Tutorials for Program Verification
 Exercise sheet 7

Exercise 1: Quantifier Elimination

(a) Let $\phi \in$ Form be a formula and t be a term that does not contain x. Prove that the formula $\exists x=t \wedge \phi$ is equivalent to the formula $\phi[t / x]$.
(b) State a formula that does not contain any quantifiers and is equivalent to the following formula.

$$
\exists x^{\prime \prime} . \exists y^{\prime \prime} . \quad x^{\prime \prime} \geq 0 \wedge y^{\prime \prime}=0 \wedge\left(x=x^{\prime \prime}+1 \vee x=x^{\prime \prime} \wedge y=y^{\prime \prime}\right)
$$

Exercise 2: Post-condition Function

4 points
We say that post distributes over the connective \odot wrt. the first argument if the following equation holds.

$$
\operatorname{post}\left(\phi_{1} \odot \phi_{2}, \rho\right)=\operatorname{post}\left(\phi_{1}, \rho\right) \odot \operatorname{post}\left(\phi_{2}, \rho\right)
$$

We say that post distributes over the connective \odot wrt. the second argument if the following equation holds.

$$
\operatorname{post}\left(\phi, \rho_{1} \odot \rho_{2}\right)=\operatorname{post}\left(\phi, \rho_{1}\right) \odot \operatorname{post}\left(\phi, \rho_{2}\right)
$$

- Determine for $\odot \in\{\wedge, \vee, \rightarrow\}$ if post distributes over \odot wrt. the first argument or wrt. the second argument.
- Does post distribute over negation wrt. the first argument or wrt. the second argument?

Give a proof for each positive answer, give a counterexample for each negative answer.

Consider again the program from Exercise 2 of the fifth exercise sheet.

```
\(0: x:=i\);
1: \(y:=j\);
2: while \(x \neq 0\) do \{
3: \(\quad x:=x-1\)
\(4: \quad y:=y-1\)
5: \}
6: \(\operatorname{assert}(i=j \rightarrow y=0)\)
```

(a) State a formal definition of this program in the notation that was introduced in the lecture on Monday 28th November, where a program is given as a tuple

$$
P=\left(V, p c, \varphi_{i n i t}, R, \varphi_{e r r}\right) .
$$

(b) Compute the set of reachable states.

Exercise 4: Pre-condition Function

Let V be a tuple of program variables. Let ϕ be a set of states (i.e., ϕ is a formula whose free variables are in V). Let ρ be a binary relation over program states (i.e., ρ is a formula whose free variables are in $\left.V \cup V^{\prime}\right)$.
In the lecture the formula $\operatorname{post}(\phi, \rho)$ was defined as image of the set ϕ under the relation ρ. Define a function $w p$ such that the formula $w p(\phi, \rho)$ denotes the preimage of the set ϕ under the relation ρ.

