
T
he
Long-Standing

Softw
are

Safety
and
Security

P
roblem

§!xx§x

—
2
—

ľ
P.C
ousot



W
hat
is
(or
should

be)
the
essential

preoccupation
of
com
puter

scientists?

The
production

ofreliable
software,its

m
ainte-

nance
and

safe
evolution

yearafteryear(up
to

20
even

30
years).

—
3
—

ľ
P.C
ousot



C
om
puter

hardw
are
change

of
scale

T
he
25
last
years,com

puter
hardw

are
has
seen

its
per-

form
ances

m
ultiplied

by
1
0
4
to

1
0
6=

1
0
9;

E
N
IA
C
(5000

flops)
Intel/Sandia

T
eraflops

System
(10

12
flops)

—
4
—

ľ
P.C
ousot



T
he
inform

ation
processing

revolution

A
scale

of
1
0
6
is
typicalof

a
significant

revolution:
-
E
nergy:

nuclear
pow
er
station

/
R
om
an
slave;

-
T
ransportation:

distance
E
arth

—
M
ars
/
B
oston

—
W
ashington

—
5
—

ľ
P.C
ousot



C
om
puter

softw
are
change

of
scale

–
T
he
size
ofthe

program
s
executed

by
these

com
puters

has
grow

n
up
in
sim
ilar
proportions;

–
Exam

ple
1
(m
odern

text
editor

for
the
generalpublic):

-
>
1
700
000
lines

of
C
1;

-
20
000
procedures;

-
400
files;

-
>
15
years

of
developm

ent.

1
full-tim

e
reading

of
the
code

(35
hours/w

eek)
w
ould

take
at
least

3
m
onths!

—
5
—

ľ
P.C
ousot



C
om
puter

softw
are
change

of
scale

(cont’d)

–
Exam

ple
2
(professionalcom

puter
system

):

-30
000
000
lines

ofcode;
-
30
000
(know

n)
bugs!

—
6
—

ľ
P.C
ousot



B
ugs

–
Softw

are
bugs

-
w
hether

anticipated
(Y
2K
bug)

-
orunforeseen

(failure
ofthe

5.01
flight

of
A
riane

V
launcher)

are
quite

frequent;
–
B
ugs
can
be
very

diffi
cult

to
discover

in
huge

softw
are;

–
Bugs

can
have

catastrophic
consequences

eithervery
costly

or
inadm

issible
(em

bedded
software

in
transportation

sys-
tem

s);

—
7
—

ľ
P.C
ousot



T
he
estim

ated
cost

of
an
overflow

–
500

000
000

$;
–
Including

indirect
costs

(delays,lost
m
arkets,etc):

2
000

000
000

$;

–
T
he
financial

results
of
A
rianespace

w
ere

negative
in

2000,for
the
first

tim
e
since

20
years.—

8
—

ľ
P.C
ousot



W
ho
cares?

–
N
o
one
is
legally

responsible
for
bugs:

T
his
softw

are
is
distributed

W
IT
H
O
U
T
A
N
Y

W
A
R
R
A
N
T
Y
;w
ithout

even
the
im
plied

w
ar-

ranty
ofM

E
R
C
H
A
N
T
A
B
IL
IT
Y
or
F
IT
N
E
SS

F
O
R
A
P
A
R
T
IC
U
L
A
R
P
U
R
P
O
SE
.

–
So,no

one
cares

about
softw

are
verification

–
A
nd
even

m
ore,one

can
even

m
ake
m
oney

out
ofbugs

(custom
ers
buy
the
next

version
to
get
around

bugs
in

softw
are)

—
9
—

ľ
P.C
ousot



W
hy
no
one
cares?

–
Softw

are
designers

don’t
care

because
there

is
no
risk

in
w
riting

bugged
softw

are
–
T
he
law
/judges

can
never

enforce
m
ore
than

w
hat
is

offered
by
the
state

of
the
art

–
A
utom

ated
softw

are
verification

by
form

alm
ethods

is
undecidable

w
hence

thought
to
be
im
possible

–
W
hence

the
state

ofthe
art
is
that

no
one
w
illever

be
able

to
elim
inate

allbugs
at
a
reasonable

price
–
A
nd
so
no
one
ever

bear
any
responsability

—
10
—

ľ
P.C
ousot



C
urrent

research
results

–
R
esearch

is
presently

changing
the
state

ofthe
art
(e.g.

A
ST
R
É
E
)

–
W
e
can
check

for
the
absence

of
large

categories
of

bugs
(m
ay
be
not
allofthem

but
a
significant

portion
of
them

)
–
T
he
verification

can
be
m
ade
autom

atically
by
m
e-

chanicaltools
–
Som
e
bugs

can
be
found

com
pletely

autom
atically,

w
ithout

any
hum
an
intervention

—
11
—

ľ
P.C
ousot



T
he
next

step
(5/10

years)

–
If
these

tools
are
successful,their

use
can
be
enforced

by
quality

norm
s

–
P
rofessionalhave

to
conform

to
such

norm
s
(otherw

ise
they

are
not
credible)

–
B
ecause

of
com
plete

toolautom
aticity,

no
one
can
be

discharged
from

the
duty

ofapplying
such

state
ofthe

art
tools

–
T
hird

parties
of
confidence

can
check

softw
are
a
pos-

teriorito
trace

back
bugs

and
prove

responsabilities

—
12
—

ľ
P.C
ousot



A
foreseeable

future
(10/15

years)

–
T
he
real
take-off

of
softw

are
verification

m
ust
be
en-

forced
–
D
evelopm

ent
costs

argum
ents

have
show

n
to
be
inef-

fective
–
N
orm
s/law

s
m
ight

be
m
uch
m
ore
convincing

–
T
his
requires

effectiveness
and

com
plete

autom
ation

(to
avoid

acquittal
based

on
hum
an
capacity

lim
ita-

tions
argum

ents)

—
13
—

ľ
P.C
ousot



W
hy
w
ill“partialsoftw

are
verification”

ultim
ately

succeed?

–
T
he
state

of
the
art
w
ill
change

tow
ard
com
plete

au-
tom
ation,at

least
for
com
m
on
categories

of
bugs

–
So
responsabilities

can
be
established

(at
least

for
au-

tom
atically

detectable
bugs)

–
W
hence

the
law
w
ill
change

(by
adjusting

to
the
new

state
of
the
art)

–
T
o
ensure

at
least

partialsoftw
are
verification

–
For
the
benefit

of
allof

us

—
14
—

ľ
P.C
ousot



P
rogram

V
erification

M
ethods

—
15
—

ľ
P.C
ousot



T
esting

–
T
o
prove

the
presence

of
bugs

relative
to
a
specifica-

tion;
–
Som
e
bugs

m
ay
be
m
issed;

–
N
othing

can
be
concluded

on
correctness

w
hen
no
bug

is
found;

–
E
.g.:

debugging,
sim
ulation,

code
review

,
bounded

m
odelchecking.

—
16
—

ľ
P.C
ousot



V
erification

–
T
o
prove

the
absence

ofbugs
relative

to
a
specification;

–
N
o
bug
is
ever

m
issed

2;
–
Inconclusive

situations
m
ay
exist

(undecidability)
!

bug
or
false

alarm
–
C
orrectness

follow
s
w
hen
no
bug
is
found;

–
E
.g.:
deductive

m
ethods,static

analysis.

2
ralative

to
the
specification

w
hich

is
checked.

—
17
—

ľ
P.C
ousot



A
n
historicalperspective

on
form

alsoftw
are
verification

—
18
—

ľ
P.C
ousot



T
he
origins

of
program

proving

–
T
he
idea

of
proving

the
correctness

of
a
program

in
a
m
athem

atical
sense

dates
back

to
the
early

days
of
com
puter

science
w
ith
John

von
N
eum
ann

[1]
and

A
lan
T
uring

[2].

R
eference

[1]
J.von

N
eum
ann.“P

lanning
and
C
oding

of
P
roblem

s
for
an
E
lectronic

C
om
puting

Instrum
ent”,U

.S.A
rm
y

and
Institute

for
A
dvanced

Study
report,

1946.In
John

von
N
eum
ann,

C
ollected

W
orks,V

olum
e
V
,
P
erg-

am
on
P
ress,O

xford,1961,pp.34-235.

[2]
A
.M
.T
uring,“

C
hecking

a
Large

R
outine”.In

R
eportofa

C
onference

on
H
igh
Speed

A
utom

atic
C
alculating

M
achines,U

niv.M
ath.Lab.,C

am
bridge,pp

67-69
(1949).

—
19
—

ľ
P.C
ousot



John
V
on
N
eum
ann

A
lan
T
uring

—
20
—

ľ
P.C
ousot



T
he
pionneers

(C
ont’d)

–
R
.F
loyd

[3]
and

P.N
aur
[4]
introduced

the
“partial

correctness”
specification

togetherw
ith
the
“invariance

proof
m
ethod”;

–
R
.F
loyd

[3]also
introduced

the
“variantproofm

ethod”
to
prove

“program
term

ination”;

R
eference

[3]
R
obert

W
.
F
loyd.

“A
ssigning

m
eanings

to
program

s”.
In
P
roc.

A
m
er.
M
ath.

Soc.
Sym
posia

in
A
pplied

M
athem

atics,
vol.19,pp.19–31,1967.

[4]
P
eter

N
aur.“P

roof
of
A
lgorithm

s
by
G
eneral

Snapshots”,B
IT
6
(1966),pp.310-316.

—
21
—

ľ
P.C
ousot



R
obert

F
loyd

P
eter
N
aur

—
22
—

ľ
P.C
ousot



T
he
pionneers

(C
ont’d)

–
C
.A
.R
.H
oare

form
alized

the
F
loyd/N

aur
partial

cor-
rectnessproofm

ethod
in
a
logic

(so-called
“H
oare

logic”)
using

an
H
ilbert

style
inference

system
;

–
Z.M

anna
and

A
.P
nueli

extended
the
logic

to
“total

correctness”
(i.e.partialcorrectness

+
term

ination).

R
eference

[5]
C
.A
.R
.H
oare.“A

n
A
xiom

atic
B
asis
for
C
om
puter

P
rogram

m
ing.C

om
m
un.A

C
M
12(10):

576-580
(1969)

[6]
Zohar

M
anna,

A
m
ir
P
nueli.“A

xiom
atic
A
pproach

to
T
otal

C
orrectness

of
P
rogram

s”.
A
cta
Inf.3:

243-263
(1974)

—
23
—

ľ
P.C
ousot



C
.A
.R
.H
oare

Zohar
M
anna

A
m
ir
P
nueli

—
24
—

ľ
P.C
ousot



A
ssertions

–
A
n
assertion

is
a
statem

ent
(logical

predicate)
about

the
values

of
the
program

variables
(i.e.,

the
m
em
ory

state
3),w
hich

m
ay
or
m
ay
not
be
valid

at
som
e
point

during
the
program

com
putation;

–
A
precondition

is
an
assertion

at
program

entry;
–
A
postcondition

is
an
assertion

at
program

exit;

3
T
his
m
ay
also
include

auxiliary
variables

to
denote

initial/interm
ediate

values
of
program

variables.

—
25
—

ľ
P.C
ousot



P
artialcorrectness

–
P
artialcorrectnessstatesthatifa

given
precondition

P
holds

on
entry

ofa
program

C
and
program

execution
term

inates,then
a
given

postcondition
Q
holds,ifand

w
hen
execution

of
C
term

inates;
–
H
oare

triple
notation

[5]:
fP
gC
fQ
g.—

26
—

ľ
P.C
ousot



P
artialcorrectness

(exam
ple)

–
T
autologies:

fP
gC
ftru
eg

ffalsegC
fQ
g

–
N
onterm

ination:
fP
gC
ffalseg

fP
gC
fQ
g
iffP

gC
ffalseg

—
27
—

ľ
P.C
ousot



T
he
E
uclidian

integer
division

exam
ple
[3]

fX
–
0
^
Y
>
0g

Cf0
»
R
<
Y
^
X
–
0

^
X
=
R
+
Q
Y
g

—
28
—

ľ
P.C
ousot



Invariant

–
A
n
invariant

at
a
given

program
point

is
an
assertion

w
hich

holdsduring
execution

w
henevercontrolreaches

that
point

—
29
—

ľ
P.C
ousot



T
he
E
uclidian

integer
division

exam
ple
[3]

—
30
—

ľ
P.C
ousot



F
loyd/N

aur
invariance

proof
m
ethod

T
o
prove

that
assertions

attached
to
program

points
are

invariant:

–
B
asic
verification

condition:
P
rove

the
assertion

at
program

entry
holds

(e.g.
follow

s
from

a
precondi-

tion
hypothesis);

–
Inductive

verification
condition:

P
rove

that
if
an

assertions
holds

at
som
e
program

point
and
a
pro-

gram
step

is
executed

then
the
assertion

does
hold

at
next

program
point.

—
31
—

ľ
P.C
ousot



Soundness
of
F
loyd/N

aur
invariance

proof
m
ethod

B
y
induction

on
the
num
ber
ofprogram

steps,allasser-
tions

are
invariants

4.

4
A
slo
called

inductive
invariants

—
32
—

ľ
P.C
ousot



A
ssignm

ent
verification

condition
fP
(X
;Y
;:::)g

X
:=

E(X,Y,...)
fQ
(X
;Y
;:::)g

›
8
X
;Y
;:::
:
(9
X
0:
P
(X
0;Y
;:::)^

X
=
E
(X
0;Y
;:::))

=)
Q
(X
;Y
;:::)

R
.F
loyd

›
8
X
;Y
;:::
:
P
(X
;Y
;:::)

=)
Q
(X
;Y
;:::)[X

:=
E
]
5

C
.A
.R
.H
oare

5
B
[x
:=
A
]is
the
substitution

of
A
for
x
in
B
.

—
33
—

ľ
P.C
ousot



A
ssignm

ent
verification

condition
(exam

ple)

fX
–
0g

X
:=

X
+

1
fX
>
0g

›
8
X
:
(9
X
0:
X
0–
0
^
X
=
X
0+
1)

=)
X
>
0

R
.F
loyd

›
8
X
:
X
–
0

=)
(X
+
1)
>
0

C
.A
.R
.H
oare

—
34
—

ľ
P.C
ousot



C
onditionalverification

condition

fP
1 (X
;Y
;:::)g

if
B
(X
;Y
;:::)

then
fP
2 (X
;Y
;:::)g

›
P
1 (X
;Y
;:::)^

B
(X
;Y
;:::)

...
=)
P
2 (X
;Y
;:::)

fP
3 (X
;Y
;:::)g

elsefP
4 (X
;Y
;:::)g

›
P
1 (X
;Y
;:::)^

:
B
(X
;Y
;:::)

...
=)
P
4 (X
;Y
;:::)

fP
5 (X
;Y
;:::)g

fi
›
P
3 (X
;Y
;:::)_

P
5 (X
;Y
;:::)

fP
6 (X
;Y
;:::)g

=)
P
6 (X
;Y
;:::)

—
35
—

ľ
P.C
ousot



C
onditionalverification

condition
(exam

ple)
fX
=
x
0 g

if
X
–
0

then
fX
=
x
0
–
0g

›
X
=
x
0 ^
X
–
0

skip
=)
X
=
x
0
–
0

fX
=
x
0
–
0g

elsefX
=
x
0
<
0g

›
X
=
x
0 ^
:
X
–
0

X
:=

-X
=)
X
=
x
0
<
0

fX
=
`
x
0
>
0g

fi
›
X
=
x
0
–
0
_
X
=
`
x
0
>
0

fX
=
jx
0 jg

=)
X
=
jx
0 j
6

6
jajis

the
absolute

value
of
a.

—
36
—

ľ
P.C
ousot



W
hile
loop

verification
condition

fP
1 (X
;Y
;:::)g

›
P
1 (X
;Y
;:::)^

B
(X
;Y
;:::)

while
B
(X
;Y
;:::)

do
=)
P
2 (X
;Y
;:::)

fP
2 (X
;Y
;:::)g

›
P
1 (X
;Y
;:::)^

:
B
(X
;Y
;:::)

...
=)
P
4 (X
;Y
;:::)

fP
3 (X
;Y
;:::)g

›
P
3 (X
;Y
;:::)^

B
(X
;Y
;:::)

od
=)
P
2 (X
;Y
;:::)

fP
4 (X
;Y
;:::)g

›
P
3 (X
;Y
;:::)^

:
B
(X
;Y
;:::)

=)
P
4 (X
;Y
;:::)

—
37
—

ľ
P.C
ousot



W
hile
loop

verification
condition

(exam
ple)

fX
–
0g

›
X
–
0
^
X
6=
0

while
X
6=
0

do
=)
X
>
0

fX
>
0g

›
X
–
0
^
:
X
6=
0

X
:=

X
-

1
=)
X
=
0

fX
–
0g

›
X
–
0
^
X
6=
0

od
=)
X
>
0

fX
=
0g

›
X
–
0
^
:
X
6=
0

=)
X
=
0

—
38
—

ľ
P.C
ousot



F
loyd/N

aur
partialcorrectness

proof
m
ethod

–
Let
be
given

a
precondition

P
and
a
postcondition

Q
;

–
F
ind
assertions

A
i
attached

to
allprogram

points
i;

–
A
ssum

ing
precondition

P
,prove

allassertions
A
i to
be

invariants
(using

the
assignm

ent/conditionaland
loop

verification
conditions);

–
P
rove

the
invariant

on
exit

im
plies

the
postcondition

Q
.

—
39
—

ľ
P.C
ousot



T
he
E
uclidian

integer
division

exam
ple

fx
–
0
^
y
–
0g

initialcondition

a:=
0;b:=

x

fb
=
x
–
0
^
y
–
0
^
a
:y
+
b
=
xg

w
h
i
l
e
b–

y
d
o

fx
–
0
^
b
–
y
–
0
^
a
:y
+
b
=
xg

fx
–
0
^
b
–
y
–
0
^
(a
+
1):y
+
(b`

y
)
=
xg

b:=
b
`

y;
a:=

a
+
1

fx
–
0
^
b
–
0
^
y
–
0
^
a
:y
+
b
=
xg

o
d

fa
:y
+
b
=
x
^
0
»
b
<
yg

partialcorrectness
—
40
—

ľ
P.C
ousot



H
oare

logic
–
fP
[x
:=

e]g
x:=

e
fP
g

assignm
ent
axiom

(1)

–
fP
gC
1 fR
g;
fR
gC
2 fQ
g

fP
gC
1 ;C
2 fQ
g

com
position

rule
(2)

–
fP
^
bgC
1 fQ
g;
fP
^
:
bgC
2 fQ
g

fP
g
i
f
b
t
h
e
n
C
1
e
l
s
e
C
2
f
i
fQ
g

if-the-else
rule

(3)

–
fP
^
bgC
fP
g

fP
g
w
h
i
l
e
b
d
o
C

o
d
fP
^
:
bg

w
hile
rule

(4)

–
(P
=)
P
0);

fP
0gC
fQ
0g;

(Q
0=)

Q
)

fP
gC
fQ
g

consequence
rule
(5)

—
41
—

ľ
P.C
ousot



Form
alP
artialC

orrectness
P
roof

of
Integer

D
ivision

W
e
let

p
d
ef
=

w
h
i
l
e
b–

y
d
o
b:=

b
`

y;
a:=

a
+
1
o
d

(a)
f0:y

+
x
=
x
^
x
–
0g

a:=
0fa
:y
+
x
=
x
^
x
–
0g

by
the
assignm

ent
axiom

(1)
(b)
fa
:y
+
x
=
x
^
x
–
0g

b:=
x
fa
:y
+
b
=
x
^
b
–
0g

by
the
assignm

ent
axiom

(1)
(c)
f0:y
+
x
=
x
^
x
–
0g

a:=
0;

b:=
x
fa
:y
+
b
=
x
^
b
–
0g

by
(a),(b)

and
the
com
position

rule
(2)

(d)
(x
–
0
^
y
–
0)
=)
(0:y
+
x
=
x
^
x
–
0)

by
first-order

logic

—
42
—

ľ
P.C
ousot



(e)
fx
–
0
^
y
–
0g

a:=
0;

b:=
x
fa
:y
+
b
=
x
^
b
–
0g

by
(d),(c)

and
the
consequence

rule
(5)

(f)
f(a
+
1):y
+
b
`
y
=
x
^
b
`
y
–
0g

b:=
b
`

y
f(a
+

1):y
+
b
=
x
^
b
–
0g

by
the
assignm

ent
axiom

(1)
(g)
f(a
+
1):y
+
b
=
x^
b
–
0g

a:=
a
+
1fa
:y
+
b
=
x^
b
–
0g

by
the
assignm

ent
axiom

(1)
(h)
f(a
+
1):y

+
b
`
y
=
x
^
b
`
y
–
0g

b:=
b
`

y;
a:=

a

+
1fa
:y
+
b
=
x
^
b
–
0g

by
(f),(g)

and
the
com
position

rule
(2)

—
43
—

ľ
P.C
ousot



(i)
(a
:y
+
b
=
x
^
b
–
0
^
b
–
y
)
=)
((a
+
1):y
+
b`
y
=

x
^
b`
y
–
0)

by
first-order

logic
(j)
fa
:y
+
b
=
x^
b
–
0^
b
–
yg

b:=
b
`

y;
a:=

a
+
1fa
:y
+
b
=

x
^
b
–
0g

by
(h),(i)

and
the
consequence

rule
(5)

(k)
fa
:y
+
b
=
x
^
b
–
0g

p
fa
:y
+
b
=
x
^
b
–
0^
:
(b
–
y
)g

by
(j)
and
the
w
hile
rule

(4)
(‘)
fx
–
0
^
y
–
0g

a:=
0;

b:=
x;
p
fa
:y
+
b
=
x
^
b
–

0
^
:
(b
–
y
)g
by
(e),(k)

and
the
com
position

rule
(2)

Q
.E
.D
.

—
44
—

ľ
P.C
ousot



Soundness
and
C
om
pleteness

–
Soundness:

no
erroneous

fact
can
be
derived

by
H
oare

logic;
–
C
om
pleteness:

all
true

facts
can
be
derived

by
H
oare

logic;
–
If
the
first-order

logic
includes

arithm
etic
then

there
exists

no
com
plete

axiom
atization

of
=)

in
the
con-

sequence
rule

(5)
(G
ödeltheorem

)

—
45
—

ľ
P.C
ousot



R
elative

C
om
pleteness

–
R
elative

com
pleteness

[7]:
alltrue

facts
can
be
derived

by
H
oare

logic
provided:

-
the
first-order

assertion
language

is
rich
enough

to
express

loop
invariants;

-
allfirst-order

theorem
s
needed

in
the
consequence

rule
are
given

(e.g.by
an
oracle).

R
eference

[7]
Stephen

A
.
C
ook:

“Soundness
and
C
om
pleteness

of
an
A
xiom

System
for
P
rogram

V
erification”.

SIA
M
J.

C
om
put.7(1):

70-90
(1978)

—
46
—

ľ
P.C
ousot



T
erm
ination

–
T
erm
ination:

no
program

execution
can
run
for
ever;

–
B
ounded

term
ination:

the
program

term
inates

in
a

tim
e
bounded

by
som
e
function

of
the
input;

–
E
xam
ple
of
unbounded

term
ination:

X
:=

?;
 
random

num
ber
generator

while
X

>
0

do
Y

:=
?;

while
Y

>
0

do
Y

:=
Y

-
1

od;
X

:=
X

-
1

od

—
47
—

ľ
P.C
ousot



W
ell-founded

relation

–
A
relation

r
is
w
ell-founded

on
a
set
S
if
and
only

if
there

is
no
infinite

sequence
s
of
elem

ents
of
S
w
hich

are
r-related:

:
(9
s
2
N
7!
S
:8
i2
N
:
r(s
i ;s
i+
1 ))

–
E
xam
ples:

>
on
N
(the

naturals,
n
>
n
`
1
>
...
>

0)
–
C
ounter-exam

ples:
>
on
Z
(the

integers,
0
>
`
1
>

`
2
>
...),

>
on
Q
(the

rationals,
1
>
12
>
13
>
14
...)

—
48
—

ľ
P.C
ousot



F
loyd

term
ination

proof
m
ethod

–
E
xhibit

a
so-called

ranking
function

from
the
values

ofthe
program

variables
to
a
set
S
and
a
w
ell-founded

relation
r
on
S
;

–
Show

that
the
ranking

function
takes

r-related
values

on
each

program
step.

Soundness:
non-term

ination
w
ould

be
in
contradiction

w
ith
w
ell-foundedness

C
om
pleteness:

for
a
term

inating
program

,
the
num
ber

of
rem
aining

steps
7strictly

decreases.

7
T
his
is
m
eaningfullfor

bounded
term

ination
only,otherw

ise
one
has
to
resort

to
ordinals.

—
49
—

ľ
P.C
ousot



T
he
E
uclidian

integer
division

exam
ple
[3]

—
50
—

ľ
P.C
ousot



T
erm
ination

of
structured

program
s

Its
suffi
cient

to
prove

term
ination

of
loops

8.
E
xam
ple:

fx
–
0
^
y
>
0g

initialcondition

a:=
0;b:=

x

fb
=
x
–
0
^
y
>
0
^
a
:y
+
b
=
xg

w
h
i
l
e
b–

y
d
o

fx
–
0
^
b
–
y
>
0
^
a
:y
+
b
=
xg

b:=
b
`

y;
a:=

a
+
1

fx
–
0
^
b
–
0
^
y
>
0
^
a
:y
+
b
=
xg

o
d

fa
:y
+
b
=
x
^
0
»
b
<
yg

totalcorrectness

8
and
recursive

functions.

—
51
—

ľ
P.C
ousot



E
xam
ple:

Integer
D
ivision

by
E
uclid’s

A
lgorithm

–
A
ssum

e
the
initialcondition

y
>
0;

–
T
he
value

b
of
variable

b
w
ithin

the
loop

is
positive

w
hence

belongs
to
the
w
ell-ordering

hN
;
<
i;

–
T
he
value

b
of
variable

b
strictly

decreases
(by
y
>
0)

on
each

loop
iteration.

N
ote:
–
P
artially

but
not
totally

correct
w
hen
initially

y
=
0.

—
52
—

ľ
P.C
ousot



T
otalcorrectness

T
otalcorrectness

=
partialcorrectness

^
term

ination

—
53
—

ľ
P.C
ousot



O
rdinals

–
A
n
extension

ofnaturals
for
ranking

(1
st,
2
n
d,
3
rd,...)

beyond
infinity

–
T
he
first

ordinals
are
0,
1,
2,
...,
!
9,
!
+
1,
!
+
2,
...,

!
+
!
=
2!
,
2!
+
1,
...,
3!
,
3!
+
1,
...,
!
.!
=
!
2,
!
2+
1,

...,
!
3,...,

!
!,
!
!
!,...,

›0
10
=
!
!
!
!
::: ff

!
tim
es,...

9
!
is
the
first

transfinite
ordinal.

10
›
0
is
the
first

ordinalnum
bers

w
hich

cannot
be
constructed

from
sm
aller

ones
by
finite

additions,m
ultipli-

cations,and
exponentiations.

—
54
—

ľ
P.C
ousot



T
he
M
anna/P

nuelilogic

–
[P
]C
[Q
]

H
oare

totalcorrectness
triple

–
Interpretation:
Ifthe

assertion
P
11holds

before
the
execution

ofcom
m
and
C
then

execution
of
C
term

inates
and
assertion

Q
holds

upon
term

ination

–
(P
(¸
)^
¸
>
0))

b;[P
(¸
)^
¸
>
0]C
[9
˛
<
¸
:
P
(˛
)];P
(0)
)
:
b

[9
¸
:
P
(¸
)]
w
h
i
l
e
b
d
o
C

o
d
[P
(0)]
w
hile
rule

(6)
12

11
on
the
values

of
the
program

variables
and
auxiliary

m
athem

atical
variables

12
¸
,
˛
,...are

ordinals.

—
55
—

ľ
P.C
ousot



Form
alT
otalC

orrectness
P
roof

of
Integer

D
ivision

–
R
d
ef
=
a
:y
+
b
=
x
^
b
–
0

–
P
(n
)
d
ef
=
R
^
n
:y
»
b
<
(n
+
1):y

–
W
e
have:

-
(P
(n
)^
n
>
0)
=)
(b
–
y
)

-
[P
(n
+
1)]

b:=
b
`

y;a:=
a
+
1[P
(n
)]

-
P
(0)
=)
:
(b
–
y
)

-
R
^
y
>
0
=)
9
n
:
P
(n
)

so
that

by
the
w
hile
rule

(6)
and
the
consequence

rule
(5),

w
e
conclude:

[a
:y
+
b
=
x
^
b
–
0^
y
>
0]

p
[a
:y
+
b
=
x
^
b
–
0^
:
(b
–
y
)]

—
56
—

ľ
P.C
ousot



P
redicate

transform
ers

E
dsger

W
.D
ijkstra

introduced
predicate

transform
ers:

–
w
lp!C

"Q
is
the
w
eakest

liberal
13precondition:

-
fw
lp!C

"Q
gC
fQ
g

-
fP
gC
fQ
g
=)
(P
)
w
lp!C

"Q
)

–
w
p!C

"Q
is
the
w
eakest

precondition:
-
[w
p!C

"Q
]C
[Q
]

-
[P
]C
[Q
]
=)
(P
)
w
p!C

"Q
)

R
eference

[8]
E
dsger

W
.
D
ijkstra.

“G
uarded

C
om
m
ands,N

ondeterm
inacy

and
Form

al
D
erivation

of
P
rogram

s”.
C
om
-

m
un.A

C
M
18(8):

453-457
(1975)

13
“liberal”

m
eans

nonterm
ination

is
possible

i.e.partial
correctness.

—
57
—

ľ
P.C
ousot



E
dsger

W
.D
ijkstra

—
58
—

ľ
P.C
ousot



P
redicate

transform
er
calculus

–
s
k
i
p
is
the
com
m
and
that

leaves
the
state

unchanged
w
lp!s

k
i
p"
P
=
P

w
p!s

k
i
p"
P
=
P

–
a
b
o
r
t
is
the
com
m
and
that

never
term

inates
w
lp!a

b
o
r
t"
P
=
tt

w
p!a

b
o
r
t"
P
=
¸

–
;is
the
sequentialcom

position
of
com
m
ands

w
lp!C

1
;C
2 "
P
=
w
lp!C

1 "(w
lp!C

2 "
P
)

w
p!C
1
;C
2 "
P
=
w
p!C
1 "(w

p!C
2 "
P
)

—
59
—

ľ
P.C
ousot



N
ondeterm

inistic
C
hoice

–
[]is
the
nondeterm

inistic
choice

of
com
m
ands

w
lp!C

1
[]C
2 "
P
=
w
lp!C

1 "
P
^
w
lp!C

2 "
P

w
p!C
1
[]C
2 "
P
=
w
p!C
1 "
P
^
w
p!C
2 "
P

–
E
xam
ple:

w
p!sk

ip
[]

a
b
o
rt"
P
=
w
p!sk

ip"
P
^
w
p!a

b
o
rt"
P
=
P
^

¸
=
¸

w
lp!sk

ip
[]

a
b
o
rt"
P
=
w
lp!sk

ip"
P
^
w
lp!a

b
o
rt"
P
=

P
^
tt
=
P

—
60
—

ľ
P.C
ousot



G
uards

–
If

b
is
a
guard

(precondition),then
?b
is
defined

by
14:

w
lp!?b"

P
=
:

b
_
P

w
p!?b"

P
=
:

b
_
P

–
If

b
is
a
guard

(precondition),
then

!b
skips

if
b
holds

and
does

not
term

inate
if:

b
holds;

w
lp!!b"

P
d
ef
=
:

b
_
P

w
p!!b"

P
d
ef
=

b
^
P

14
w
p!?¸"

¸
=
tt
so
the
?¸
com
m
and
is
not
im
plem

entable
since

it
should

m
iraculously

term
inate

in
a
state

w
here

¸
holds!

—
61
—

ľ
P.C
ousot



C
onditional

–
i
f

b
t
h
e
n

C
1
e
l
s
e

C
2
d
ef
=
(?b;C

1 )
[]
(?:

b;C
2 )

–
B
elow
,
w!C"

P
is
either

w
p!C"

P
or
w
lp!C"

P

w!i
f

b
t
h
e
n

C
1
e
l
s
e

C
2 "
P

=
w!(?b;C

1 )
[]
(?:

b;C
2 )"
P
=
w!?b;C

1 "
P
^
w!?:

b;C
2 "
P

=
(w!?b"(w!C

1 "
P
))^
(w!?:

b"(w!C
2 "
P
))

=
(:

b
_
w!C
1 "
P
)^
(::

b
_
w!C
2 "
P
)

=
(b
=)

w!C
1 "
P
)^
(:

b
=)

w!C
2 "
P
)

=
(b
^
w!C
1 "
P
)_
(:

b
^
w!C
2 "
P
)

—
62
—

ľ
P.C
ousot



C
onditional

–
i
f

b
0
!

C
0
[]b
1
!

C
1
f
i
d
ef
=
!(b
0 _

b
1 );(?b

0 ;C
0
[]?b
1 ;C
1 )

w
p!i

f
b
0
!

C
0
[]b
1
!

C
1
f
i"
P

=
(9
i2
[0;1]

:b
i )^
(8
i2
[0;1]

:b
i
=)

w
p!C
i "
P
)

“T
he
first

term
‘9
i2
[0;1]

:b
i ’requires

that
the
alter-

native
construct

as
such

w
ill
not
lead

to
abortion

on
account

of
all
guards

false;
the
second

term
requires

that
each

guarded
list
eligible

for
execution

w
ill
lead

to
an
acceptable

finalstate”
[8].

—
63
—

ľ
P.C
ousot



Iteration

–
T
he
execution

of
D
ijkstra’s

repetitive
construct:

d
o

b
0
!

C
0
[]b
1
!

C
1
o
d

im
m
ediately

term
inates

if
both

guards
b
0
and

b
1
are

false
otherw

ise
it
consists

in
executing

one
of
the
al-

ternatives
C
i ;i
2
[1;2]

w
hich

guard
b
i
is
true

before
repeting

the
execution

of
the
loop.

—
64
—

ľ
P.C
ousot



–
w
p!d

o
b
0
!

C
0
[]b
1
!

C
1
o
d"
=
15

–
Q

.lfp
=)
F
w
p!d

o
b
0
!

C
0
[]b
1
!

C
1
o
d"(Q

)

–
F
w
p!d

o
b
0
!

C
0
[]b
1
!

C
1
o
d"(Q

)
=

–
P

.(Q
^
8
i2
[0;1]

::
b
i )_

w
p!i

f
b
0
!

C
0
[]b
1
!

C
1
f
i"
P

–
w
lp!d

o
b
0
!

C
0
[]b
1
!

C
1
o
d"
=

–
Q

.gfp
=)
F
w
lp!d

o
b
0
!

C
0
[]b
1
!

C
1
o
d"(Q

)

–
F
w
lp!d

o
b
0
!

C
0
[]b
1
!

C
1
o
d"(Q

)
=

–
P

.(Q
^
8
i2
[0;1]

::
b
i )_

w
lp!i

f
b
0
!

C
0
[]b
1
!

C
1
f
i"
P

15
lfp
v
f
is
the
v
-least

fixpoint
of
f,if

any.
D
ually,

gfp
vf
is
the
v
-greatest

fixpoint
of
f,if

any.

—
65
—

ľ
P.C
ousot



A
utom

atic
P
rogram

V
erification

M
ethods

—
66
—

ľ
P.C
ousot



F
irst
attem

pts
tow
ards

autom
ation

–
Jam
es
C
.
K
ing,

a
student

of
R
obert

F
loyd,

produced
the
first

autom
ated

proof
system

for
num
erical

pro-
gram

s,in
1969

[9].
–
T
he
use
of
autom

ated
theorem

proving
in
the
verifi-

cation
of
sym
bolic

program
s
(à
la
LISP

[10])
w
as
pio-

nneered,a.o.,by
R
obert

S.B
oyerand

J.Strother
M
oore

[11].
R
eference

[9]
K
ing,J.C

.,“A
P
rogram

V
erifier”,P

h.D
.T
hesis,C

arnegle-M
ellon

U
niversity

(1969).

[10]
John

M
cC
arthy.“R

ecursive
functions

of
sym
bolic

expressions
and
their

com
putation

by
m
achine

(P
art
I)”.

C
om
m
unications

of
the
A
C
M
(C
A
C
M
),
A
pril1960.

[11]
R
obert

S.
B
oyer

and
J.
Strother

M
oore,

“P
roving

T
heorem

s
about

LISP
Functions”.

Journal
of
the
A
C
M

(JA
C
M
),V
olum

e
22,Issue

1
(January

1975)
pp.129–144.

—
67
—

ľ
P.C
ousot



John
M
cC
arthy

R
obert

S.B
oyer

J.Strother
M
oore

—
68
—

ľ
P.C
ousot



P
resent

day
theorem

-proving
based

follow
ers

A
utom

atic
deductive

m
ethods(based

on
theorem

provers
or
checkers

w
ith
user-provided

assertions
and
guidance):

–
A
C
L2

–
B

–
C
O
Q

–
E
SC
/Java

&
E
SC
/Java2

–
P
V
S

–
W
hy

V
ery
usefulfor

sm
allprogram

s,huge
diffi
culties

to
scale

up.
—
69
—

ľ
P.C
ousot



A
G
rand

C
hallenge

—
70
—

ľ
P.C
ousot



A
grand

challenge
in
com
puter

science

“T
he
construction

and
application

of
a
verify-

ing
com
piler

that
guarantees

correctness
of
a

program
before

running
it”
[12].

R
eference

[12]
T
ony

H
oare.

“T
he
verifying

com
piler:

A
grand

challenge
for
com
puting

research”,
Journal

of
the
A
C
M

(JA
C
M
),V
olum

e
50,Issue

1
(January

2003),pp.63–69.

—
71
—

ľ
P.C
ousot


