Dr. Matthias Heizmann
Tanja Schindler
Dominik Klumpp

Tutorial for Program Verification

Exercise Sheet 6

Exercise 1: Boogie

3 Points
Implement the following programs in Boogi $\mathbb{} 1_{1}$
(a) Implement a procedure with signature $\operatorname{gcd}(\mathrm{x}$: int, y : int) returns (div:int) that takes two (mathematical) integers x, y and, if they are both not equal to 0 , computes their greatest common divisor z. The algorithm may only make use of addition and subtraction, but not use multiplication, division or modulo. ${ }^{2}$
(b) Implement a procedure with signature prime(x:int) returns (isprime: bool) that takes an integer x and, if $x>0$, returns true if and only if x is a prime number.
(c) Implement a procedure with signature pow(x:int, y :int) returns (exp :int) that takes two integers x, y, and, if y is greater than 0 , returns x^{y}.

You can use the Boogie interpreter Boogaloc ${ }^{3}$ to test your program. A user manual is availabl ϵ^{4}. The Boogie standard does not define division and modulo. In this lecuture we will consider an extension of Boogie where these two operations are defined via the SMTLIB semantics for divison and modulo (Euclidean division). In the Boogaloo interpreter the syntax is div and mod. In Ultimate the syntax is / and \%. In this exercise you may use the syntax that you like most.

Please submit your Boogie programs electronically (via Email)!

Exercise 2: Satisfiability of FOL Formulas

2 Points
Are the following formulas φ_{i} satisfiable with respect to the theory of integers $T_{\mathbb{Z}}$? If the formula is satisfiable, give a satisfying assignment.
You may use an SMT solver (e.g. $\mathrm{Z} 3{ }^{5}$) to solve this task.

- $\varphi_{1}:=\forall x, y . a \neq 21 \cdot x+112 \cdot y$
- $\varphi_{2}:=\exists x .(x=10 \cdot a+b \wedge a+b=9 \wedge \neg \exists y \cdot x=3 \cdot y)$

[^0]
Exercise 3: Boo Grammar

2 Points
In this exercise you should propose a syntax for the Boo programming language. State a context-free grammer $\mathcal{G}_{\text {Boo }}=\left(\Sigma_{\text {Boo }}, N_{\text {Boo }}, P_{\text {Boo }}, S_{\text {Boo }}\right)$ such that a word of the generated language is a program of (your version of) the Boo language.

In the lecture slides we propose the grammar $\mathcal{G}_{\mathrm{I}}=\left(\Sigma_{\mathrm{l}}, N_{\mathrm{l}}, P_{\mathrm{l}}, S_{\mathrm{l}}\right)$ for integer expressions, where $\Sigma_{1}=\{-,+, *, /, \%,(), 0,, \ldots, 9, a, \ldots, z, A, \ldots Z\}$,
$N_{\mathrm{I}}=\left\{X_{\text {iexpr }}, X_{\text {num }}, X_{\text {num }}, X_{\text {var }}, X_{\text {var }}\right\}, S_{\mathrm{I}}=X_{\text {iexpr }}$ and the following derivation rules.

$$
\begin{aligned}
& P_{\mathbf{1}}=\left\{X_{\text {iexpr }} \rightarrow\left(X_{\text {iexpr }}\right)\right. \\
& X_{\text {iexpr }} \rightarrow-X_{i e x p r} \\
& X_{\text {iexpr }} \rightarrow X_{\text {iexpr }}+X_{\text {iexpr }}\left|X_{\text {iexpr }}-X_{\text {iexpr }}\right| X_{\text {iexpr }} * X_{\text {iexpr }}\left|X_{\text {iexpr }} / X_{\text {iexpr }}\right| X_{i e x p r} \% X_{\text {iexpr }} \\
& X_{\text {iexpr }} \rightarrow X_{\text {var }} \\
& X_{\text {iexpr }} \rightarrow X_{\text {num }} \\
& X_{n u m} \rightarrow 0 X_{\text {num }}|\ldots| 9 X_{n u m^{\prime}} \\
& X_{n u m^{\prime}} \rightarrow 0 X_{n u m^{\prime}}|\ldots| 9 X_{n u m^{\prime}} \mid \varepsilon \\
& X_{\text {var }} \rightarrow \mathrm{a} X_{v a r^{\prime}}|\ldots| \mathrm{z} X_{v a r^{\prime}}\left|\mathrm{A} X_{\text {var }}\right| \ldots \mid \mathrm{Z} X_{\text {var }}{ }^{\prime} \\
& \left.X_{v a r^{\prime}} \rightarrow \mathrm{a} X_{v a r^{\prime}}|\ldots| \mathrm{z} X_{v a r^{\prime}}\left|\mathrm{A} X_{v a r^{\prime}}\right| \ldots\left|\mathrm{Z} X_{v a r^{\prime}}\right| 0 X_{v a r^{\prime}}|\ldots| 9 X_{v a r^{\prime}} \mid \varepsilon\right\}
\end{aligned}
$$

Next, we proposed the grammar $\mathcal{G}_{\mathrm{B}}=\left(\Sigma_{\mathrm{B}}, N_{\mathrm{B}}, P_{\mathrm{B}}, S_{\mathrm{B}}\right)$ for Boolean expressions, where $\Sigma_{\mathrm{B}}=\Sigma_{\mathrm{I}} \cup\{!, \& \&, \|,==>,==,<,>,<=,>=\}, N_{\mathrm{B}}=N_{\mathrm{I}} \cup\left\{X_{\text {bexpr }}\right\}, S_{\mathrm{B}}=X_{\text {bexpr }}$ and the following derivation rules.

$$
\begin{aligned}
P_{\mathrm{B}}=\{ & \left\{X_{\text {bexpr }} \rightarrow\left(X_{\text {bexpr }}\right)\right. \\
& X_{\text {bexpr }} \rightarrow!X_{\text {bexpr }} \\
& X_{\text {bexpr }} \rightarrow X_{\text {bexpr }} \& \& X_{\text {bexpr }}\left|X_{\text {bexpr }}\right|\left|X_{\text {bexpr }}\right| X_{\text {bexpr }}==X_{\text {bexpr }} \\
& X_{\text {bexpr }} \rightarrow X_{\text {iexpr }}==X_{\text {iexpr }}\left|X_{\text {iexpr }}<X_{\text {iexpr }}\right| X_{\text {iexpr }}>X_{\text {iexpr }}\left|X_{\text {iexpr }}<=X_{\text {iexpr }}\right| X_{\text {iexpr }}=>X_{\text {iexpr }} \\
& X_{\text {bexpr }} \rightarrow X_{\text {var }} \\
& \left.X_{\text {bexpr }} \rightarrow \text { true } \mid \text { false }\right\} \cup P_{1}
\end{aligned}
$$

We propose that you use $\Sigma_{\text {Boo }}=\mathcal{G}_{\mathrm{B}} \cup\{$ while, if, else, $\{$,$\} , ;,:=\} and your language$ should have the following properties.

- There should be a while statement, an if-then-else statement and an assignment statement.
- The concatenation of statements should be a statement.
- A program should be a statement and we do not need statements for declaring variables.

Exercise 4: Derivation Tree

1 Point
Give a derivation tree for the grammar $\mathcal{G}_{\text {I }}$ and the word $15+a+4$.

[^0]: ${ }^{1}$ https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
 ${ }^{2}$ Hint: https://en.wikipedia.org/wiki/Euclidean_algorithm
 $\sqrt[3]{ }$ https://comcom.csail.mit.edu/comcom/\#Boogaloo
 ${ }^{4}$ https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/User\%20Manual
 ${ }^{5}$ https://rise4fun.com/Z3

