Dr. Matthias Heizmann Hand in until 10:00 on July 22, 2019
Tanja Schindler Discussion: July 22, 2019
Dominik Klumpp

UNI
|

FREIBURG

Tutorial for Program Verification
Exercise Sheet 22

Exercise 1: Trace Abstraction 3 Points
In this task, you should apply trace abstraction to prove that a program, here given by
its control-flow graph, is safe.

Consider the following control-flow graph for a program P, and let Ap be the correspond-
ing automaton.

Give two error traces m; and 7y and construct corresponding Floyd-Hoare automata A,

and A, such that the inclusion L(Ap) C L(A;) U L(As) holds.

Exercise 2: Termination 2 Points
In the lecture, we discussed four different properties of programs. One property was ter-
mination the other properties where related to termination. We provide formal definitions
here. In each case, we consider a program P with a CFG (Loc, A, linit, Cex)-

(a) We say that P can reach the exit location if there exists a finite execution, such
that the first configuration (¢, s) is initial, and the last configuration is (le, s’) for
some state s'.

(b) We say that P can stop if there exists a reachable configuration (¢, s) such that there
exists no configuration (¢, s") and statement st with (¢, st,¢') € A and (s, s") € [st].



(c) We say that P always reaches the exit location if there exist no infinite executions,
and all finite executions end in a configuration (¢, s’) where we either have a succes-
sor (i.e., there exists a configuration (¢”,s”) and statement st with (¢, st,¢") € A
and (s',s") € [st]) or we have that ¢ is le,.

(d) We say that P always stops (resp. P terminates if there exist no infinite executions.

In this exercise, you should give programs that differentiate between these definitions. In
particular, for each of the following pairs, give a program such that one definition holds
but the other does not. Explain which of the definitions holds and why.

(a) P can reach the exit location vs. P can stop

(b) P can stop vs. P always stops

Exercise 3: Ranking Functions 5 Points
For each of the following programs, state whether it (always) terminates or not. If it
terminates, give a ranking function for each loop in the program. If it may not terminate,
give an infinite execution of the program.

while (x > 0) A
while (y > 0) {

y 1= y-1;
b
x = x-1;
havoc y;

}

while (x > 0) {
if (y > 0) {
y = y-1;

} else {
x = x-1;
havoc y;
}
}

while (x > 0) {
if (y > 0) {
y = y-1;
havoc x;
} else {
x = x-1;
havoc y;
}
}

Listing 1: Program P;

Listing 2: Program P,

Listing 3: Program Pj

Hint: For simple loops is often convenient to use a function whose range is N and the
strictly greater than relation > on natural numbers. For more complex loops, this is
sometimes not sufficient but we can use instead a function f : Sy, — Ny x ... x N,
whose range are n-tuples of natural numbers and the lexicographic order >, that we
define as follows.

(my,...,mp) >ex (MY, ..., m)) iff there exists i € {1,...n} such that m; > m)
and for all k € {1,...7 — 1} the equality my = mj, holds

If a function with that signature together with the order >, is a ranking function, it is
often called a lexicographic ranking function.



