

Dr. Matthias Heizmann Tanja Schindler Dominik Klumpp

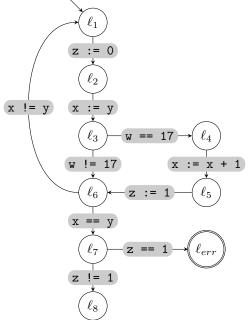
Tutorial for Program Verification Exercise Sheet 22

Exercise 1: Trace Abstraction

3 Points

In this task, you should apply trace abstraction to prove that a program, here given by its control-flow graph, is safe.

Consider the following control-flow graph for a program P, and let \mathcal{A}_P be the corresponding automaton.



Give two error traces π_1 and π_2 and construct corresponding Floyd-Hoare automata \mathcal{A}_1 and \mathcal{A}_2 such that the inclusion $L(\mathcal{A}_P) \subseteq L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$ holds.

Exercise 2: Termination

2 Points

In the lecture, we discussed four different properties of programs. One property was *termination* the other properties where related to termination. We provide formal definitions here. In each case, we consider a program P with a CFG ($Loc, \Delta, \ell_{init}, \ell_{ex}$).

- (a) We say that P can reach the exit location if there exists a finite execution, such that the first configuration (ℓ, s) is initial, and the last configuration is (ℓ_{ex}, s') for some state s'.
- (b) We say that P can stop if there exists a reachable configuration (ℓ, s) such that there exists no configuration (ℓ', s') and statement st with $(\ell, st, \ell') \in \Delta$ and $(s, s') \in [st]$.

- (c) We say that P always reaches the exit location if there exist no infinite executions, and all finite executions end in a configuration (ℓ', s') where we either have a successor (i.e., there exists a configuration (ℓ'', s'') and statement st with $(\ell', st, \ell'') \in \Delta$ and $(s', s'') \in [st]$) or we have that ℓ' is ℓ_{ex} .
- (d) We say that *P* always stops (resp. *P* terminates if there exist no infinite executions.

In this exercise, you should give programs that differentiate between these definitions. In particular, for each of the following pairs, give a program such that one definition holds but the other does not. Explain which of the definitions holds and why.

- (a) P can reach the exit location vs. P can stop
- (b) P can stop vs. P always stops

Exercise 3: Ranking Functions

For each of the following programs, state whether it (always) terminates or not. If it terminates, give a ranking function for each loop in the program. If it may not terminate, give an infinite execution of the program.

1 while (x > 0) {	$_{1}$ while (x > 0) {	1 while (x > 0) {
2 while (y > 0) {	2 if (y > 0) {	2 if (y > 0) {
y := y - 1;	₃ y := y−1;	3 y := y-1;
4	4	4 havoc x;
5 }	5 } else {	5 } else {
6 x := x - 1;	$_{6}$ x := x - 1;	$_{6}$ x := x-1;
7 havoc y;	7 havoc y;	7 havoc y;
8	8 }	8 }
9 }	9 }	9 }

Listing 1: Program P_1

Listing 2: Program P_2

Listing 3: Program P_3

Hint: For simple loops is often convenient to use a function whose range is \mathbb{N} and the strictly greater than relation > on natural numbers. For more complex loops, this is sometimes not sufficient but we can use instead a function $f : S_{V,\mu} \to \mathbb{N}_1 \times \ldots \times \mathbb{N}_n$ whose range are *n*-tuples of natural numbers and the *lexicographic order* >_{lex} that we define as follows.

 $(m_1, \ldots, m_n) >_{\mathsf{lex}} (m'_1, \ldots, m'_n)$ iff there exists $i \in \{1, \ldots, n\}$ such that $m_i > m'_i$ and for all $k \in \{1, \ldots, i-1\}$ the equality $m_k = m'_k$ holds

If a function with that signature together with the order $>_{lex}$ is a ranking function, it is often called a *lexicographic ranking function*.

5 Points