Tutorial for Program Verification Exercise Sheet 19

On this exercise sheet, we will work with complete lattices.

Exercise 1: Divisibility

0 Points
Consider the complete lattice $(L, \mid, \sqcap, \sqcup)$ with $L=\{1,2,3,4,6,12\}$, where \mid is the divisibility relation on integers.
(a) Compute $\sqcup L$ and $\sqcap L$.
(b) Compute $\bigsqcup\{3,4,6\}$ and $\sqcap\{4,6,12\}$.
(c) Why is $(\mathbb{Z}, \mid, \Pi, \sqcup)$ not a complete lattice?

Exercise 2: Intervals

2 Points
Let $L=\{[a, b] \mid a, b \in \mathbb{Z} \cup\{-\infty,+\infty\}\}$ be the set of the closed intervals over the integers \mathbb{Z} extended by $-\infty$ and $+\infty$. In this definition, $\pm \infty$ have the usual meaning, and as usual, $[a, b]=\varnothing$ for $a>b$.
Let the partial order \subseteq on L be given by the subset relation \subseteq.
Give the operator \sqcup for the least upper bound and the operator Π for the greatest lower bound such that $(L, \sqsubseteq, \sqcap, \sqcup)$ is a complete lattice.

