
Dr. Matthias Heizmann
Tanja Schindler
Dominik Klumpp

Hand in until 10:00 on May 20, 2019
Discussion: May 20, 2019

Tutorial for Program Verification
Exercise Sheet 6

Exercise 1: Boogie 3 Points
Implement the following programs in Boogie1.

(a) Implement a procedure with signature gcd(x : int, y : int) returns (div : int)

that takes two (mathematical) integers x, y and, if they are both not equal to 0,
computes their greatest common divisor z. The algorithm may only make use of
addition and subtraction, but not use multiplication, division or modulo.2

(b) Implement a procedure with signature prime(x : int) returns (isprime : bool)

that takes an integer x and, if x > 0, returns true if and only if x is a prime
number.

(c) Implement a procedure with signature pow(x : int, y : int) returns (exp : int)

that takes two integers x, y, and, if y is greater than 0, returns xy.

You can use the Boogie interpreter Boogaloo3 to test your program. A user manual is
available4. The Boogie standard does not define division and modulo. In this lecuture we
will consider an extension of Boogie where these two operations are defined via the SMT-
LIB semantics for divison and modulo (Euclidean division). In the Boogaloo interpreter
the syntax is div and mod. In Ultimate the syntax is / and %. In this exercise you may
use the syntax that you like most.

Please submit your Boogie programs electronically (via Email)!

Exercise 2: Satisfiability of FOL Formulas 2 Points
Are the following formulas ϕi satisfiable with respect to the theory of integers TZ? If the
formula is satisfiable, give a satisfying assignment.
You may use an SMT solver (e.g. Z35) to solve this task.

• ϕ1 := ∀x, y. a 6= 21 · x + 112 · y

• ϕ2 := ∃x. (x = 10 · a + b ∧ a + b = 9 ∧ ¬∃y. x = 3 · y)

1https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
2Hint: https://en.wikipedia.org/wiki/Euclidean_algorithm
3https://comcom.csail.mit.edu/comcom/#Boogaloo
4https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/User%20Manual
5https://rise4fun.com/Z3

1

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
https://en.wikipedia.org/wiki/Euclidean_algorithm
https://comcom.csail.mit.edu/comcom/#Boogaloo
https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/User%20Manual

.

Exercise 3: Boo Grammar 2 Points
In this exercise you should propose a syntax for the Boo programming language. State a
context-free grammer GBoo = (ΣBoo, NBoo, PBoo, SBoo) such that a word of the generated
language is a program of (your version of) the Boo language.

In the lecture slides we propose the grammar GI = (ΣI, NI, PI, SI) for integer expressions,
where ΣI = {−,+, ∗, /,%, (,), 0, . . . , 9, a, . . . , z, A, . . . Z},
NI = {Xiexpr, Xnum, Xnum′ , Xvar, Xvar′}, SI = Xiexpr and the following derivation rules.

PI = {Xiexpr → (Xiexpr)

Xiexpr → -Xiexpr

Xiexpr → Xiexpr+Xiexpr|Xiexpr-Xiexpr|Xiexpr*Xiexpr|Xiexpr/Xiexpr|Xiexpr%Xiexpr

Xiexpr → Xvar

Xiexpr → Xnum

Xnum → 0Xnum′ | . . . |9Xnum′

Xnum′ → 0Xnum′ | . . . |9Xnum′ |ε
Xvar → aXvar′ | . . . |zXvar′|AXvar′ | . . . |ZXvar′

Xvar′ → aXvar′ | . . . |zXvar′|AXvar′ | . . . |ZXvar′|0Xvar′ | . . . |9Xvar′|ε}

Next, we proposed the grammar GB = (ΣB, NB, PB, SB) for Boolean expressions, where
ΣB = ΣI ∪ {!,&&, ‖,==>,==, <,>,<=, >=}, NB = NI ∪ {Xbexpr}, SB = Xbexpr and the
following derivation rules.

PB = {Xbexpr → (Xbexpr)

Xbexpr → !Xbexpr

Xbexpr → Xbexpr&&Xbexpr|Xbexpr‖Xbexpr|Xbexpr==Xbexpr

Xbexpr → Xiexpr==Xiexpr|Xiexpr<Xiexpr|Xiexpr>Xiexpr|Xiexpr<=Xiexpr|Xiexpr=>Xiexpr

Xbexpr → Xvar

Xbexpr → true|false} ∪ PI

We propose that you use ΣBoo = GB ∪ {while, if, else, {, }, ;, :=} and your language
should have the following properties.

• There should be a while statement, an if-then-else statement and an assignment
statement.

• The concatenation of statements should be a statement.

• A program should be a statement and we do not need statements for declaring
variables.

Exercise 4: Derivation Tree 1 Point
Give a derivation tree for the grammar GI and the word 15 + a + 4.

2

