification condition

$$\phi \rightarrow \mathsf{wp}(\mathcal{C}, \psi)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ for command *C* of form: skip, update, seq, cond,
- to check Hoare triple $\{\phi\} \in \{\psi\}$,
- check validity of verification condition

$$\phi \rightarrow \mathsf{wp}(\mathcal{C}, \psi)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• for command *C* of form: while *b* do $\{\theta\}$ *C*₀,

- ▶ for command *C* of form: skip, update, seq, cond,
- to check Hoare triple $\{\phi\} \in \{\psi\}$,
- check validity of verification condition

$$\phi \rightarrow \mathsf{wp}(\mathcal{C}, \psi)$$

- for command *C* of form: while *b* do $\{\theta\}$ *C*₀ ,
- to check Hoare triple $\{\phi\} \in \{\psi\}$,

- for command C of form: skip, update, seq, cond,
- to check Hoare triple $\{\phi\} \in \{\psi\}$,
- check validity of verification condition

$$\phi \rightarrow \mathsf{wp}(\mathcal{C}, \psi)$$

- for command *C* of form: while *b* do $\{\theta\}$ *C*₀ ,
- to check Hoare triple $\{\phi\} \in \{\psi\}$,
- ► check Hoare triple {θ ∧ b} C₀ {θ} and check validity of two implications

$$\begin{array}{c} \phi \to \theta \\ \theta \wedge \neg b \to \psi \end{array}$$