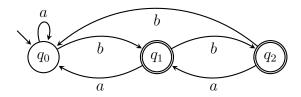


Abgabe: 28. November 2018

6. Übungsblatt zur Vorlesung Informatik III

Aufgabe 1: Pumping Lemma


4 Punkte

Zeigen Sie mit dem Pumping Lemma, dass die folgende Sprache L über dem Alphabet $\Sigma = \{a,b\}$ nicht regulär ist.

$$L = \{ba^nba^n \mid n \in \mathbb{N}\}$$

Aufgabe 2: Endlicher Automat \leadsto regulärer Ausdruck Betrachten Sie den folgenden DEA \mathcal{A} über $\Sigma = \{a, b\}$.

4 Punkte

Bestimmen Sie für \mathcal{A} das Gleichungssystem analog zur Vorlesung (Skript vor Bsp. 2.22). Berechnen Sie anschließend einen äquivalenten regulären Ausdruck, indem Sie das Gleichungssystem nach r_0 auflösen (Beweis zu Satz 2.12 " \Rightarrow ").

Sie dürfen reguläre Ausdrücke α, β, γ folgendermaßen vereinfachen. Für die Operationen "Konkatenation" und "Oder" gelten die folgenden Regeln:

Assoziativität:
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$
, $\alpha(\beta \gamma) = (\alpha \beta) \gamma$

Kommutativität: $\alpha + \beta = \beta + \alpha$

Neutrale Elemente: $\emptyset + \alpha = \alpha$, $\varepsilon \alpha = \alpha$, $\alpha \varepsilon = \alpha$

Distributivität:
$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$
, $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$

Absorption: $\emptyset \alpha = \emptyset$, $\alpha \emptyset = \emptyset$

Für den Sternoperator gelten die folgenden Regeln:

$$\varepsilon^* = \varepsilon$$
, $(\varepsilon + \alpha)^* = \alpha^*$, $(\varepsilon + \alpha)\alpha^* = \alpha^*$, $\alpha^*(\varepsilon + \alpha) = \alpha^*$

Aufgabe 3: Ableitung in einer Grammatik

1 Punk

Gegeben sei die folgende Grammatik $G = (\Sigma, N, P, S)$ mit der Menge der Terminalsymbole $\Sigma = \{a\}$, der Menge der Nichtterminalsymbole $N = \{S, T, A, B, C, D, E, F, G\}$, dem Startsymbol S und den folgenden Regeln in P:

(1) $S \to BT$

- $(2) \quad T \quad \rightarrow \quad AT \mid DCE \quad (5) \quad AD \quad \rightarrow \quad FD \qquad (8) \quad CD \quad \rightarrow \quad GD \quad (11) \quad B \quad \rightarrow \quad a$
- (3) $E \rightarrow DCE \mid a$ (6) $FD \rightarrow FCA$ (9) $GD \rightarrow GC$ (12) $A \rightarrow a$
- $(4) \hspace{.1cm} BD \hspace{.1cm} \rightarrow \hspace{.1cm} BC \hspace{.1cm} (7) \hspace{.1cm} FC \hspace{.1cm} \rightarrow \hspace{.1cm} DC \hspace{.1cm} (10) \hspace{.1cm} GC \hspace{.1cm} \rightarrow \hspace{.1cm} DC \hspace{.1cm} (13) \hspace{.1cm} C \hspace{.1cm} \rightarrow \hspace{.1cm} a$

Dabei ist $X \to Y \mid Z$ eine Abkürzung für $X \to Y, X \to Z$.

Geben Sie eine Ableitung für das Wort aaaa in der Grammatik an (mit allen Zwischenschritten).

Aufgabe 4: Reguläre Ausdrücke

2 Punkte

Betrachten Sie das Alphabet $A = \{a_1, \ldots, a_n\}$. Geben Sie eine kontextfreie Grammatik an, die die Menge der (vollständig geklammerten) regulären Ausdrücke über A erzeugt. Benutzen Sie dazu die folgenden Terminalsymbole:

$$\Sigma = A \ \cup \ \Big\{ \ \boxed{\emptyset}, \ \boxed{\varepsilon}, \ \boxed{+}, \ \boxed{\cdot}, \ \boxed{*}, \ \boxed{(}, \ \boxed{)} \Big\}$$