
Dr. Matthias Heizmann
Tanja Schindler
Dominik Klumpp

Hand in until 10:00 on June 24, 2019
Discussion: June 24, 2019

Tutorial for Program Verification
Exercise Sheet 14

Exercise 1: CFG for Conditional Statement 2 Points
In the lecture, we defined the notion of a control-flow graph of a given statement. This
definition is not yet complete, the case of the conditional-statement was left out. Com-
plete the definition:

Let st1, st2 be two statements. Let G1 = (Loc1,∆1, `1init, `
1
ex) be a control-flow graph for

st1, and let G2 = (Loc2,∆2, `2init, `
2
ex) be a control-flow graph for st2 such that Loc1 and

Loc2 are disjoint. Define a control-flow graph for if (expr) { st1 } else { st2 }.

Exercise 2: From Programs to CFGs 2 Points
For each of the programs given below, draw a control-flow graph.

(a) Code of program Ppow:

1 e := 1;

2 z := 0;

3 while (z < y) {

4 e := e * x;

5 z := z + 1;

6 }

(b) Code of program Pfindmin:

1 i := lo;

2 min := a[lo, lo];

3 while (i <= hi) {

4 j := lo;

5 while (j <= hi) {

6 i f (a[i, j] < min) {

7 min := a[i, j];

8 }

9 j := j + 1;

10 }

11 i := i + 1;

12 }

1



Exercise 3: Program Configurations 2 Points
Consider the program P = (V, µ, T ) with V = {x, y}, µ(x) = µ(y) = {true, false} and
T a derivation tree for the statement below on the left. On the right, a CFG for P is
shown.

1 while (x == y) {

2 y := x;

3 havoc x;

4 }

`1

`2

`3

`4

(x==y)

y := x

havoc x

!(x==y)

Draw the reachability graph for this control-flow graph and the precondition-postcondition-
pair (x, x→ ¬y).

Exercise 4: Existence of Program Executions 2 Points
Prove the following lemma that has been added to the slides.

Lemma (RelAndExec.2) Let G = (Loc,∆, `init, `ex) be a control-flow graph for the
sequential composition st1st2. There exists a program execution (`0, s0), . . . , (`n, sn)
with `0 = `init and `n = `ex, iff (s0, sn) ∈ [[st1st2]].

2


