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In this exercise sheet we work with the automated verification techniques CEGAR
(Predicate Abstraction) and Trace Abstraction.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: 5 Points
Apply the CEGAR approach to the program below. Whenever you have to provide a
sequence of statements you may return any sequence, but we encourage you to take the
shortest sequence. Document all intermediate steps.

Hint: If you choose the abstraction of traces wisely, then two iteration steps are sufficient.

1 x := 0;

2 while (x <= 100) {

3 y := true;

4 x := x + 1;

5 }

6 assert y == true;
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Exercise 2: Abstraction of a Trace 2 Points
In the lecture we defined an abstraction π# of a trace π, derived by replacing some
of the statements st with their abstract counterpart abstract(st). The intuition is that
sometimes a few statements in π are sufficient to make it infeasible. A proof of infeasibility
of π# is then also a proof of infeasiblity of π.

In this exercise, we consider a modified concept of abstraction: Instead of replacing
assignments with their abstraction (havoc), we delete them from the trace entirely.

Show that this is not a good notion of abstraction. In particular, give a trace π and a
corresponding abstraction π#, such that π# is infeasible, but π is feasible. Give a proof
of infeasibility for π#, and an execution for π.
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Exercise 3: Trace Abstraction 3 Points
Consider the following control-flow graph for a program P , and let AP be the corre-
sponding automaton. In this task, you should apply trace abstraction to prove that the
program P is safe.
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Give two error traces π1 and π2 and construct corresponding Floyd-Hoare automata A1

and A2 such that the inclusion L(AP ) ⊆ L(A1) ∪ L(A2) holds.
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