

Dr. Matthias Heizmann Tanja Schindler Dominik Klumpp

Tutorial for Program Verification Exercise Sheet 19

On this exercise sheet, we will work with complete lattices.

Exercise 1: Divisibility

Consider the complete lattice $(L, |, \square, \sqcup)$ with $L = \{1, 2, 3, 4, 6, 12\}$, where | is the divisibility relation on integers.

- (a) Compute $\bigsqcup L$ and $\bigsqcup L$.
- (b) Compute $\bigsqcup{3,4,6}$ and $\bigsqcup{4,6,12}$.
- (c) Why is $(\mathbb{Z}, |, \Box, \sqcup)$ not a complete lattice?

Exercise 2: Intervals

Let $L = \{[a, b] \mid a, b \in \mathbb{Z} \cup \{-\infty, +\infty\}\}$ be the set of the closed intervals over the integers \mathbb{Z} extended by $-\infty$ and $+\infty$. In this definition, $\pm\infty$ have the usual meaning, and as usual, $[a, b] = \emptyset$ for a > b.

Let the partial order \subseteq on L be given by the subset relation \subseteq .

Give the operator \sqcup for the least upper bound and the operator \sqcap for the greatest lower bound such that $(L, \subseteq, \sqcap, \sqcup)$ is a complete lattice.

2 Points

0 Points