Andreas Podelski

November 8, 2011

 introduced by Hoare in 1969 builds on first-order logic

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification = pre- and postcondition pair

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification = pre- and postcondition pair
- standard presentation of Hoare logic: proof uses invariant for every loop in program

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification = pre- and postcondition pair
- standard presentation of Hoare logic: proof uses invariant for every loop in program
- here: invariants are given as part of correctness specification

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification = pre- and postcondition pair
- standard presentation of Hoare logic: proof uses invariant for every loop in program
- here: invariants are given as part of correctness specification
- correctness proof possible only if invariants are adequate for pre- and postcondition pair

Programs

▶ (program) expression

$$e ::= x \mid f(e_1, \ldots, e_n)$$

where f maps into domain of values

Programs

▶ (program) expression

$$e ::= x \mid f(e_1, \ldots, e_n)$$

where f maps into domain of values

Boolean expression

$$b ::= x \mid f(e_1, \ldots, e_n)$$

where f maps into Boolean domain

Programs

▶ (program) expression

$$e ::= x \mid f(e_1,\ldots,e_n)$$

where f maps into domain of values

Boolean expression

$$b ::= x \mid f(e_1, \ldots, e_n)$$

where f maps into Boolean domain

command

$$C ::= \text{skip} \mid x = e \mid C_1 ; C_2 \mid \text{if } b \text{ then } C_1 \text{ else } C_2 \mid \text{while } b \text{ do } C$$

ightharpoonup state s= function from program variables to value,

 $s: \mathbf{Var} \to \mathbf{Val}$

ightharpoonup state s= function from program variables to value,

$$s: \mathbf{Var} \to \mathbf{Val}$$

program expression e in state s evaluates to value

$$\llbracket e \rrbracket (s) \in \mathsf{Val}$$

ightharpoonup state s = function from program variables to value,

$$s: \mathsf{Var} \to \mathsf{Val}$$

program expression e in state s evaluates to value

$$[e](s) \in Val$$

- semantics of program expressions e
 = function from set of states to set of values
 - $\llbracket e
 Vert$: States o Val

ightharpoonup state s= function from program variables to value,

$$s: Var \rightarrow Val$$

program expression e in state s evaluates to value

$$[e](s) \in Val$$

semantics of program expressions e
 = function from set of states to set of values

$$\llbracket e \rrbracket : \mathsf{States} \to \mathsf{Val}$$

• interpretation of function symbol f in expression f(e₁,..., e_n) depends on logical first-order model ("+" interpreted over model of unbounded integers or in model for modulo arithmetic?)

ightharpoonup state s = function from program variables to values,

 $s: \mathbf{Var} \to \mathbf{Val}$

ightharpoonup state s= function from program variables to values,

$$s: Var \rightarrow Val$$

▶ Boolean expression *b* in state *s* evaluates to Boolean truth value

$$\llbracket b \rrbracket (s) \in \{\mathsf{T},\mathsf{F}\}$$

ightharpoonup state s= function from program variables to values,

$$s: Var \rightarrow Val$$

▶ Boolean expression *b* in state *s* evaluates to Boolean truth value

$$\llbracket b \rrbracket (s) \in \{\mathsf{T},\mathsf{F}\}$$

- semantics of Boolean expression b
 - = function from set of states to set of Boolean truth values

$$\llbracket b \rrbracket : \mathsf{States} \to \{\mathsf{T}, \mathsf{F}\}$$

ightharpoonup state s= function from program variables to values,

$$s: \mathsf{Var} \to \mathsf{Val}$$

▶ Boolean expression *b* in state *s* evaluates to Boolean truth value

$$\llbracket b \rrbracket (s) \in \{\mathsf{T},\mathsf{F}\}$$

- semantics of Boolean expression b
 function from set of states to set of Boolean truth values
 - $\llbracket b \rrbracket : \mathsf{States} \to \{\mathsf{T},\mathsf{F}\}$
- evaluation of Boolean expression b depends on logical first-order model
 ("x ≤ x + 1" true in model of unbounded integers but false in model for modulo arithmetic)

- semantics of command C
 - = functions from set of states to set of states

 $[\![C]\!]: \mathbf{States} \to \mathbf{States}, \quad s \mapsto s'$

- semantics of command C
 - = functions from set of states to set of states

$$[\![C]\!]:$$
 States \rightarrow States, $s \mapsto s'$

ightharpoonup execution of command C starting in state s ends in state s'

$$(C,s) \rightsquigarrow s'$$

semantics of command Cfunctions from set of states to set of states

$$[\![C]\!]:$$
 States \to States, $s\mapsto s'$

ightharpoonup execution of command C starting in state s ends in state s'

$$(C,s) \rightsquigarrow s'$$

- execution of update statement
 - = update of function $s : Var \rightarrow Val$

$$(x := e, s) \rightsquigarrow s'$$
 where $s'(x) = [e](s)$ and $s'(y) = s(y)$ for $x \not\equiv y$

semantics of command Cfunctions from set of states to set of states

$$[\![C]\!]: \mathbf{States} \to \mathbf{States}, \quad s \mapsto s'$$

ightharpoonup execution of command C starting in state s ends in state s'

$$(C,s) \rightsquigarrow s'$$

- execution of update statement
 - = update of function $s : Var \rightarrow Val$

$$(x := e, s) \rightsquigarrow s'$$
 where $s'(x) = ||e||(s)$ and $s'(y) = s(y)$ for $x \not\equiv y$

execution of update depends on logical first-order model

• execution of sequence of commands $C \equiv C_1$; C_2 = execution of first command C_1 followed by execution of second command C_2

$$(C,s) \leadsto s''$$
 if $(C_1,s) \leadsto s'$ and $(C_2,s') \leadsto s''$

• execution of sequence of commands $C \equiv C_1$; C_2 = execution of first command C_1 followed by execution of second command C_2

$$(C,s) \leadsto s''$$
 if $(C_1,s) \leadsto s'$ and $(C_2,s') \leadsto s''$

execution of command skip does not change state

$$(skip, s) \rightsquigarrow s$$

("empty sequence of commands")

• execution of conditional command $C \equiv \mathbf{if} \ b \ \mathbf{then} \ C_1 \ \mathbf{else} \ C_2$ = execution of then-command C_1 if expression b evaluates to true

$$(C,s) \leadsto s'$$
 if $\llbracket b \rrbracket (s) = \mathsf{T}$ and $(C_1,s) \leadsto s'$

• execution of conditional command $C \equiv \mathbf{if} \ b \ \mathbf{then} \ C_1 \ \mathbf{else} \ C_2$ = execution of then-command C_1 if expression b evaluates to true

$$(C,s) \rightsquigarrow s'$$
 if $\llbracket b \rrbracket (s) = \mathbf{T}$ and $(C_1,s) \rightsquigarrow s'$

• execution of conditional command $C \equiv \mathbf{if} \ b \ \mathbf{then} \ C_1 \ \mathbf{else} \ C_2$ = execution of then-command C_2 if expression b evaluates to false

$$(C,s) \rightsquigarrow s'$$
 if $\llbracket b \rrbracket (s) = \mathbf{F}$ and $(C_2,s) \rightsquigarrow s'$

• execution of conditional command $C \equiv \mathbf{if} \ b \ \mathbf{then} \ C_1 \ \mathbf{else} \ C_2$ = execution of then-command C_1 if expression b evaluates to true

$$(C,s) \rightsquigarrow s'$$
 if $\llbracket b \rrbracket (s) = \mathbf{T}$ and $(C_1,s) \rightsquigarrow s'$

• execution of conditional command $C \equiv \mathbf{if} \ b \ \mathbf{then} \ C_1 \ \mathbf{else} \ C_2$ = execution of then-command C_2 if expression b evaluates to false

$$(C,s) \leadsto s'$$
 if $\llbracket b \rrbracket (s) = \mathbf{F}$ and $(C_2,s) \leadsto s'$

execution of conditional depends on logical first-order model

• execution of while command $C \equiv$ while b do C_0 = execution of body C_0 followed by execution of while command C if expression b evaluates to true

$$(C,s)\leadsto s''$$
 if $[\![b]\!](s)=\mathbf{T}$ and $(C_0,s)\leadsto s'$ and $(C,s')\leadsto s''$

• execution of while command $C \equiv$ while b do C_0 = execution of body C_0 followed by execution of while command C if expression b evaluates to true

$$(C,s) \leadsto s''$$
 if $\llbracket b \rrbracket (s) = \mathbf{T}$ and $(C_0,s) \leadsto s'$ and $(C,s') \leadsto s''$

• execution of while command $C \equiv$ while b do C_0 = execution of skip if expression b evaluates to false

$$(C,s) \rightsquigarrow s$$
 if $[\![b]\!](s) = \mathbf{F}$

• execution of while command $C \equiv$ while b do C_0 = execution of body C_0 followed by execution of while command C if expression b evaluates to true

$$(C,s) \leadsto s''$$
 if $\llbracket b \rrbracket(s) = \mathbf{T}$ and $(C_0,s) \leadsto s'$ and $(C,s') \leadsto s''$

• execution of while command $C \equiv$ while b do C_0 = execution of skip if expression b evaluates to false

$$(C,s) \rightsquigarrow s$$
 if $[\![b]\!](s) = \mathbf{F}$

execution of while loop depends on logical first-order model

• $\{\phi\}$ C $\{\psi\}$ valid in given logical first-order model if

• $\{\phi\}$ C $\{\psi\}$ valid in given logical first-order model if for all states s if $\|\phi\|(s) = \mathbf{T}$ and

▶ $\{\phi\}$ C $\{\psi\}$ valid in given logical first-order model if for all states s if $\|\phi\|(s) = \mathbf{T}$ and if $(C, s) \leadsto s'$ then

- ▶ $\{\phi\}$ C $\{\psi\}$ valid in given logical first-order model if for all states s if $\|\phi\|(s) = \mathbf{T}$ and if $(C, s) \leadsto s'$ then $\|\psi\|(s') = \mathbf{T}$
- $\{\phi\}$ C $\{\psi\}$ valid if valid in every logical first-order model
- ▶ $\Gamma \models \{\phi\}$ C $\{\psi\}$ if $\{\phi\}$ C $\{\psi\}$ valid in every logical first-order model of set of assertions Γ

▶ program variables: occur in commands in program *C*

- ▶ program variables: occur in commands in program C may occur (free) in ϕ and ψ
- auxiliary variables: occur (free) in ϕ and/or ψ but do not occur in commands in program C

- ▶ program variables: occur in commands in program C may occur (free) in ϕ and ψ
- auxiliary variables: occur (free) in ϕ and/or ψ but do not occur in commands in program C
- ▶ needed, e.g., for specification of *in-place sort* program

if
$$x \le y$$
 then skip else $z = y$; $y = x$; $x = z$

- ▶ program variables: occur in commands in program C may occur (free) in ϕ and ψ
- auxiliary variables: occur (free) in ϕ and/or ψ but do not occur in commands in program C
- ▶ needed, e.g., for specification of *in-place sort* program

if
$$x \le y$$
 then skip else $z = y$; $y = x$; $x = z$

▶ take precondition $\phi \equiv x = x_0 \land y = y_0 \land x_0 > y_0$ and postcondition $\psi \equiv x = y_0 \land y = x_0$