
Dr. Matthias Heizmann
Tanja Schindler
Dominik Klumpp

Hand in until 10:00 on June 17, 2019
Discussion: June 17, 2019

Tutorial for Program Verification
Exercise Sheet 12

Exercise 1: Havoc and Assume 1 Point
Provide a Hoare logic proof that shows that the following Boo program P satisfies the
precondition-postcondition pair ({x > 0}, {x > 0}).

havoc y;

assume x > y;

x := x - y;

Exercise 2: If-Then-Else with Havoc and Assume 3 Points
Consider a program P = (V, µ, T) whose set of variables contains a boolean variable b,
i.e., b ∈ V and µ(b) = {true, false}.
Let st1 and st2 be two statements of that program and let st3 and st4 be two statements
that we define as follows.

st3: havoc b; if(expr){st1} else {st2}

st4: havoc b; if(b){ havoc b; assume expr; st1 } else { havoc b; assume !expr; st2 }

Show that the statements st3 and st4 are equivalent in the sense that we assign to both
the same relation over program states, i.e., [[st3]] = [[st4]].

Exercise 3: Square 2 Points
Find inductive loop invariants for the while loop of the following program that is strong
enough to prove that the program satisfies the given precondition-postcondition pair (the
formulas after requires and ensures, respectively). Use Ultimate Referee1 to check your
solution. Note that after the loop not only res ≥ 2 · n but also res = n · n holds.

procedure main(n: int) returns (res: int)
requires n > 2;

ensures res >= 2*n;

{

var i, odd : int;
i := 0;

odd := 1;

res := 0;

while (i < n) {

res := res + odd;

odd := odd + 2;

i := i + 1;

}

}

1https://ultimate.informatik.uni-freiburg.de/?ui=int&tool=referee

1

https://ultimate.informatik.uni-freiburg.de/?ui=int&tool=referee

Exercise 4: Minimum 2 Points
The following Boogie program iterates through a two-dimensional array and finds the
minimum value within the given bounds lo and hi.

procedure findmin(a : [int , int] int , lo : int , hi : int) returns (min : int)
requires lo <= hi;

ensures (forall i, j : int :: lo <= i && i <= hi && lo <= j && j <= hi

==> a[i, j] >= min);

{

var i, j : int;

i := lo;

min := a[lo, lo];

while (i <= hi) {

j := lo;

while (j <= hi) {

i f (a[i, j] < min) {

min := a[i, j];

}

j := j + 1;

}

i := i + 1;

}

}

Find inductive loop invariants for the two while loops of the program that are strong
enough to prove that the program satisfies the given precondition-postcondition pair (the
formulas after requires and ensures, respectively). You can use Ultimate Referee to
check your solution.

Exercise 5: Selection Sort 2 Points
The following boogie procedure implements the selection sort algorithm that sorts a given
array in ascending order.

procedure SelectionSort(lo : int , hi : int , a : [int] int) returns (ar : [int] int)
requires lo <= hi;

ensures (forall i1 , i2 : int :: lo <= i1 && i1 <= i2 && i2 <= hi

==> ar[i1] <= ar[i2]);

{

var i, k, min , tmp : int;
ar := a;

k := lo;

while (k <= hi) {

// Find the index of the minimal element between k and hi (inclusive)

min := k;

i := k + 1;

while (i <= hi) {

i f (ar[i] < ar[min]) { min := i; }

i := i + 1;

}

// Swap ar[k] and ar[min]

tmp := ar[k];

ar[k] := ar[min];

ar[min] := tmp;

k := k + 1;

}

}

2

Find inductive loop invariants for the two while loops that are strong enough to prove that
the program satisfies the given precondition-postcondition pair. You can use Ultimate
Referee to check your solution.

3

