« Mathematical foundations: (2) Classical first-order logic »

George Boole

David Hilbert

Gottlob Frege
_- Reference
[1] Jean van Heijenoort, editor. "From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931". Harvard University Press, 1967.

Formal logics

A formal logic consists of:

- a formal or informal language (formula expressing facts)
- a model-theoretic semantics (to define the meaning of the language, that is which facts are valid)
- a deductive system (made of axioms and inference rules to formaly derive theorems, that is facts that are provable)

Questions about formal logics

The main questions about a formal logic are:

- The soundness of the deductive system: no provable formula is invalid
- The completeness of the deductive system: all valid formulæ are provable

Propositional classical logic

Syntax of the
 classical propositional logic

Classical propositional logic

- $X \in \mathcal{V}$ are variables denoting unknown true or false facts
- The set of formulæ $\phi \in \mathcal{F}$ of the propositional logic are defined by the following grammar:

$$
\begin{aligned}
\phi:: & =X \\
\mid & \left(\phi_{1} \wedge \phi_{2}\right) \\
& \mid(\neg \phi)
\end{aligned}
$$

- The relation "is a subformula of" is well founded, whence can be used for structural definitions and proofs

Example of formulæ

- A is a variable whence a formula
- $(\neg A)$ is a formula since A is a formula
- $(A \wedge(\neg A))$ is a formula since A and and $(\neg A)$ are formulae
- $(\neg(A \wedge(\neg A))$ is a formula since ($A \wedge(\neg A)$) is a formula

The derivation tree of the formula is:
A

A

Abstract syntax

- In practice we avoid parentheses thanks to priorities:
- \neg has highest priority (evaluated first)
- \wedge has lowest priority (evaluated second)
- \wedge is left associative (evaluation from left to right) For example, $\neg A \wedge \neg B \wedge C$ stands for $(\neg A) \wedge(\neg B) \wedge C$ which stands for $((\neg A) \wedge(\neg B)) \wedge C$
- The derivation tree is given by the following abstract grammar: $\phi::=X$

$$
\begin{aligned}
& \phi_{1} \wedge \phi_{2} \\
& \neg \phi
\end{aligned}
$$

Propositional identities

Abbreviations (de Morgan laws)

$$
\begin{aligned}
& \phi_{1} \vee \phi_{2} \stackrel{\text { def }}{=} \neg\left(\neg \phi_{1} \wedge \neg \phi_{2}\right) \\
& \phi_{1} \Longrightarrow \phi_{2} \stackrel{\text { def }}{=} \neg \phi_{1} \vee \phi_{2} \\
& \phi_{1} \Longleftarrow \phi_{2} \stackrel{\stackrel{\text { def }}{=} \phi_{2} \Longrightarrow \phi_{1}}{\phi_{1}} \Longleftrightarrow \phi_{2} \stackrel{\text { def }}{=}\left(\phi_{1} \Longrightarrow \phi_{2}\right) \wedge\left(\phi_{1} \Longleftarrow \phi_{2}\right) \\
& \phi_{1} \vee \phi_{2} \stackrel{\text { def }}{=}\left(\phi_{1} \vee \phi_{2}\right) \wedge \neg\left(\phi_{1} \wedge \phi_{2}\right)
\end{aligned}
$$

Free variables of proopositional formulae

The set $\operatorname{FV}(\phi)$ of free variables appearing in a formula ϕ is defined by structural induction as follows:

$$
\begin{gathered}
\mathrm{FV}(X) \stackrel{\text { def }}{=}\{X\} \\
\mathrm{FV}(\neg \phi) \stackrel{\text { def }}{=} \mathrm{FV}(\phi) \\
\mathrm{FV}\left(\phi_{1} \wedge \phi_{2}\right) \stackrel{\text { def }}{=} \mathrm{FV}\left(\phi_{1}\right) \cup \mathrm{FV}\left(\phi_{2}\right)
\end{gathered}
$$

Semantics of the propositional classical logic

Booleans

We define the booleans $\mathbb{B} \stackrel{\text { def }}{=}\{\mathrm{tt}, \mathrm{ff}\}$ and boolean operators by the following truth table:

$\overline{\&}$	ft	ff
Ht	Ht	ff
ff	ff	ff

\bar{A}	
tt	ff
ff	tt

Environment/Assignment

- An environment ${ }^{1} \rho \in \mathcal{V} \mapsto \mathbb{B}$ assigns boolean values $\rho(X)$ to free propositional variables X.
- An example of assignment is $\rho=\{X \rightarrow \mathrm{tt}, Y \rightarrow \mathrm{ff}\}$ such that $\rho(X)=\mathrm{tt}, \rho(Y)=\mathrm{ff}$ and the value for all other propositional variables $Z \in \mathcal{V} \backslash\{X, Y\}$ is undefined

[^0]
Tarskian/model-theoretic semantics of the classical propositional logic

The semantics ${ }^{2} \mathcal{S} \in \mathcal{F} \mapsto(\mathcal{V} \mapsto \mathbb{B}) \mapsto \mathbb{B}$ of a propositional formula ϕ assign a meaning $\mathcal{S} \llbracket \phi \rrbracket \rho$ to the formula for any given environment ρ^{3} :

$$
\begin{gathered}
\mathcal{S} \llbracket X \rrbracket \rho \stackrel{\text { def }}{=} \rho(X) \\
\mathcal{S} \llbracket \neg \phi \rrbracket \rho \stackrel{\text { def }}{=} \neg(\mathcal{S} \llbracket \phi \rrbracket \rho) \\
\mathcal{S} \llbracket \phi_{1} \wedge \phi_{2} \rrbracket \rho \stackrel{\text { def }}{=} \mathcal{S} \llbracket \phi_{1} \rrbracket \rho \overline{\&} \mathcal{S} \llbracket \phi_{2} \rrbracket \rho
\end{gathered}
$$

[^1]
Models

ρ is a model of ϕ (or that ρ satisfies ϕ) if and only if:

$$
\mathcal{S} \llbracket \phi \rrbracket \rho=\mathrm{tt}
$$

which is written:

$$
\rho \Vdash \phi
$$

Entailment

- A set $\Gamma \in \wp(\mathcal{F})$ of formulae entails ϕ whenever:

$$
\forall \rho:\left(\forall \phi^{\prime} \in \Gamma: \rho \Vdash \phi^{\prime}\right) \Longrightarrow \rho \Vdash \phi
$$

which is written:

$$
\Gamma \Vdash \phi
$$

Validity

- We say that ϕ is valid if and only if:

$$
\forall \rho \in(\mathrm{V} \mapsto \mathbb{B}): \mathcal{S} \llbracket \phi \rrbracket \rho=\mathrm{t}
$$

which is written:

$$
\Vdash \phi
$$

(i.e. ϕ is a tautaulogy, always true)

Examples of tautologies

$$
\begin{aligned}
& P \Longrightarrow P \\
& (\neg \neg P) \Longrightarrow P \\
& P \Longrightarrow(\neg \neg P) \\
& P \Longrightarrow(Q \Longrightarrow P) \\
& P \Longrightarrow(Q \Longrightarrow Q) \\
& (\neg P \Longrightarrow P) \Longrightarrow P \\
& P \Longrightarrow(\neg P \Longrightarrow Q) \\
& \neg P \Longrightarrow(P \Longrightarrow Q) \\
& (\neg(P \Longrightarrow P)) \Longrightarrow Q \\
& P \Longrightarrow(\neg(P \Longrightarrow \neg P)) \\
& (P \Longrightarrow \neg P) \Longrightarrow \neg P
\end{aligned}
$$

$$
\begin{aligned}
& (\neg(P \Longrightarrow Q)) \Longrightarrow P \\
& (\neg(P \Longrightarrow Q)) \Longrightarrow(\neg \neg P) \\
& (\neg(P \Longrightarrow Q)) \Longrightarrow \neg Q \\
& (P \Longrightarrow \neg P) \Longrightarrow(P \Longrightarrow Q) \\
& (P \Longrightarrow Q) \Longrightarrow(\neg Q \Longrightarrow \neg P) \\
& (P \Longrightarrow \neg Q) \Longrightarrow(Q \Longrightarrow \neg P) \\
& (\neg P \Longrightarrow \neg Q) \Longrightarrow(Q \Longrightarrow P) \\
& (\neg P \Longrightarrow \neg Q) \Longrightarrow(\neg P \Longrightarrow Q) \Longrightarrow P) \\
& (\neg(P \Longrightarrow Q)) \Longrightarrow(Q \Longrightarrow R) \\
& (\neg(P \Longrightarrow Q)) \Longrightarrow(\neg P \Longrightarrow R) \\
& (P \Longrightarrow Q) \Longrightarrow((Q \Longrightarrow R) \Longrightarrow(P \Longrightarrow R))
\end{aligned}
$$

Satisfiability/Unsatisfiability

- A formula $\phi \in \mathcal{F}$ is satisfiable if and only if:

$$
\exists \rho \in(\mathrm{V} \mapsto \mathbb{B}): \mathcal{S} \llbracket \phi \rrbracket \rho=\mathrm{t}
$$

- A formula $\phi \in \mathcal{F}$ is unsatisfiable if and only if:

$$
\forall \rho \in(\mathrm{V} \mapsto \mathbb{B}): \mathcal{S} \llbracket \phi \rrbracket \rho=\mathrm{tt}
$$

(i.e. ϕ is a antilogy, always false)

Satisfiability/Validity/Unsatisfiability

Formulae

Satisfiable
 Unsatisfiable

Sometimes true Sometimes false

Always false
Valid
Always true

Deductive system for the classical propositional logic

Hilbert deductive system

- Axiom schemata ${ }^{4}$:
(1) $\phi \vee \phi \Longrightarrow \phi^{5}$
(2) $\phi \Longrightarrow \phi^{\prime} \vee \phi^{6}$
(3) $\left(\phi \Longrightarrow \phi^{\prime}\right) \Longrightarrow\left(\phi^{\prime \prime} \vee \phi \Longrightarrow \phi^{\prime} \vee \phi^{\prime \prime}\right)^{7}$
- Inference rule schema ${ }^{4}$:
(MP) $\frac{\phi, \phi \Longrightarrow \phi^{\prime}}{\phi^{\prime}}{ }^{8}$
modus ponens

4 to be instanciated for all possible formulae $\phi, \phi^{\prime}, \phi^{\prime \prime} \in \mathcal{F}$
5 i.e. $\neg(\neg(\neg \phi \wedge \neg \phi)) \vee \phi)$
6 i.e. $\neg\left(\neg \neg \phi \wedge \neg \neg\left(\neg \phi \wedge \neg \phi^{\prime}\right)\right)$
7 i.e; $\neg\left(\neg \phi \vee \phi^{\prime}\right) \vee\left(\neg\left(\phi^{\prime \prime} \vee \phi\right) \vee\left(\phi^{\prime} \vee \phi^{\prime \prime}\right)\right)$ where $\phi_{1} \vee \phi_{2} \stackrel{\text { def }}{=} \neg\left(\neg \phi_{1} \vee \neg \phi_{2}\right)$
8 i.e. $\frac{\phi, \neg \phi \vee \phi^{\prime}}{\phi^{\prime}}$

Hilbert derivation

- A derivation from a set $\Gamma \in \wp(\mathcal{F})$ of hypotheses is a finite nonempty sequence:

$$
\phi_{1}, \phi_{2}, \ldots, \phi_{n} \quad n \geq 0
$$

of formulae such that for each $\phi_{i}, i=1, \ldots, n$, we have:

- ϕ_{i} is a element of Γ (hypothesis)
- ϕ_{i} is an axiom
- ϕ_{i} is the conclusion of an inference rule $\frac{\phi_{i}^{1}, \ldots, \phi_{i}^{k}}{\phi_{i}}$ such that $\left\{\phi_{i}^{1}, \ldots, \phi_{i}^{k}\right\} \subseteq\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n-1}\right\}^{9}$

[^2]
Hilbert proof

- A proof is a derivation from \emptyset

Example of proof

$$
\begin{array}{lr}
(\phi \vee \phi \Longrightarrow \phi) \Longrightarrow(\neg \phi \vee(\phi \vee \phi) \Longrightarrow \phi \vee \neg \phi) \\
& \text { 2[instance of (3)] (a) }) \\
\phi \vee \phi \Longrightarrow \phi & \text { 2[instance of (1)] (b) }) \\
\neg \phi \vee(\phi \vee \phi) \Longrightarrow(\phi \vee \neg \phi) & \tau[(\mathrm{a}), \text { (b) and (MP)] (c) }) \\
=(\phi \Longrightarrow(\phi \vee \phi)) \Longrightarrow \phi \vee \neg \phi & \text { 2def. } \Longrightarrow \text { abbreviation } S \\
\phi \Longrightarrow(\phi \vee \phi) & 2[\text { instance of (2)] (d)S } \\
\phi \vee \neg \phi & 2[(\mathrm{c}), \text { (d) and (MP)] }
\end{array}
$$

Hilbert provability

- $\phi \in \mathrm{F}$ is provable from $\Gamma \in \wp(\mathrm{F})$ (or Γ proves ϕ) iff there is a proof of ϕ from Γ, written:

$$
\Gamma \vdash \phi
$$

where the deduction system (axioms and inference rules) are understood from the context.
$-\emptyset \vdash \phi$ is written $\vdash \phi$
This is the proof-theoretic semantics of first-order logic.

Example of provability

$$
\vdash \neg \phi \vee \neg \neg \phi
$$

Proof.
Replace ϕ by $\neg \phi$ is the previous proof of $\phi \vee \neg \phi$.
\square

Soundness of a deductive system

Provable formulae do hold:

$$
\Gamma \vdash \phi \Longrightarrow \Gamma \Vdash \phi
$$

Proof.

The proof for propositional logic is by induction on the length of the formal proof of ϕ from Γ.

A proof of length one, can only use a formula ϕ in Γ which is assumed to hold (i.e. $\mathcal{S} \llbracket \phi \rrbracket \rho=\mathrm{tt}$) or an axiom that does hold as shown below.

- $\mathcal{S} \llbracket \phi \vee \phi \Longrightarrow \phi \rrbracket \rho$
$=\mathcal{S} \llbracket \neg(\neg(\neg \phi \wedge \neg \phi)) \rrbracket \rho \quad$ def. \vee
$=\neg(\neg(\neg(\mathcal{S} \llbracket \phi \rrbracket \rho) \overline{\&} \overline{ }(\mathcal{S} \llbracket \phi \rrbracket \rho)))$ def. \mathcal{S}
$=\bar{\neg}(\mathcal{S} \llbracket \phi \rrbracket \rho) \overline{\&} \bar{\neg}(\mathcal{S} \llbracket \phi \rrbracket \rho) \quad$ def. \bar{Z}
$=\bar{\neg}$ (ff)
def. $\overline{\&}$
$=\mathrm{tt}$
- The proof is similar for the other two axioms.

A proof of length $n+1, n \geq 1$ is an initial proof $\phi_{0}, \ldots, \phi_{n-1}$ of length n followed by a formula ϕ_{n}. By induction hypothesis, we have $\mathcal{S} \llbracket \phi_{i} \rrbracket \rho=$ tt, $i=1, \ldots, n-1$.

If $\phi_{n} \in \Gamma$ or ϕ_{n} is an axiom then $\mathcal{S} \llbracket \phi_{n} \rrbracket \rho=\mathrm{tt}$ as shown above.
Otherwise, ϕ_{n} is derived by the modus ponens inference rule (MP). In that case, we have $k, 0 \leq k<n$ such that $\mathcal{S} \llbracket \phi_{k} \rrbracket \rho=\mathrm{tt}$ and $\mathcal{S} \llbracket \phi_{k} \Longrightarrow \phi_{n} \rrbracket \rho=\mathrm{tt}$ so $\left(\mathcal{S} \llbracket \phi_{k} \rrbracket \rho \Longrightarrow \mathcal{S} \llbracket \phi_{n} \rrbracket \rho\right)=$ tt where the truth table of \Longrightarrow is derived from the definition of \Longrightarrow and that of $\overline{ } \overline{ }$ and $\bar{\lambda}$ as follows:

$\bar{\Longrightarrow}$	ff	tt
ff	tt	tt
tt	ff	tt

Since $\mathcal{S} \llbracket \phi_{k} \rrbracket \rho=$ tt the truth table of \Longrightarrow shows than the only possibility for $\left(\mathcal{S} \llbracket \phi_{k} \rrbracket \rho \Longrightarrow \mathcal{S} \llbracket \phi_{n} \rrbracket \rho\right)=\mathrm{tt}$ is $\mathcal{S} \llbracket \phi_{n} \rrbracket \rho=\mathrm{tt}$.

Consistency of a deductive system

Absence of contradictory proofs

$$
\neg(\exists \Gamma: \Gamma \vdash \phi \bar{\wedge} \Gamma \vdash \neg \phi)
$$

A sound deductive system is consistent.
Proof.
By reduction ad absurdum assume inconsistency $\exists \Gamma: \Gamma \vdash \phi \bar{\wedge} \Gamma \vdash \neg \phi$. By soundness $\Gamma \Vdash \phi \bar{\wedge} \Gamma \Vdash \neg \phi$ whence for all ρ such that $\forall \phi^{\prime} \in \Gamma: \rho \Vdash \phi^{\prime}$, we have $\mathcal{S} \llbracket \phi \rrbracket \rho=\mathrm{tt}$ and $\mathcal{S} \llbracket \neg \phi \rrbracket \rho=\mathrm{tt}=\neg \mathcal{S} \llbracket \phi \rrbracket \rho=\overline{\mathrm{tt}}=\mathrm{ff}$ which is the desired contradiction since $\mathrm{tt} \neq \mathrm{ff} . \quad \square$

Negative normal form

A formula is in negative normal form iff it can be parsed by the following grammar:

$$
\begin{aligned}
\phi: & :=\phi \vee \phi \\
\mid & \mid \phi \wedge \phi \\
& \mid \quad \varphi \\
\varphi: & =X \\
& \mid \quad \neg X
\end{aligned}
$$

Normalization in negative normal form

$$
\begin{aligned}
\operatorname{nnf}(\neg \phi) & \stackrel{\text { def }}{=} \overline{\operatorname{nnf}}(\phi) \\
\operatorname{nnf}\left(\phi_{1} \vee \phi_{2}\right) & \stackrel{\text { def }}{=} \operatorname{nnf}\left(\phi_{1}\right) \vee \operatorname{nnf}\left(\phi_{2}\right) \\
\operatorname{nnf}\left(\phi_{1} \wedge \phi_{2}\right) & \stackrel{\text { def }}{=} \operatorname{nnf}\left(\phi_{1}\right) \wedge \operatorname{nnf}\left(\phi_{2}\right) \\
\overline{\operatorname{nnf}}(\neg \phi) & \stackrel{\text { def }}{=} \operatorname{nnf}(\phi) \\
\overline{\operatorname{nnf}}\left(\phi_{1} \vee \phi_{2}\right) & \stackrel{\text { def }}{=} \overline{\operatorname{nnf}}\left(\phi_{1}\right) \wedge \overline{\operatorname{nnf}}\left(\phi_{2}\right) \\
\overline{\operatorname{nnf}}\left(\phi_{1} \wedge \phi_{2}\right) & \stackrel{\text { def }}{=} \overline{\operatorname{nnf}}\left(\phi_{1}\right) \vee \overline{\operatorname{nnf}}\left(\phi_{2}\right) \\
\operatorname{nnf}(X) & \stackrel{\text { def }}{=} X \\
\overline{\operatorname{nnf}}(X) & \stackrel{\text { def }}{=} \neg X
\end{aligned}
$$

A formula ϕ is equivalent to its negative normal form $\operatorname{nnf}(\phi)$ is that:
$\vdash \phi \quad$ if and only if $\vdash \operatorname{nnf}(\phi)$

Conjunctive normal form

A formula is in conjunctive normal form iff it can be parsed by the following grammar:

$$
\begin{aligned}
& \phi::=\phi^{\wedge} \\
& \phi^{\wedge}::=\phi^{\wedge} \wedge \phi^{\wedge} \\
& \mid \phi^{\vee} \\
& \phi^{\vee}::=\phi^{\vee} \vee \phi^{\vee} \\
& \mid \mid \\
& \varphi::=X \\
& \mid \neg X
\end{aligned}
$$

Normalization in conjunctive normal form

Any formula ϕ can be put in equivalent conjunctive normal form by applying the following transformations to $\operatorname{nnf}(\phi)$:

$$
\begin{aligned}
& \phi^{\prime} \vee\left(\phi_{1} \wedge \phi_{2}\right) \leadsto\left(\phi^{\prime} \wedge \phi_{1}\right) \vee\left(\phi^{\prime} \wedge \phi_{2}\right) \\
& \left(\phi_{1} \vee \phi_{2}\right) \wedge \phi^{\prime} \leadsto\left(\phi_{1} \vee \phi^{\prime}\right) \wedge\left(\phi_{2} \vee \phi^{\prime}\right)
\end{aligned}
$$

A formula ϕ is equivalent to its conjunctive normal form ϕ^{\wedge} in that:

$$
\vdash \phi \quad \text { if and only if } \vdash \phi^{\wedge}
$$

Completeness of a deductive system

Formulae which hold are provable:

$$
\Gamma \Vdash \phi \Longrightarrow \Gamma \vdash \phi
$$

The very first proof for propositional logic was given by Bernays (a student of Hilbert) [2]. The better known proof is that of Post [3].

- Reference
[2] Richard Zach. "Completeness before Post: Bernays, Hilbert, and the development of propositional logic", Bulletin of Symbolic Logic 5 (1999) 331-366.
[3] Ryan Stansifer. "Completeness of Propositional Logic as a Program", Florida Institute of Technology, Melbourne, Florida, March 2001.

Bernay's proof can be sketched as follows. Every formula is interderivable with its conjunctive normal form. A conjuction is provable if and only if each of its conjuncts is provable. A disjunction of propositional variables or negations of proprositional variables if and only if it contains a variable and its negation, and conversely, every such disjunction is provable. So a formula is provable if and only if every conjunct in its normal form contains a variable and its negation. Now suppose that ϕ is a valid $(\Vdash \phi)$ but underivable formula. Its conjunctive normal form ϕ^{\wedge} is also underivable, so it must contain a conjunct ϕ^{\prime} where every variable occurs only negated or unnegated but not both. If ϕ where added as a new axiom (so that $\Vdash \phi$ implies soundness of the new deductive system), then ϕ^{\wedge} and ϕ^{\prime} would also be derivable. By substituting X for every unnegated variable and $(\neg X)$ for every negated variable in ϕ^{\prime}, we would obtain X as a derivable formula (after some simplification), and the system would be inconsistent, which is the desired contradiction.

Classical first-order logic

Syntax of the classical first-order logic

Lexems

The lexems are the basic constituants of the formal language.

- symbols: (, , ,), $\wedge, \neg, \forall, \ldots$
- constants: $a, b \ldots \in \mathcal{C}$ denote individual objects of the universe of discourse
- variables: $x, y, \ldots \in \mathcal{V}$ denote unknown but fixed ${ }^{10}$ objects of the universe of discourse

10 Different instances of the same variable in a given scope of a formula always denote the same unkown individal object of the universe of discourse. This is not true of imperative computer programs.

- function symbols: $f \backslash n, g \backslash n, \ldots \in \mathcal{F}^{n}$ denote fonctions of arity n. We let $\mathcal{F}^{0} \stackrel{\text { def }}{=} \mathcal{C}$ and $\mathcal{F}=\bigcup_{n \in \mathbb{N}} F^{n}$. For short we write f instead of $f \backslash n$ when the arity n is understood
- relation symbols: $r \backslash n, \rho \backslash n, \ldots \in \mathcal{R}^{n}$ denote fonctions of arity n. We let $\mathbb{B} \stackrel{\text { def }}{=}\{\mathrm{tt}, \mathrm{ff}\}$ and $\mathcal{R}=\bigcup_{n \in \mathbb{N}} R^{n}$. For short we write r instead of $r \backslash n$ when the arity n is understood

Terms

Terms $t \in \mathcal{T}$ denote individual objects of the universe of discourse computed by applying fonctions to constants or variables:

$$
\begin{aligned}
& t::=c \\
& \mid x \\
& \mid f \backslash n\left(t_{1}, \ldots, t_{n}\right)
\end{aligned}
$$

Atomic formulæ

Atomic formulæ $A \in \mathcal{A}$ are used to state elementary facts about objects of the universe of discourse:

$$
A::=r \backslash n\left(t_{1}, \ldots, t_{n}\right)
$$

Example:
$-z$ is a variable whence a term
$-* \backslash 2(+\backslash 2(x, 1), y)$ is a term
$-\leq \backslash 2$ is a relation symbol whence $\leq \backslash 2(* \backslash 2(+\backslash 2(x, 1), y), z)^{11}$ is an atomic formula

11 written $((x+1) * y) \leq z$ in infix form

First-order formulae

The set $\Phi \in \mathcal{L}$ of first-order formulae (of the first-order language \mathcal{L}) is defined by the following grammar

$$
\begin{array}{rlr}
\Phi::=A & A \in \mathcal{A} \\
& \mid \forall x: \Phi & x \in \mathcal{V} \\
& \mid \Phi_{1} \vee \Phi_{2} & \\
& \neg \Phi &
\end{array}
$$

$\exists x: \Phi$ is a shorthand for $\neg(\forall x:(\neg \Phi))$

Bound variables

Bound variables appear under the scope of a quantifier:

$$
\begin{aligned}
\operatorname{bv}(\forall x: \Phi) & \stackrel{\text { def }}{=}\{x\} \cup \mathrm{bv}(\Phi) \\
\operatorname{bv}\left(\Phi_{1} \vee \Phi_{2}\right) & \stackrel{\text { def }}{=} \operatorname{bv}\left(\Phi_{1}\right) \cup \mathrm{bv}\left(\Phi_{2}\right) \\
\operatorname{bv}(\neg \Phi) & \stackrel{\text { def }}{=} \mathrm{bv}(\Phi) \\
\mathrm{bv}\left(r \backslash n\left(t_{1}, \ldots, t_{n}\right)\right) & \xlongequal{\text { def }} \emptyset \\
\operatorname{bv}(c) & \xlongequal{\text { def }} \emptyset \\
\mathrm{bv}(x) & \stackrel{\text { def }}{=} \emptyset \\
\mathrm{bv}\left(f \backslash n\left(t_{1}, \ldots, t_{n}\right)\right. & \stackrel{\text { def }}{=} \emptyset
\end{aligned}
$$

Free variables

Free variables are not bound by a quantifier:

$$
\begin{aligned}
\mathrm{fv}(\forall x: \Phi) & \stackrel{\text { def }}{=} \mathrm{fv}(\Phi) \backslash\{x\} \\
\operatorname{fv}\left(\Phi_{1} \vee \Phi_{2}\right) & \stackrel{\text { def }}{=} \mathrm{fv}\left(\Phi_{1}\right) \cup \mathrm{fv}\left(\Phi_{2}\right) \\
\mathrm{fv}(\neg \Phi) & \stackrel{\text { def }}{=} \mathrm{fv}(\Phi) \\
\mathrm{fv}\left(r \backslash n\left(t_{1}, \ldots, t_{n}\right)\right) & \stackrel{\text { def }}{=} \bigcup_{i=1}^{n} \mathrm{fv}\left(t_{i}\right) \\
\mathrm{fv}(c) & \stackrel{\text { def }}{=} \emptyset \\
\mathrm{fv}(x) & \stackrel{\text { def }}{=}\{x\} \\
\mathrm{fv}\left(f \backslash n\left(t_{1}, \ldots, t_{n}\right)\right. & \stackrel{\text { def }}{=} \bigcup_{i=1}^{n} \mathrm{fv}\left(t_{i}\right)
\end{aligned}
$$

Theories

- The set of variables of a formula is $\operatorname{var}(\Phi) \stackrel{\text { def }}{=} \mathrm{bv}(\Phi) \cup$ $\mathrm{fv}(\Phi)$
- A closed sentence (or ground formula) is a formula Φ with no free variable (so that $\mathrm{fv}(\Phi)=\emptyset$
- A theory is a set of closed sentences

Substitution

- Substitution is a syntactic replacement of a variable by a term, may be with appropriate renaming of bound variables, so as to avoid capturing the term free variables, as in

$$
\begin{aligned}
\exists x: & x=y+1[y:=x] \\
\nrightarrow \quad & \exists x: x=x+1
\end{aligned}
$$

but should be

$$
\rightarrow \quad \exists x^{\prime}: x^{\prime}=x+1
$$

A substitution $\sigma \in \mathcal{V} \mapsto \mathcal{T}$ is a function from variables to terms with finite domain:

$$
\begin{array}{cl}
\operatorname{dom}(\sigma) \stackrel{\text { def }}{=}\{x \in \mathcal{V} \mid x \neq \sigma(x)\} & \text { (finite domain) } \\
\operatorname{rng}(\sigma) \stackrel{\text { def }}{=}\{\sigma(x) \mid x \in \operatorname{dom}(\sigma)\} & \text { (range) } \\
\operatorname{yld}(\sigma) \stackrel{\text { def }}{=} \bigcup\{\operatorname{fv}(t) \mid t \in \operatorname{rng}(\sigma)\} & \text { (yield) }
\end{array}
$$

We write σ as:

$$
\left[x_{1} \leftarrow \sigma\left(x_{1}\right), \ldots, x_{n} \leftarrow \sigma\left(x_{n}\right)\right]
$$

where $\operatorname{dom}(\sigma)=\left\{x_{1}, \ldots, x_{n}\right\}$.

Application of a substitution to a term

$$
\begin{aligned}
& \sigma(c) \stackrel{\text { def }}{=} c \\
& \sigma(y) \stackrel{\text { def }}{=} y \text { iff } y \notin \operatorname{dom}(\sigma) \\
& \sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \stackrel{\text { def }}{=} f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right) \\
& \sigma\left(r\left(t_{1}, \ldots, t_{n}\right)\right) \stackrel{\text { def }}{=} r\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right) \\
& \sigma(\neg \Phi) \stackrel{\text { def }}{=} \neg \sigma(\Phi) \\
& \sigma\left(\Phi_{1} \vee \Phi_{2}\right) \stackrel{\text { def }}{=} \sigma\left(\Phi_{1}\right) \vee \sigma\left(\Phi_{2}\right) \\
& \sigma(\forall x: \Phi) \stackrel{\text { def }}{=} \forall x^{\prime}: \sigma\left(\Phi\left[x:=x^{\prime}\right]\right) \quad \text { where } \\
& x^{\prime} \notin \operatorname{yld}(\sigma) \cup(\mathrm{fv}(\Phi) \backslash\{x\})
\end{aligned}
$$

Example of substitution in a term

$$
\begin{aligned}
& (\exists x: x=y+1)[y:=x] \\
= & \exists x^{\prime}:\left((x=y+1)\left[x:=x^{\prime}\right]\right)[y:=x] \\
= & \exists x^{\prime}:\left((x)\left[x:=x^{\prime}\right]=(y)\left[x:=x^{\prime}\right]+(1)\left[x:=x^{\prime}\right]\right)[y:=x] \\
= & \exists x^{\prime}:\left(x^{\prime}=y+1\right)[y:=x] \\
= & \exists x^{\prime}:\left(\left(x^{\prime}\right)[y:=x]=(y)[y:=x]+(1)[y:=x]\right) \\
= & \exists x^{\prime}:\left(\left(x^{\prime}\right)[y:=x]=(y)[y:=x]+(1)[y:=x]\right)
\end{aligned}
$$

Semantics of the classical first-order logic

Interpretation

An interpretation I is defined by:

- A domain of discourse D_{I} (or domain of interpretation)
- An interpretation $I \llbracket f \rrbracket \in D_{I}^{m} \mapsto D_{I}$ for each function symbol $f \in \mathcal{F}^{m}, m \geq 0$ (including constants)
- An interpretation $I \llbracket r \rrbracket \in D_{I}^{m} \mapsto \mathbb{B}$ for each relation symbol $r \in \mathcal{R}^{m}, m \geq 0$

Environment/Assignment

- An environment/assignment $\rho \in \mathcal{V} \mapsto D_{I}$ assigns a value $\rho(x)$ to each variable $x \in \mathcal{V}$

Assignment notation: if $f \in A \mapsto B, a \in A, b \in B$ then $f[a:=b]=f^{\prime} \in A \mapsto B$ such that:
$f^{\prime}(a)=b \quad$ i.e. $f[a:=b](a)=b$
$f^{\prime}(x)=f(x) \quad$ whenever $x \neq a$ i.e. $f[a:=b](x)=f(x)$

Semantics of the first-order logic

Given an interpretation I, the semantics is:

$$
\begin{gathered}
\mathcal{S}^{I} \llbracket t \rrbracket \in\left(\mathcal{V} \mapsto D_{I}\right) \mapsto D_{I} \\
\mathcal{S}^{I} \llbracket c \rrbracket \rho \stackrel{\text { def }}{=} I \llbracket c \rrbracket \\
\mathcal{S}^{I} \llbracket x \rrbracket \rho \stackrel{\text { def }}{=} \rho(x) \\
\mathcal{S}^{I} \llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket \rho \stackrel{\text { def }}{=} I \llbracket f \rrbracket\left(\mathcal{S}^{I} \llbracket t_{1} \rrbracket \rho, \ldots, \mathcal{S}^{I} \llbracket t_{n} \rrbracket \rho\right)
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{S}^{I} \llbracket A \rrbracket \in\left(\mathcal{V} \mapsto D_{I}\right) \mapsto \mathbb{B} \\
\mathcal{S}^{I} \llbracket r\left(t_{1}, \ldots, t_{n}\right) \rrbracket \rho \stackrel{\text { def }}{=} I \llbracket r \rrbracket\left(\mathcal{S}^{I} \llbracket t_{1} \rrbracket \rho, \ldots, \mathcal{S}^{I} \llbracket t_{n} \rrbracket \rho\right) \\
\mathcal{S}^{I} \llbracket \Phi \rrbracket \in\left(\mathcal{V} \mapsto D_{I}\right) \mapsto \mathbb{B} \\
\left.\mathcal{S}^{I} \llbracket\right\urcorner \Phi \rrbracket \rho \stackrel{\text { def }}{=} \overline{\mathrm{S}}^{\prime}\left(\mathcal{S}^{I} \llbracket g \Phi \rrbracket \rho\right) \\
\mathcal{S}^{I} \llbracket \Phi_{1} \vee \Phi_{2} \rrbracket \rho \stackrel{\text { def }}{=} \mathcal{S}^{I} \llbracket \Phi_{1} \rrbracket \rho \bar{\nabla} \mathcal{S}^{I} \llbracket \Phi_{2} \rrbracket \rho \\
\mathcal{S}^{I} \llbracket \forall x: \Phi \rrbracket \rho \stackrel{\text { def }}{=} \bigwedge_{v \in D_{I}}^{12} \mathcal{S}^{I} \llbracket \Phi \rrbracket \rho[x:=v]
\end{gathered}
$$

It follows that for the abbreviations, we have:

$$
\begin{array}{r}
\mathcal{S}^{I} \llbracket \Phi_{1} \Longrightarrow \Phi_{2} \rrbracket \rho \stackrel{\text { def }}{=} \mathcal{S}^{I} \llbracket \Phi_{1} \rrbracket \rho \Longrightarrow \mathcal{S}^{I} \llbracket \Phi_{2} \rrbracket \rho \\
\mathcal{S}^{I} \llbracket \exists x: \Phi \rrbracket \rho \stackrel{\text { def }}{=} \bigvee_{v \in D_{I}} \mathcal{S}^{I} \llbracket \Phi \rrbracket \rho[x:=v]
\end{array}
$$

where:

\Longrightarrow	ff	tt	V	ff		it
ff	tt	tt	ff	ff	t	t
tt	ff	tt	tt	tt	t	t

and if $S \subseteq \mathbb{B}$ then $\bar{V} S \xlongequal{\text { def }}(S \cap\{\mathrm{tt}\} \neq \emptyset)$.

Semantics of substitution

Assignment is the semantic counterpart of syntactic substitution:

$$
\begin{aligned}
\mathcal{S}^{I} \llbracket \sigma(\Phi) \rrbracket \rho & =\mathcal{S}^{I} \llbracket \Phi \rrbracket \rho^{\prime} \\
\text { where } \quad \forall x \in \mathcal{V}: \rho^{\prime}(x) & =\mathcal{S}^{I} \llbracket \sigma(x) \rrbracket \rho
\end{aligned}
$$

Lemma

If $x \notin \mathrm{fv} \llbracket t \rrbracket$ then

$$
\forall \rho \in \mathcal{V} \mapsto D_{I}: \forall v \in D_{I}: \mathcal{S}^{I} \llbracket t \rrbracket \rho=\mathcal{S}^{I} \llbracket t \rrbracket \rho[x:=v]
$$

Proof.

- The case $t=x$ is disallowed by $x \notin \mathrm{fv} \llbracket x \rrbracket=\{x\}$
- If $y \neq x$ then $x \notin \mathrm{fv} \llbracket y \rrbracket=\{y\}$ and $\mathcal{S}^{I} \llbracket y \rrbracket \rho=\rho(y)=\rho[x:=v](y)=$ $\mathcal{S}^{I} \llbracket y \rrbracket \rho[x:=v]$
- $\mathcal{S}^{I} \llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket \rho$
$=I \llbracket f \rrbracket\left(\mathcal{S}^{I} \llbracket t_{1} \rrbracket \rho, \ldots, \mathcal{S}^{I} \llbracket t_{n} \rrbracket \rho\right)$
$=I \llbracket f \rrbracket\left(\mathcal{S}^{I} \llbracket t_{1} \rrbracket \rho[x:=v], \ldots, \mathcal{S}^{I} \llbracket t_{n} \rrbracket \rho[x:=v]\right) \quad$ by induction hypothesis since
$\forall i: x \notin \mathrm{fv}\left[t_{i}\right]$
$=\mathcal{S}^{I} \llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket \rho[x:=v]$
- $\mathcal{S}^{I} \llbracket r\left(t_{1}, \ldots, t_{n}\right) \rrbracket \rho$
$=I \llbracket r \rrbracket\left(\mathcal{S}^{I} \llbracket t_{1} \rrbracket \rho, \ldots, \mathcal{S}^{I} \llbracket t_{n} \rrbracket \rho\right)$

$$
\begin{aligned}
& =I \llbracket r \rrbracket\left(\mathcal{S}^{I} \llbracket t_{1} \rrbracket \rho[x:=v], \ldots, \mathcal{S}^{I} \llbracket t_{n} \rrbracket \rho[x:=v]\right) \quad \text { by induction hypothesis since } \\
& \forall i: x \notin \mathrm{fv} \llbracket t_{i} \rrbracket \\
& =\mathcal{S}^{I} \llbracket r\left(t_{1}, \ldots, t_{n}\right) \rrbracket \rho[x:=v]
\end{aligned}
$$

Proof of the theorem

Proof.

By structural induction on formulae
$-\mathcal{S}^{I} \llbracket \sigma(c) \rrbracket \rho=\mathcal{S}^{I} \llbracket c \rrbracket \rho=I \llbracket c \rrbracket=\mathcal{S}^{I} \llbracket c \rrbracket \rho^{\prime}$
$-\mathcal{S}^{I} \llbracket \sigma(x) \rrbracket \rho=\rho^{\prime}(x)=\mathcal{S}^{I} \llbracket x \rrbracket \rho^{\prime}$

- $\mathcal{S}^{I} \llbracket \sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \rrbracket \rho$
$=\mathcal{S}^{I} \llbracket f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right) \rrbracket \rho$
$=I \llbracket f \rrbracket\left(\mathcal{S}^{I} \llbracket \sigma\left(t_{1}\right) \rrbracket \rho, \ldots, \mathcal{S}^{I} \llbracket \sigma\left(\sigma\left(t_{n}\right) \rrbracket \rho\right)\right.$
$=I \llbracket f \rrbracket\left(\mathcal{S}^{I} \llbracket t_{1} \rrbracket \rho^{\prime}, \ldots, \mathcal{S}^{I} \llbracket t_{n} \rrbracket \rho^{\prime}\right.$
$\left.=\mathcal{S}^{I} \llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket \rho^{\prime}\right)$
proving that $\forall t: \mathcal{S}^{I} \llbracket \sigma(t) \rrbracket \rho=\mathcal{S}^{I} \llbracket t \rrbracket \rho^{\prime}$
- $\mathcal{S}^{I} \llbracket \sigma\left(r\left(t_{1}, \ldots, t_{n}\right)\right) \rrbracket \rho$
$=\mathcal{S}^{I} \llbracket r\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right) \rrbracket \rho$
$=I \llbracket r \rrbracket\left(\mathcal{S}^{I} \llbracket \sigma\left(t_{1}\right) \rrbracket \rho, \ldots, \mathcal{S}^{I} \llbracket \sigma\left(\sigma\left(t_{n}\right) \rrbracket \rho\right)\right.$
$=I \llbracket r \rrbracket\left(\mathcal{S}^{I} \llbracket t_{1} \rrbracket \rho^{\prime}, \ldots, \mathcal{S}^{I} \llbracket t_{n} \rrbracket \rho^{\prime}\right.$

$$
\left.=\mathcal{S}^{I} \llbracket r\left(t_{1}, \ldots, t_{n}\right) \rrbracket \rho^{\prime}\right)
$$

proving that $\forall A: \mathcal{S}^{I} \llbracket \sigma(A) \rrbracket \rho=\mathcal{S}^{I} \llbracket A \rrbracket \rho^{\prime}$

$$
\begin{aligned}
- & \mathcal{S}^{I} \llbracket \sigma(\neg \Phi) \rrbracket \rho=\mathcal{S}^{I} \llbracket \neg \sigma(\Phi) \rrbracket \rho=\neg\left(\mathcal{S}^{I} \llbracket \sigma(\Phi) \rrbracket \rho\right)=\neg\left(\mathcal{S}^{I} \llbracket \Phi \rrbracket \rho^{\prime}\right)=\mathcal{S}^{I} \llbracket \neg \Phi \rrbracket \rho^{\prime} \\
- & \mathcal{S}^{I} \llbracket \sigma\left(\Phi_{1} \vee \Phi_{2}\right) \rrbracket \rho=\mathcal{S}^{I} \llbracket \sigma\left(\Phi_{1}\right) \vee \sigma\left(\Phi_{2}\right) \rrbracket \rho=\mathcal{S}^{I} \llbracket \sigma\left(\Phi_{1}\right) \rrbracket \rho \bar{\vee} \mathcal{S}^{I} \llbracket \sigma\left(\Phi_{2}\right) \rrbracket \rho=\mathcal{S}^{I} \llbracket \Phi_{1} \rrbracket \rho^{\prime} \nabla \\
& \mathcal{S}^{I} \llbracket \Phi_{2} \rrbracket \rho^{\prime}=\mathcal{S}^{I} \llbracket \Phi_{1} \vee \Phi_{2} \rrbracket \rho^{\prime} \\
- & \mathcal{S}^{I} \llbracket \sigma(\forall x: \Phi) \rrbracket \rho \\
= & \mathcal{S}^{I} \llbracket \forall x^{\prime}: \sigma\left(\Phi\left[x:=x^{\prime} \rrbracket\right) \rrbracket \rho\right. \\
& \quad \text { where } x^{\prime} \notin \operatorname{yld}(\sigma) \cup(\mathrm{fv}(\Phi) \backslash\{x\}) S \\
= & \mathcal{S}^{I} \llbracket \forall x^{\prime}: \sigma\left(\left[x \leftarrow x^{\prime} \rrbracket 13(\Phi)\right) \rrbracket \rho\right. \\
= & \left.\widehat{\mathcal{S}}^{I} \llbracket \forall x^{\prime}:\left(\sigma \circ\left[x \leftarrow x^{\prime}\right]\right)^{14}(\Phi)\right) \rrbracket \rho \\
= & \left.\bigwedge_{v \in D_{I}} \mathcal{S}^{I} \llbracket\left(\sigma \circ\left[x \leftarrow x^{\prime}\right]\right)(\Phi)\right) \rrbracket \rho\left[x^{\prime}:=v\right] \\
= & \left.\bigwedge_{v \in D_{I}} \mathcal{S}^{I} \llbracket \phi \rrbracket\left(\lambda y \cdot \mathcal{S}^{I} \llbracket\left(\sigma \circ\left[x \leftarrow x^{\prime}\right]\right)(y)\right) \rrbracket \rho\left[x^{\prime}:=v\right]\right) \text { bby induction hypothesis } S
\end{aligned}
$$

$$
\begin{aligned}
& =\begin{array}{|c}
\left.\left.\left.\left.\left.\bigwedge^{\prime}\right]\right)(y)\right) \rrbracket \rho\left[x^{\prime}:=v\right]\right)^{15}\right) \\
\mathcal{S}^{I} \llbracket \phi \rrbracket\left(\lambda y \cdot\left(y=x ? \mathcal{S}^{I} \llbracket \sigma\left(x^{\prime}\right) \rrbracket \rho\left[x^{\prime}:=v\right]: \mathcal{S}^{I} \llbracket \sigma(y) \rrbracket \rho\left[x^{\prime}:=v\right] \emptyset\right)\right.
\end{array} \\
& =\bigwedge_{v \in D_{I}}^{v \in D_{I}} \mathcal{S}^{I} \llbracket \phi \rrbracket\left(\lambda y \cdot\left(y=x ? \mathcal{S}^{I} \llbracket x^{\prime} \rrbracket \rho\left[x^{\prime}:=v\right]: \mathcal{S}^{I} \llbracket \sigma(y) \rrbracket \rho\left[x^{\prime}:=v\right]\right)\right) \\
& \text { 2since } \left.x^{\prime} \notin \operatorname{yld}(\sigma) \text { so that } \sigma\left(x^{\prime}\right)=x^{\prime}\right\} \\
& =\bigwedge_{v \in D_{I}} \mathcal{S}^{I} \llbracket \phi \rrbracket\left(\lambda y \cdot\left(y=x \text { ? } v: \mathcal{S}^{I} \llbracket y \rrbracket \rho^{\prime}\right)\right) \\
& \text { 2since }
\end{aligned}
$$

- $\mathcal{S}^{I} \llbracket x^{\prime} \rrbracket \rho\left[x^{\prime}:=v\right]=\rho\left[x^{\prime}:=v\right]\left(x^{\prime}\right)=v$
- $x^{\prime} \notin \operatorname{yld}(\sigma)$ so that $x^{\prime} \in \operatorname{fv} \llbracket \sigma(y) \rrbracket$ hence, by the lemma, $\mathcal{S}^{I} \llbracket \sigma(y) \rrbracket \rho\left[x^{\prime}:=v\right]=\mathcal{S}^{I} \llbracket \sigma(y) \rrbracket \rho=\mathcal{S}^{I} \llbracket y \rrbracket \rho^{\prime}$ by induction hypothesis
s

$$
\begin{aligned}
& =\overline{\bigwedge_{v \in D_{I}}} \mathcal{S}^{I} \llbracket \phi \rrbracket\left(\lambda y \cdot\left(y=x ? v: \rho^{\prime}(y)\right)\right) \\
& =\bigwedge_{v \in D_{I}} \mathcal{S}^{I} \llbracket \phi \rrbracket\left(\rho^{\prime}[x:=v]\right) \\
& =\mathcal{S}^{I} \llbracket \forall: \phi \rrbracket \rho^{\prime}
\end{aligned}
$$

13 The function $\left[x \leftarrow x^{\prime}\right]$ is the substitution of x^{\prime} for x
14 。 is function composition $f \div \operatorname{compg}(x) \stackrel{\text { def }}{=} f(g(x))$
15 The conditional is $(\mathrm{tt}$? $a: b)=a$ and $(\mathrm{ff}$? $a: b)=b$ and $(a \supseteqq b \| c ? d: e)=(a ? b:(c ? d: e))$

Deductive system for the classical first-order logic

Deduction system for first-order logic (H)

- Axioms (for all instances of formulae $\Phi, \Phi^{\prime}, \Phi^{\prime}$, variable x and term t):
(1) $\Phi \vee \Phi \Longrightarrow \Phi$
(2) $\Phi \Longrightarrow \Phi^{\prime} \vee \Phi$
(3) $\left(\Phi \Longrightarrow \Phi^{\prime}\right) \Longrightarrow\left(\Phi^{\prime \prime} \vee \Phi \Longrightarrow \Phi^{\prime} \vee \Phi^{\prime \prime}\right)$
(4) $\forall x: \Phi \Longrightarrow \Phi[x:=t]$
(5) $\quad\left(\forall x: \Phi \vee \Phi^{\prime}\right) \Longrightarrow \Phi \vee \forall x: \Phi^{\prime}$ when $x \notin \mathrm{fv}(\Phi)$
- Inference rules (for all instances of formulae Φ, Φ^{\prime} and variable x):

$$
\begin{array}{ll}
(\mathrm{MP}) & \frac{\Phi, \Phi \Longrightarrow \Phi^{\prime}}{\Phi^{\prime}} \\
\text { (Gen) } \frac{\Phi}{\forall x: \Phi} & \text { Gedus Ponens } \\
&
\end{array}
$$

Example 1 of proof

$$
\Phi[x:=t] \Longrightarrow \neg \forall x: \neg \Phi \quad \text { (i.e. } \exists x: \Phi)
$$

Proof. (assuming tautologies for short)
(a) $\forall x: \neg \Phi \Longrightarrow(\neg \Phi)[x:=t] \quad$ 2instance of (4) S
(b) $\left(\Phi \Longrightarrow \Phi^{\prime}\right) \Longrightarrow\left(\neg \Phi^{\prime} \Longrightarrow \neg \Phi\right) \quad$ (contraposition tautology \int
(b') $(\forall x: \neg \Phi \Longrightarrow(\neg \Phi)[x:=t]) \Longrightarrow \neg((\neg \Phi)[x:=t]) \Longrightarrow \neg \forall x: \neg \Phi$ 2tautology, instance of (b) S
(c) $\neg((\neg \Phi)[x:=t]) \Longrightarrow \neg \forall x: \neg \Phi$
(c') $\neg \neg(\Phi[x:=t]) \Longrightarrow \neg \forall x: \neg \Phi$
(d) $\left(\neg \neg \Phi \Longrightarrow \neg \Phi^{\prime}\right) \Longrightarrow\left(\Phi \Longrightarrow \neg \Phi^{\prime}\right)$ 2(a), (b') and (MP) \int
(d') $(\neg \neg(\Phi[x:=t]) \Longrightarrow \neg \forall x: \neg \Phi) \Longrightarrow(\Phi[x:=t] \Longrightarrow \neg \forall x: \neg \Phi) \quad$ 2tautology ρ
(e) $\Phi[x:=t] \Longrightarrow \neg \forall x: \neg \Phi$

2(c), (d') and (MP) S

Example 2 of proof

$$
\left\{\Phi \Longrightarrow \Phi^{\prime}\right\} \vdash \neg \forall x: \neg \Phi \Longrightarrow \Phi^{\prime} \quad \text { when } x \notin \mathrm{fv}\left(\Phi^{\prime}\right)
$$

Proof. (assuming tautologies for short)
(a) $\Phi \Longrightarrow \Phi^{\prime}$
(b) $\left(\Phi \Longrightarrow \Phi^{\prime}\right) \Longrightarrow\left(\neg \Phi^{\prime} \Longrightarrow \neg \Phi\right)$
(c) $\neg \Phi^{\prime} \Longrightarrow \neg \Phi$
(c') $\neg \neg \Phi^{\prime} \vee \neg \Phi$
(d) $\forall x:\left(\neg \neg \Phi^{\prime} \vee \neg \Phi\right)$
(e) $\neg \neg \Phi^{\prime} \vee \forall x: \neg \Phi$
(f) $\neg \Phi^{\prime} \Longrightarrow \forall x: \neg \Phi$
(g) $\quad\left(\neg \Phi^{\prime} \Longrightarrow \forall x: \neg \Phi\right) \Longrightarrow\left(\neg \forall x: \neg \Phi \Longrightarrow \neg \neg \Phi^{\prime}\right) \quad$ (contraposition tautology)
(h) $\neg \forall x: \neg \Phi \Longrightarrow \neg \neg \Phi^{\prime}$

2hypothesis)
2contraposition tautology \int
q(a), (b) and (MP) S
\{def. abbreviation $\Longrightarrow \int$
$2\left(c^{\prime}\right),($ Gen $) S$
$2(\mathrm{~d}),(5), x \notin \mathrm{fv}\left(\neg \neg \Phi^{\prime}\right)=\mathrm{fv}\left(\Phi^{\prime}\right) \rho$
2def. abbreviation \Longrightarrow)

2(f), (g) and (MP) S
(C) P. Cousot
(i) $\left(\Phi \Longrightarrow \neg \neg \Phi^{\prime}\right) \Longrightarrow\left(\Phi \Longrightarrow \Phi^{\prime}\right)$

2tautology \int
(i') $\quad\left(\neg \forall x: \neg \Phi \Longrightarrow \neg \neg \Phi^{\prime}\right) \Longrightarrow\left(\neg \forall x: \neg \Phi \Longrightarrow \Phi^{\prime}\right) \quad$ 2tautology, instance of (i) $)$
(j) $\neg \forall x: \neg \Phi \Longrightarrow \Phi^{\prime}$

2(h), (i') and (MP) $\}$

Extension of the deduction system (H) for first-order logic

These theorems are often incorporated to the deductive system as an axiom

$$
\Phi[x:=t] \Longrightarrow \exists x: \Phi
$$

and a generalization rule:

$$
\frac{\Phi \Longrightarrow \Phi^{\prime}}{(\exists x: \Phi) \Longrightarrow \Phi^{\prime}} \text { when } x \notin \operatorname{fv}(\Phi)
$$

Logical equivalences involving quantifiers and

negations

$$
\begin{aligned}
& -\neg \forall x: \Phi \Longleftrightarrow \exists x: \neg P h i \\
& -\neg \exists x: \Phi \Longleftrightarrow \forall x: \neg \Phi \\
& -(\forall x: \Phi \wedge \forall x: \Phi) \Longleftrightarrow \forall x:\left(\Phi \wedge \Phi^{\prime}\right) \\
& -(\exists x: \Phi \vee \forall x: \Phi) \Longleftrightarrow \exists x:\left(\Phi \vee \Phi^{\prime}\right) \\
& -\left(\Phi \Longrightarrow \Phi^{\prime}\right) \Longrightarrow\left(\exists x: \Phi \Longrightarrow \Phi^{\prime}\right) \\
& -\left(\Phi \Longrightarrow \Phi^{\prime}\right) \Longrightarrow\left(\Phi \Longrightarrow \forall x: \Phi^{\prime}\right) \\
& -\forall x:\left(\Phi \vee \Phi^{\prime}\right) \Longleftrightarrow(\forall x: \Phi) \vee \Phi^{\prime} \\
& -\exists x:\left(\Phi \wedge \Phi^{\prime}\right) \Longleftrightarrow(\exists x: \Phi) \wedge \Phi^{\prime} \\
& -\Phi \Longleftrightarrow \forall x: \Phi \\
& -\Phi \Longleftrightarrow \exists x: \Phi
\end{aligned}
$$

when $x \notin \mathrm{fv}\left(\Phi^{\prime}\right)$ when $x \notin \mathrm{fv}\left(\Phi^{\prime}\right)$

Properties of the deduction system (H) for first-order logic

- The Hilbert style deductive system (H) is sound, consistent, compact ${ }^{16}$ and complete [4] for the first-orderlogic.
- Reference
[4] Kurt Gödel. "Die Vollständigkeit der Axiome des logischen Funktionen-kalküls", Monatshefte für Mathematik und Physik 37 (1930), 349-360.
$16 \Gamma \vdash \Phi$ if and only if $\Gamma^{\prime} \vdash \Phi$ for a finite subset Γ^{\prime} of Γ.
- The Hilbert style deductive system (H) is not decidable [5].
- Proofs cannot be fully automated: there is no terminating algorithm that, given a first-order formula Φ as input, returns true whenever Φ is classically valid.
- Reference
[5] Kurt Gödel. "Über Formal Unentscheidbare Sätze der Principia Mathematica und Verwandter Systeme, I". Monatshefte für Mathematik und Physik 38, 173-198, 1931.

The theory axiomatizing equality

Writing $=\backslash 2(A, B)$ as $A=B$, the theory axiomatizing equality is first-order logic plus the following axioms:

- $\forall x: x=x \quad$ reflexivity
$-\forall x: \forall y:(x=y) \Longrightarrow(y=x) \quad$ symmetry
$-\forall x_{1}: \ldots \forall x_{n}: \forall y_{1}: \ldots \forall y_{n}:\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \Longrightarrow$ $\left(f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)$ Leibnitz functional congruence
$-\forall x_{1}: \ldots \forall x_{n}: \forall y_{1}: \ldots \forall y_{n}:\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \Longrightarrow$ $\left(r\left(x_{1}, \ldots, x_{n}\right)=r\left(y_{1}, \ldots, y_{n}\right)\right)$ Leibnitz relational congruence
$-\forall x: \forall y: \forall z:(x=y \wedge y=z) \Longrightarrow(x=z)$ transitivity

Peano arithmetic [6]

- Constant symbols: 0
- Functional symbols: s (sucessor),,$+ \times$
- Relation symbols: $=, \leq$
- Axioms:
- $\forall x: x=x \quad$ reflexivity
- $\forall x: \forall y:(x=y) \Longrightarrow(y=x) \quad$ symmetry
- $\forall x: \forall y: \forall z:(x=y \wedge y=z) \Longrightarrow(x=z)$ transitivity
- $\forall x: \forall y:(x=y) \Longrightarrow(s(x)=s(y)) \quad$ congruence
- $\forall x: \forall y: \forall z: \forall t:(x=z \wedge t=t) \Longrightarrow(x+y=z+t)$
- $\forall x: \forall y: \forall z: \forall t:(x=z \wedge t=t) \Longrightarrow(x \times y=z \times t)$
$-\forall x: \forall y: \forall z: \forall t:(x=z \wedge t=t) \Longrightarrow(x \leq y=z \leq t)$
- $\forall x:(x=0) \vee(\exists y: x=s(y))$ every natural but 0 is a successor
- $\forall x: \neg(s(x)=0)$

0 is not a successor

- $\forall x: \forall y:(s(x)=s(y)) \Longrightarrow(x=y) \quad s$ is injective so every nonzero natural has a unique predecessor
- $\forall x: x+0=x$
def. addition
- $\forall x: \forall y: s+s(y)=s(x+y)$
- $\forall x: x \times 0=0$ def. multiplication
- $\forall x: \forall y: x \times s(y)=(x \times y)+x$
$-((\Phi)[x:=0] \wedge(\forall x: \Phi \Longrightarrow(\Phi)[x:=s(x)]) \Longrightarrow(\forall x:$ Φ) recurrence (for all instances of Φ)
- Reference
[6] Giuseppe Peano. Arithmetices principia, nova methodo exposita. Augustae Taurinorum, Ed. Fratres Bocca, 1889. - XVI, 20 p.

Non standard integers

This axiomatization formalizes natural numbers but does not exclude "non standard models" of the form:

$$
\begin{aligned}
& 0123 \ldots \ldots-2^{0}-1^{0} 0^{0} 1^{0} 2^{0} \ldots-2^{1}-1^{1} 0^{1} 1^{1} 2^{1} \\
& \ldots-2^{2}-1^{2} 0^{2} 1^{2} 2^{2} \ldots \ldots
\end{aligned}
$$

Excluded by the second-order logic induction axiom ${ }^{17}$:

$$
\forall P:(P(0) \wedge(\forall x: P(x) \Longrightarrow P(s(x)))) \Longrightarrow \forall x: P
$$

[^3]
THE END

[^0]: 1 Also called assignment in logic.

[^1]: 2 Also called an interpretation in logic
 3 Hilbert used instead an arithmetic interpretation where 0 is true and 1 is false.

[^2]: 9 So that the premises have already been proved.

[^3]: 17 The difference is that there is a denumerable infinity of instances of Φ while there can be a non-denumerable infinity of $P \mathrm{~s}$, see G.S.Boolos and R.C.Jeffrey, "Computability and Logic", Cambridge University Press, 1974, 1980, 1989, Section 17, pp.193-195.

