
Dr. Matthias Heizmann
Tanja Schindler
Dominik Klumpp

Hand in until 10:00 on July 22, 2019
Discussion: July 22, 2019

Tutorial for Program Verification
Exercise Sheet 22

Exercise 1: Trace Abstraction 3 Points
In this task, you should apply trace abstraction to prove that a program, here given by
its control-flow graph, is safe.

Consider the following control-flow graph for a program P , and let AP be the correspond-
ing automaton.

`1

`2

`3 `4

`5`6

`7

`8

`err

z := 0

x := y

w == 17

x := x + 1

z := 1

w != 17

x == y

z != 1

z == 1

x != y

Give two error traces π1 and π2 and construct corresponding Floyd-Hoare automata A1

and A2 such that the inclusion L(AP ) ⊆ L(A1) ∪ L(A2) holds.

Exercise 2: Termination 2 Points
In the lecture, we discussed four different properties of programs. One property was ter-
mination the other properties where related to termination. We provide formal definitions
here. In each case, we consider a program P with a CFG (Loc,∆, `init, `ex).

(a) We say that P can reach the exit location if there exists a finite execution, such
that the first configuration (`, s) is initial, and the last configuration is (`ex, s

′) for
some state s′.

(b) We say that P can stop if there exists a reachable configuration (`, s) such that there
exists no configuration (`′, s′) and statement st with (`, st, `′) ∈ ∆ and (s, s′) ∈ [[st]].

1



(c) We say that P always reaches the exit location if there exist no infinite executions,
and all finite executions end in a configuration (`′, s′) where we either have a succes-
sor (i.e., there exists a configuration (`′′, s′′) and statement st with (`′, st, `′′) ∈ ∆
and (s′, s′′) ∈ [[st]]) or we have that `′ is `ex.

(d) We say that P always stops (resp. P terminates if there exist no infinite executions.

In this exercise, you should give programs that differentiate between these definitions. In
particular, for each of the following pairs, give a program such that one definition holds
but the other does not. Explain which of the definitions holds and why.

(a) P can reach the exit location vs. P can stop

(b) P can stop vs. P always stops

Exercise 3: Ranking Functions 5 Points
For each of the following programs, state whether it (always) terminates or not. If it
terminates, give a ranking function for each loop in the program. If it may not terminate,
give an infinite execution of the program.

1 while (x > 0) {

2 while (y > 0) {

3 y := y-1;

4

5 }

6 x := x-1;

7 havoc y;

8

9 }

Listing 1: Program P1

1 while (x > 0) {

2 i f (y > 0) {

3 y := y-1;

4

5 } e l se {

6 x := x-1;

7 havoc y;

8 }

9 }

Listing 2: Program P2

1 while (x > 0) {

2 i f (y > 0) {

3 y := y-1;

4 havoc x;

5 } e l se {

6 x := x-1;

7 havoc y;

8 }

9 }

Listing 3: Program P3

Hint: For simple loops is often convenient to use a function whose range is N and the
strictly greater than relation > on natural numbers. For more complex loops, this is
sometimes not sufficient but we can use instead a function f : SV,µ → N1 × . . . × Nn

whose range are n-tuples of natural numbers and the lexicographic order >lex that we
define as follows.

(m1, . . . ,mn) >lex (m′
1, . . . ,m

′
n) iff there exists i ∈ {1, . . . n} such that mi > m′

i

and for all k ∈ {1, . . . i− 1} the equality mk = m′
k holds

If a function with that signature together with the order >lex is a ranking function, it is
often called a lexicographic ranking function.

2


