

Dr. Matthias Heizmann Dominik Klumpp

Tutorial for Program Verification Exercise Sheet 1

Throughout the semester, we will publish exercise sheets every Monday (short exercise sheet) and every Wednesday (longer exercise sheet). Please complete the exercises, and upload a PDF of your solutions to ILIAS at the following URL:

https://ilias.uni-freiburg.de/goto.php?target=crs_2134174

In this exercise sheet we practice some of the key concepts of *Propositional Logic* (PL).

Exercise 1: Satisfiability, Validity

Is the following PL formula satisfiable? Is the following PL formula valid?

If the formula is satisfiable then give a variable assignment such that formula is evaluated to **true**. If the formula is not valid then give a variable assignment such that formula is evaluated to **false**.

$$C \to (A \lor (B \land C))$$

Exercise 2: Conjunctive Normal Form

We call two PL formulas F_1 and F_2 logically equivalent, denoted $F_1 \equiv F_2$, if they evaluate to the same truth value under every variable assignment.

We say that a formula F is in *conjunctive normal form* (CNF) if it is a conjunction of disjunctions of literals, i.e., if it has the form

$$\bigwedge_i \bigvee_j \ell_{ij}$$

where ℓ_{ij} are literals.

Any formula can be transformed into an equivalent formula in CNF using the following template equivalences (left to right):

$$\neg \neg F_{1} \equiv F_{1} \quad \neg \mathbf{true} \equiv \mathbf{false} \quad \neg \mathbf{false} \equiv \mathbf{true}$$
$$\neg (F_{1} \land F_{2}) \equiv \neg F_{1} \lor \neg F_{2}$$
$$\neg (F_{1} \lor F_{2}) \equiv \neg F_{1} \land \neg F_{2}$$
$$Be Morgan's Law$$
$$F_{1} \rightarrow F_{2} \equiv \neg F_{1} \lor F_{2}$$
$$F_{1} \leftrightarrow F_{2} \equiv (F_{1} \rightarrow F_{2}) \land (F_{2} \rightarrow F_{1})$$
$$(F_{1} \land F_{2}) \lor F_{3} \equiv (F_{1} \lor F_{3}) \land (F_{2} \lor F_{3})$$
$$F_{1} \lor (F_{2} \land F_{3}) \equiv (F_{1} \lor F_{2}) \land (F_{1} \lor F_{3})$$

Transform the following formulas into an equivalent formula in CNF.

- (a) $A \wedge B \to A \vee B$
- (b) $C \to (A \lor (B \land C))$

2 Points

3 Points

Exercise 3: The NOR Connective

In the lecture we defined the syntax of propositional logic by using only **false** and the logical connectives \neg and \land . (The other logical connectives were introduced as abbreviations.) In this exercise we show that alternatively we could have defined the syntax of propositional logic by using only a single logical connective.

Given two PL formulas F_1 and F_2 , we define the logical connective NOR $(\bar{\vee})$ by the following truth table:

F_1	F_2	$F_1 \bar{\vee} F2$
0	0	1
0	1	0
1	0	0
1	1	0

Table 1: Truth table for NOR

Show that the atom **false** and the logical connectives \neg and \land can be expressed by the NOR connective $\overline{\lor}$, i.e., given arbitrary PL formulas F, F_1, F_2 state for each of the PL formulas **false**, $\neg F$, and $(F_1 \land F_2)$ a PL formula that is logically equivalent but uses only F, F_1, F_2 , and $\overline{\lor}$.

In this exercise it is sufficient to state a formula without a proof of logical equivalence.

Exercise 4: Birthday Wishes

4 Points

Annika was always a little excentric, but when she presented her family and friends with this year's list of birthday wishes (copied below)¹, they couldn't believe their eyes. Can you help them? Encode the constraints in boolean formulae and find a satisfying assignment in order to find a combination of presents that satisfies Annika's demands. You may use an SMT solver (e.g. $Z3^2$) to obtain the satisfying assignment.

To all my friends and family!

you asked me what I wished for on my birthday, so here's my list:

If one of my presents is going to be a *Netflix subscription*, then I don't want to receive the new *Ed Sheeran album*. If you are going to give me an *iPhone XR*, then I don't want a pair of *Adidas Yeezy Sneakers*. However, if you give me the *sixth A Song of Ice and Fire book*, then I would like the *Netflix subscription* and *tickets for Mark Forster*.

If you do not get me Adidas Yeezy Sneakers as a present, then I want to receive the sixth A Song of Ice and Fire book or a selfie stick. If you do not bring me a selfie stick, then I ask you to bring me an *iPhone XR* if I get a hair straightener.

If you bring me a hair straightener then I don't want a selfie stick. If you either give me a Netflix subscription or a pair of Adidas Yeezy Sneakers (but not both), then I'd like to receive tickets for Mark Forster if I don't get the new Ed Sheeran album. If you grant my wish for a Netflix subscription, then,

3 Points

¹Wish list adapted from a list by Tobias Schubert and Sabrina Reinshagen.

²https://rise4fun.com/Z3

if I don't get an *iPhone XR* but I do get *tickets for Mark Forster*, I don't want a selfie stick. And if you are not going to give me the *sixth A Song of Ice and Fire book*, then please bring a *hair straightener* to my birthday party.

And these are all of my wishes! See you at the party!

Yours, Annika

You may submit an SMT script, or the formula together with a satisfying assignment written down on paper.

Exercise 5: Natural Deduction Proofs 4 Points Prove the following implications in the Natural Deduction proof system $\mathcal{N}_{\mathsf{PL}}$. That is, for an implication $\{F_1, \ldots, F_n\} \models F$, use the rules of $\mathcal{N}_{\mathsf{PL}}$ to build a derivation that shows this implication holds.

- (a) $\{A \to B\} \models \neg B \to \neg A$
- (b) $\{A \to (B \to C)\} \models A \land B \to C$