

Dr. Matthias Heizmann Tanja Schindler Dominik Klumpp

Tutorial for Program Verification Exercise Sheet 15

In Lecture 8 we made the following definition.

Definition (Post Image) Given a binary relation R over the set X and a subset of $Y \subseteq X$, the post image of Y under R, denoted post(Y, R), is the set $\{x \in X \mid \text{exists } y \in Y \text{ such that } (y, x) \in R\}$

We use the post image to give a formal definition of the *strongest postcondition* for a given set of program states S and a given statement st. Intuatively, the strongest postcondition is the set of states in which a program can be after executing st in some state $s \in S$.

Definition (Strongest Postcondition) Given a set of states S and a statement st the strongest postcondition is the post image of S under the relation [st], i.e.

$$\operatorname{sp}(S, st) = post(S, \llbracket st \rrbracket).$$

Exercise 1: Strongest Postcondition

3 Points

Below, you find six sets of states that are each given as a strongest postcondition. Write down each set without using the strongest postcondition operator. You may use any formalism that your have seen in the lecture. Recall that $\{\varphi\}$ denotes the set of states that satisfy the formula φ . In the formulas below, i, k, x are integer variables and a is an array whose indices and values are integers.

- (a) $sp(\{select(a,k) = 23 \land select(a,i) = 42\}, \text{ assume i==k; })$
- (b) $\operatorname{sp}(\{0 \le k \land k \le i\}, \text{ havoc k; })$
- (c) $sp({select(a, 23) = 42}, a[k]:=1337;)$
- (d) $sp(\{x \cdot x > 5\}, x := k-i;)$
- (e) $sp(\{x\%2=0\}, x:=x+1;)$
- (f) $sp(\{select(a, i+1) = 23\}, i:=2*k+i;)$