Prof. Dr. Andreas Podelski Matthias Heizmann

Tutorials for Program Verification Exercise sheet 12

Exercise 1: Transition Invariants 2+4 points Let R be a transition relation. In the lecture a transition invariant T was defined *inductive* if $T \circ R \subseteq T$. We can adapt the definition of *inductivity* to a set of abstract transitions $\{T_1, \ldots, T_n\}$ in the following two ways.

Definition 1 We call $\{T_1, \ldots, T_n\}$ inductive if for all *i* there exists *j* such that $T_i \circ R \subseteq T_j$.

Definition 2 We call $\{T_1, \ldots, T_n\}$ inductive if $(T_1 \cup \cdots \cup T_n) \circ R \subseteq T_1 \cup \cdots \cup T_n$.

- (a) Are both definitions equivalent? If not give a counterexample.
- (b) For which of the two definitons above is the set of abstract transitions $P^{\#}$ computed by the TPA algorithm inductive? Prove your claims.

Exercise 2: Termination and Non-Termination

(a) Consider the following program $P = (\Sigma, \mathcal{T}, \rho)$, where every state is an initial state.

1: while (x >= 0) { 2: x:=x-y; 3: y:=y+1; } $\sum_{r_{1}} is \quad \{\ell_{1}, \ell_{2}, \ell_{3}\} \times \mathbb{Z} \times \mathbb{Z}$ $\rho_{\tau_{1}} is \quad pc = \ell_{1} \wedge pc' = \ell_{2} \wedge x' = x \wedge y' = y \wedge x \ge 0$ $\rho_{\tau_{2}} is \quad pc = \ell_{2} \wedge pc' = \ell_{3} \wedge x' = x - y \wedge y' = y$ $\rho_{\tau_{3}} is \quad pc = \ell_{3} \wedge pc' = \ell_{1} \wedge x' = x \wedge y' = y + 1$

Is the program terminating? If the program terminates give either

- a disjunctively well-founded transition relation
- or a ranking-function whose value is decreased after the execution of every single transition.

If the program does not terminate describe some infinite program execution.

5 points

(b) Consider the following program $P = (\Sigma, \Sigma_{\text{init}} \mathcal{T}, \rho)$, where Σ_{init} denotes the set of initial states.

0: if
$$(y!=0)$$
 {
1: while $(-42 < x & & x > 42 & & z < 0)$ {
2: x := x+y;
3: y := y*z;
}
}

$$\begin{split} \Sigma \text{ is } & \{\ell_1, \ell_2, \ell_3\} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \\ \Sigma_{\text{init}} \text{ is } & pc = \ell_0 \\ \rho_{\tau_0} \text{ is } & pc = \ell_0 \wedge pc' = \ell_1 \wedge x' = x \wedge y' = y \wedge z' = z \wedge y \neq 0 \\ \rho_{\tau_1} \text{ is } & pc = \ell_1 \wedge pc' = \ell_2 \wedge x' = x \wedge y' = y \wedge z' = z \wedge -42 < x \wedge x > 42 \wedge z < 0 \\ \rho_{\tau_2} \text{ is } & pc = \ell_2 \wedge pc' = \ell_3 \wedge y' = y \wedge z' = z \wedge x' = x + y \\ \rho_{\tau_3} \text{ is } & pc = \ell_3 \wedge pc' = \ell_1 \wedge x' = x \wedge z' = z \wedge y' = y \cdot z \end{split}$$

Do all program executions that start in an initial state terminate? If your answer ist *yes* give an explanation, if your answer is *no* give a recurrence set for the while loop.