
Dr. Matthias Heizmann
Dominik Klumpp

Hand in until 10:00 on July 12, 2021
Discussion: July 12, 2021

Tutorial for Program Verification
Exercise Sheet 21

In this exercise sheet we work with the automated verification techniques CEGAR
(Predicate Abstraction) and Trace Abstraction.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: 5 Points
Apply the CEGAR approach to the program below. Whenever you have to provide a
sequence of statements you may return any sequence, but we encourage you to take the
shortest sequence. Document all intermediate steps.

Hint: If you choose the abstraction of traces wisely, then two iteration steps are sufficient.

1 x := 0;

2 while (x <= 100) {

3 y := true;

4 x := x + 1;

5 }

6 assert y == true;

`2 `3 `4

`5`6`7

`8

x:=0 x<=100

y:=truex:=x+1!(x<=100)

y==true

!(y==true)

Exercise 2: Abstraction of a Trace 2 Points
In the lecture we defined an abstraction π# of a trace π, derived by replacing some
of the statements st with their abstract counterpart abstract(st). The intuition is that
sometimes a few statements in π are sufficient to make it infeasible. A proof of infeasibility
of π# is then also a proof of infeasiblity of π.

In this exercise, we consider a modified concept of abstraction: Instead of replacing
assignments with their abstraction (havoc), we delete them from the trace entirely.

Show that this is not a good notion of abstraction. In particular, give a trace π and a
corresponding abstraction π#, such that π# is infeasible, but π is feasible. Give a proof
of infeasibility for π#, and an execution for π.

1



Exercise 3: Trace Abstraction 3 Points
Consider the following control-flow graph for a program P , and let AP be the corre-
sponding automaton. In this task, you should apply trace abstraction to prove that the
program P is safe.

`1

`2

`3 `4

`5`6

`7`8 `err

z := 0

x := y

w == 17

x := x + 1

z := 1

w != 17

x == y

z != 1 z == 1

x != y

Give two error traces π1 and π2 and construct corresponding Floyd-Hoare automata A1

and A2 such that the inclusion L(AP ) ⊆ L(A1) ∪ L(A2) holds.

2


