Prof. Dr. Andreas Podelski Matthias Heizmann

Tutorials for Program Verification Exercise sheet 7

Exercise 1: Quantifier Elimination

- (a) Let $\phi \in \text{Form}$ be a formula and t be a term that does not contain x. Prove that the formula $\exists x = t \land \phi$ is equivalent to the formula $\phi[t/x]$.
- (b) State a formula that does not contain any quantifiers and is equivalent to the following formula.

$$\exists x''. \ \exists y''. \ x'' \ge 0 \land y'' = 0 \land (x = x'' + 1 \lor x = x'' \land y = y'')$$

Exercise 2: Post-condition Function

We say that post distributes over the connective \odot wrt. the first argument if the following equation holds.

$$post(\phi_1 \odot \phi_2, \rho) = post(\phi_1, \rho) \odot post(\phi_2, \rho)$$

We say that post distributes over the connective \odot wrt. the second argument if the following equation holds.

$$post(\phi, \rho_1 \odot \rho_2) = post(\phi, \rho_1) \odot post(\phi, \rho_2)$$

- Determine for ⊙ ∈ {∧, ∨, →} if *post* distributes over ⊙ wrt. the first argument or wrt. the second argument.
- Does *post* distribute over negation wrt. the first argument or wrt. the second argument?

Give a proof for each positive answer, give a counterexample for each negative answer.

2+1 points

4 points

Exercise 3: Reachability Analysis

1+2 points

Consider again the program from Exercise 2 of the fifth exercise sheet.

(a) State a formal definition of this program in the notation that was introduced in the lecture on Monday 28th November, where a program is given as a tuple

$$P = (V, pc, \varphi_{init}, R, \varphi_{err}).$$

(b) Compute the set of reachable states.

Exercise 4: Pre-condition Function 1 point Let V be a tuple of program variables. Let ϕ be a set of states (i.e., ϕ is a formula whose free variables are in V). Let ρ be a binary relation over program states (i.e., ρ is a formula whose free variables are in $V \cup V'$).

In the lecture the formula $post(\phi, \rho)$ was defined as image of the set ϕ under the relation ρ . Define a function wp such that the formula $wp(\phi, \rho)$ denotes the preimage of the set ϕ under the relation ρ .