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Nontermination Analysis

nonterminating == nonterminating for some input
== at least one infinite execution
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useful in practice

I Benchmark set from
Brockschmidt, Cook, Fuhs Better termination proving through cooperation (CAV 2013)

contains 181 programs whose nontermination is known, our tool can
prove nontermination for 170 of them

I Benchmarks set from Termination Competition 2014



Lasso Program P = (STEM, LOOP)

A lasso program P consists of two binary relations STEM(x, x’) and
LOOP(x, x’) over a set of states.
A sequence of states s0, s1, s2, s3, s4 . . . is called an infinite execution if

I (s0, s1) ∈ STEM, and

I (st , st+1) ∈ LOOP for all t ≥ 1.

Example

b := b - 1

while (a ≥ 0) {
a := a - b

}

STEM(( a
b ) ,
(
a′

b′

)
)

b′ = b − 1 ∧ a′ = a

LOOP(( a
b ) ,
(
a′

b′

)
)

a ≥ 0 ∧ a′ = a− b ∧ b′ = b

Infinite execution ( 42
1 ) , ( 42

0 ) , ( 42
0 ) , ( 42

0 ) , ( 42
0 ) , . . .
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Preliminary Considerations
a simple case

The lasso program P = (STEM, LOOP) has an execution of the form

s0, s1, s1, s1, s1 . . .

iff the following formula is satisfiable.

STEM(s0, s1) ∧ LOOP(s1, s1)

Example
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b1 7→ 0

is satisfying assignment
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A “difficult” program

while (a ≥ 2) {
a := 2*a + 1

}

relation LOOP(a, a′)−1 0
−2 1
2 −1

( a
a′

)
≤

−21
−1



a0 = 2, a1 = 2, a2 = 5, a3 = 11, a4 = 23, a5 = 47, a6 = 95, a7 = 191, . . .

Consider only lasso programs whose relations STEM and LOOP are given
by a conjunction of linear inequalities over the reals.
We use vectors and matrices to denote conjunctsions of linear
inequalities. A ( x

x′ ) ≤ b
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Geometric Nontermination Argument

Let P = (STEM, LOOP) be a linear lasso program such that LOOP is
defined by the formula A ( x

x′ ) ≤ b. The tuple N = (x0, x1, y, λ) is called
a geometric nontermination argument for P iff the following properties
hold.

(domain) x0, x1, y ∈ Rn, λ ∈ R and λ > 0.

(init) (x0, x1) ∈ STEM

(point) A
( x1

x1+y

)
≤ b

(ray) A
( y
λy

)
≤ 0
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Theorem (Soundness)

If the conjunctive linear lasso program P = (STEM, LOOP) has a
geometric nontermination argument N = (x0, x1, y, λ) then P has the
following infinite execution.

x0, x1, x1 + y, x1 + (1 + λ) · y, x1 + (1 + λ+ λ2) · y, . . .
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We obtain N = (x0, x1, y, λ) via constraint solving
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while (a ≥ 2) {
a := 2*a + 1

}

relation LOOP(a, a′)−1 0
−2 1
2 −1

( a
a′

)
≤

−21
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Constraints for Geometric Nontermination Argument

(domain) x0, x1, y ∈ Rn, λ ∈ R and λ > 0.

(init) (x0, x1) ∈ STEM

(point) A
( x1

x1+y

)
≤ b

(ray) A
( y
λ·y
)
≤ 0

For a0 = 2, a1 = 2, y = 3 and λ = 2, the tuple N = (a0, a1, y , λ) is a
geometric nontermination argument and the following sequence of states
is an infinite execution of P.

a0 = 2, a1 = 2, a2 = 5, a3 = 11, a4 = 23, a5 = 47, a6 = 95, a7 = 191, . . .



Theorem (Soundness)

If the conjunctive linear lasso program P = (STEM, LOOP) has a
geometric nontermination argument N = (x0, x1, y, λ) then P has the
following infinite execution.

x0, x1, x1 + y, x1 + (1 + λ)y, x1 + (1 + λ+ λ2)y, . . .

Proof.

Define z0 := x0 and zt := x1 +
∑t

i=0 λ
iy. Then (zt)t≥0 is an infinite

execution of P: by (init), (z0, z1) = (x0, x1) ∈ STEM and

A ( zt
zt+1 ) = A

(
x1+
∑t

i=0 λ
iy

x1+
∑t+1

i=0 λiy

)
= A

( x1
x1+y

)
+

t∑
i=0

λiA
( y
λy

)
≤ b +

t∑
i=0

λi0 = b,

by (point) and (ray).



infinite execution

x0, x1, x1+y, x1+(1+λ)·y, x1+( 1 + λ+ λ2︸ ︷︷ ︸
geometric series

)·y, . . .

closed formula

for i ≥ 2 xi = x1 +
λi+1 − 1

λ− 1
· y



Example

The following linear lasso program has an infinite execution, e.g.(
2i

3i

)
i≥0

, but it does not have a geometric nontermination argument.

while (a ≥ 1 && b ≥ 1 ) {
a := 2*a

b := 3*b

}



Let | · | : Rn → R denote some norm. We call an infinite execution
(xt)t≥0 bounded iff there is a real number d ∈ R such that for each state
its norm in bounded by d , i.e. |xt | ≤ d for all t.

Lemma (Fixed Point)

Let P = (STEM, LOOP) be a linear loop program such that STEM = id.
The loop P has a bounded infinite execution if and only if there is a fixed
point x∗ ∈ Rn such that (x∗, x∗) ∈ LOOP.

Corollary

If the linear loop program P = (id , LOOP) has a bounded infinite
execution, then it has a geometric nontermination argument.



Recurrence Set

A recurrence set S is a set of states such that

I at least one state of S is in the range of STEM, i.e.

∃x, x′. (x, x′) ∈ STEM ∧ x’ ∈ S , and

I for each state in S there is at least one LOOP-successor that is in S ,
i.e.,

∀x. x ∈ S → ∃x′. (x, x′) ∈ LOOP ∧ x’ ∈ S .

If we restrict the form of S to a convex polyhedron, (i.e.
S =

∧
i ai · x ≥ di )

we can encode its existence using algebraic constraints.
Gupta, Henzinger, Majumdar, Rybalchenko, Xu Proving non-termination (POPL 2008)

Rybalchenko Constraint solving for program verification theory and practice by example (CAV 2010)



Recurrence Set

Lemma

Let P = (STEM, LOOP) be a linear lasso program and N = (x0, x1, y, λ)
be a geometric nontermination argument for P. The following set S is a
recurrence set for P.

S =
{

x1 +
t∑

i=0

λiy | t ∈ N
}



Integers vs. Reals

Terminating over the Reals ⇒ Terminating over the Integers

Constraints for Geometric Nontermination Argument

(domain) x0, x1, y ∈ Rn, λ ∈ R and λ > 0.

(init) (x0, x1) ∈ STEM

(point) A
( x1

x1+y

)
≤ b

(ray) A
( y
λ·y
)
≤ 0



Future Work

I If LOOP is linear update and STEM is identity then termination is
decideable.

Ashish Tiwari Termination of linear programs (CAV 2004)

Mark Braverman Termination of integer linear programs (CAV 2006)

Approach: analyze eigenvalues

I Our approach: relations LOOP and STEM given by linear constraints

Can we combine both approaches?



Our tool: LassoRanker

http://ultimate.informatik.uni-freiburg.de/LassoRanker/

http://ultimate.informatik.uni-freiburg.de/LassoRanker/

