Prof. Dr. Andreas Podelski Matthias Heizmann

1.2.2012 Submission: 7.2.2012 at the beginning of the lecture

Tutorials for Program Verification Exercise sheet 13

Let ϕ be a formula over V, let ρ be a formula over V and V'. In Exercise 4 of Exercise Sheet 7 you defined a pre-condition function $wp(\phi, \rho)$. The following solution was correct.

$$wp(\phi, \rho) = \forall V'. \rho \rightarrow \phi[V'/V]$$

Exercise 1: Connection Between wp and post Prove that the following equivalence holds.

$$post(\psi, \rho) \subseteq \phi \text{ iff } \psi \subseteq wp(\phi, \rho)$$

Exercise 2: Properties of wp

Prove or refute the following propositions

- (a) The pre-condition function $wp(\phi, \rho)$ distributes over conjunction in the first argument, i.e., $wp(\psi_1 \wedge \psi_2, \rho) = wp(\psi_1, \rho) \wedge wp(\psi_2, \rho)$
- (b) The pre-condition function $wp(\phi, \rho)$ distributes over disjuction in the first argument, i.e., $wp(\psi_1 \lor \psi_2, \rho) = wp(\psi_1, \rho) \lor wp(\psi_2, \rho)$
- (c) The pre-condition function $wp(\phi, \rho)$ distributes over conjunction in the second argument, i.e., $wp(\psi, \rho_1 \wedge \rho_2) = wp(\psi, \rho_1) \wedge wp(\psi, \rho_2)$
- (d) The pre-condition function $wp(\phi, \rho)$ distributes over disjuction in the second argument, i.e., $wp(\psi, \rho_1 \vee \rho_2) = wp(\psi, \rho_1) \vee wp(\psi, \rho_2)$
- (e) Relational composition and iterative application of the pre-condition function wpcoincide, i.e., $wp(\psi, \rho_1 \circ \rho_2) = wp(wp(\psi, \rho_2), \rho_1))$

Exercise 3: Quantifier Eliminiation

In Exercise 4 of Exercise Sheet 7 you showed that if t is a term that does not contain the variable x the formula $\exists x = t \land \phi$ is equivalent to the formula $\phi[t/x]$. You used this equivalence to eliminate existential quantifiers.

- State an analogous equivalence that allows you to eliminate an universal quantifier in some formulas.
- Use this equivalence to eliminate the universal quantifier in the formula

$$wp(y=23, y'=x).$$

2 points

2 points

5 points

Exercise 4: Backward Reachability Analysis

3 points

In the reachability analysis (presented in the lecture on Tue 29.11.2011) we used *post* to define the set states which are reachable from φ_{init} to check if a program is safe.

State an analogous analysis where you check if a program is safe by using wp to define the set of states from which φ_{err} is reachable. Use properties proven in the preceeding exercises to explain that your analysis is correct.