Prof. Dr. Andreas Podelski Matthias Heizmann

11.1.2012 Submission: 17.1.2012 at the beginning of the lecture

Tutorials for Program Verification Exercise sheet 10

In the lecture we mentioned two different ways to define the transitive closure of a binary relation. In the following exercise you prove that both definitions are equivalent.

Exercise 1: Transitive Closure

3 bonus points

2+2+1 bonus points

Let R be a binary relation over a set Σ . Let R_{tcl1} be the smallest set such that the following properties hold.

- (a) $R \subseteq R_{tcl1}$ and
- (b) for all $s, s', s'' \in \Sigma$ if $(s, s') \in R_{tcl1}$ and $(s', s'') \in R_{tcl1}$ then $(s, s'') \in R_{tcl1}$

Let R_{rcl2} be the smallest set such that the following properties hold.

- (a) $R \subseteq R_{rcl2}$ and
- (b) for all $s, s', s'' \in \Sigma$ if $(s, s') \in R_{rcl2}$ and $(s', s'') \in R$ then $(s, s'') \in R_{rcl2}$

Prove that the equality $R_{tcl1} = R_{rcl2}$ holds.

Exercise 2: Transition Invariants

Consider the program $P = (\Sigma, \mathcal{T}, \rho)$, where

- $\Sigma = \mathbb{Z} \times \mathbb{Z}$,
- $\mathcal{T} = \{\tau_1, \tau_2, \tau_3, \tau_4\},\$
- ρ_{τ_1} is $x \ge 0 \land y \ge 0 \land y \le x \land y' = y 1$,
- ρ_{τ_2} is $x \ge 0 \land y \ge 0 \land y \le x \land x' = y 1$,
- ρ_{τ_3} is $x \ge 0 \land y \ge 0 \land x < y \land y' = x 1$,
- and ρ_{τ_4} is $x \ge 0 \land y \ge 0 \land x < y \land x' = x 1$.
- (a) State a ranking function for the program P.
- (b) Use transition predicate abstraction to prove that the program is correct.
 - State a set of transition predicates \mathcal{P} such that the set of abstract transitions $P^{\#}$ contains only well-founded realations.

- Compute the set of abstract transitions $P^{\#} = \{T_1, \dots, T_n\}.$
- Illustrate that each abstract transition T_i is well founded (no detailed proof necessary).
- (c) State a disjunctively well-founded transition invariant $T_1 \cup T_2$ that
 - is the union of two well-founded relations
 - and both, T_1 and T_2 are formulas that contain only variables, logical connectives and symbols of the set $\{>, +, -, 1, 0\}$.