Geometric Series as Nontermination Arguments for Linear Lasso Programs

Jan Leike
Matthias Heizmann
The Australian National University
University
of Freiburg

Nontermination Analysis

$$
\begin{aligned}
\text { nonterminating } & ==\text { nonterminating for some input } \\
& ==\text { at least one infinite execution }
\end{aligned}
$$

Nontermination Analysis

nonterminating $==$ nonterminating for some input
$==$ at least one infinite execution

Kinds of Termination Arguments

- ranking function
- transition invariant
- size-change graphs
- dependency pair
- ...

Nontermination Analysis

nonterminating $==$ nonterminating for some input
$==$ at least one infinite execution

Kinds of Termination Arguments

- ranking function
- transition invariant
- size-change graphs
- dependency pair

B ...

- geometric nontermination argument

Geometric Nontermination Argument

witness for existence of infinite execution (of the following form)
$\mathbf{x}_{0}, \quad \mathbf{x}_{1}, \quad \mathbf{x}_{1}+\mathbf{y}, \quad \mathbf{x}_{1}+(1+\lambda) \cdot \mathbf{y}, \quad \mathbf{x}_{1}+\left(1+\lambda+\lambda^{2}\right) \cdot \mathbf{y}$,

Geometric Nontermination Argument

witness for existence of infinite execution (of the following form)

$$
\mathbf{x}_{0}, \quad \mathbf{x}_{1}, \quad \mathbf{x}_{1}+\mathbf{y}, \quad \mathbf{x}_{1}+(1+\lambda) \cdot \mathbf{y}, \quad \mathbf{x}_{1}+(\underbrace{1+\lambda+\lambda^{2}}_{\text {geometric series }}) \cdot \mathbf{y}
$$

Geometric Nontermination Argument

witness for existence of infinite execution (of the following form)

$$
\mathbf{x}_{0}, \quad \mathbf{x}_{1}, \quad \mathbf{x}_{1}+\mathbf{y}, \quad \mathbf{x}_{1}+(1+\lambda) \cdot \mathbf{y}, \quad \mathbf{x}_{1}+(\underbrace{1+\lambda+\lambda^{2}}_{\text {geometric series }}) \cdot \mathbf{y}
$$

useful in practice

- Benchmark set from
Brockschmidt, Cook, Fuhs Better termination proving through cooperation (CAV 2013)
contains 181 programs whose nontermination is known, our tool can prove nontermination for 170 of them
- Benchmarks set from Termination Competition 2014

Lasso Program $P=($ STEM, LOOP $)$

A lasso program P consists of two binary relations $\operatorname{stEm}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ and LOOP ($\mathbf{x}, \mathbf{x}^{\prime}$) over a set of states.
A sequence of states $\mathbf{s}_{0}, \mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}, \mathbf{s}_{4} \ldots$ is called an infinite execution if

- $\left(\mathbf{s}_{0}, \mathbf{s}_{1}\right) \in$ STEM, and
- $\left(\mathbf{s}_{t}, \mathbf{s}_{t+1}\right) \in$ Loop for all $t \geq 1$.

Lasso Program $P=($ STEM, LOOP $)$

A lasso program P consists of two binary relations $\operatorname{stem}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ and LOOP ($\mathbf{x}, \mathbf{x}^{\prime}$) over a set of states.
A sequence of states $\mathbf{s}_{0}, \mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}, \mathbf{s}_{4} \ldots$ is called an infinite execution if

- $\left(\mathbf{s}_{0}, \mathbf{s}_{1}\right) \in$ STEM, and
- $\left(\mathbf{s}_{t}, \mathbf{s}_{t+1}\right) \in$ LOOP for all $t \geq 1$.

Example

$$
\begin{aligned}
& b:=b-1 \\
& \text { while }(a \geq 0)\{ \\
& \} \quad a:=a-b
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{STEM}\left(\binom{a}{b},\binom{a^{\prime}}{b^{\prime}}\right. \\
& b^{\prime}=b-1 \wedge a^{\prime}=a
\end{aligned}
$$

$$
\operatorname{LOOP}\left(\binom{a}{b},\binom{a^{\prime}}{b^{\prime}}\right)
$$

$$
a \geq 0 \wedge a^{\prime}=a-b \wedge b^{\prime}=b
$$

Infinite execution

$$
\binom{42}{1},\binom{42}{0},\binom{42}{0},\binom{42}{0},\binom{42}{0}, \ldots
$$

Preliminary Considerations

```
a simple case
```

The lasso program $P=$ (STEM, LOOP) has an execution of the form

$$
\mathbf{s}_{0}, \mathbf{s}_{1}, \mathbf{s}_{1}, \mathbf{s}_{1}, \mathbf{s}_{1} \ldots
$$

iff the following formula is satisfiable.

$$
\operatorname{STEM}\left(\mathbf{s}_{0}, \mathbf{s}_{1}\right) \wedge \operatorname{LOOP}\left(\mathbf{s}_{1}, \mathbf{s}_{1}\right)
$$

Preliminary Considerations

a simple case
The lasso program $P=$ (STEM, LOOP) has an execution of the form

$$
\mathbf{s}_{0}, \mathbf{s}_{1}, \mathbf{s}_{1}, \mathbf{s}_{1}, \mathbf{s}_{1} \ldots
$$

iff the following formula is satisfiable.

$$
\operatorname{STEM}\left(\mathbf{s}_{0}, \mathbf{s}_{1}\right) \wedge \operatorname{LOOP}\left(\mathbf{s}_{1}, \mathbf{s}_{1}\right)
$$

Example

$$
\begin{aligned}
& \mathrm{b}:=\mathrm{b}-1 \\
& \text { while }(\mathrm{a} \geq 0)\{ \\
& \} \quad \mathrm{a}:=a-b
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{STEM}\left(\binom{a}{b},\binom{a^{\prime}}{b^{\prime}}\right) \\
& \quad b^{\prime}=b-1 \wedge a^{\prime}=a \\
& \operatorname{LOOP}\left(\binom{a}{b},\left(\begin{array}{l}
\left.\binom{a^{\prime}}{b^{\prime}}\right) \\
\quad a \geq 0 \wedge a^{\prime}=a-b \wedge b^{\prime}=b
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{array}{ll}
a_{0} \mapsto 42 & a_{1} \mapsto 42 \\
b_{0} \mapsto 1 & b_{1} \mapsto 0
\end{array} \quad \text { is satisfying assignment }
$$

A "difficult" program

```
while (a \geq 2) {
    a := 2*a + 1
}
```

$$
a_{0}=2, a_{1}=2, a_{2}=5, a_{3}=11, a_{4}=23, a_{5}=47, a_{6}=95, a_{7}=191, \ldots
$$

A "difficult" program

```
while (a \geq 2) {
    a := 2*a + 1
}
```

$a_{0}=2, a_{1}=2, a_{2}=5, a_{3}=11, a_{4}=23, a_{5}=47, a_{6}=95, a_{7}=191, \ldots$

Consider only lasso programs whose relations STEM and loop are given by a conjunction of linear inequalities over the reals.

A "difficult" program

```
while (a \geq 2) {
    a := 2*a + 1
}
```

 relation \(\operatorname{LOOP}\left(a, a^{\prime}\right)\)
 $$
\left(\begin{array}{cc}
-1 & 0 \\
-2 & 1 \\
2 & -1
\end{array}\right)\binom{a}{a^{\prime}} \leq\left(\begin{array}{c}
-2 \\
1 \\
-1
\end{array}\right)
$$

$$
a_{0}=2, a_{1}=2, a_{2}=5, a_{3}=11, a_{4}=23, a_{5}=47, a_{6}=95, a_{7}=191, \ldots
$$

Consider only lasso programs whose relations STEM and loop are given by a conjunction of linear inequalities over the reals.
We use vectors and matrices to denote conjunctsions of linear inequalities. $A\left({ }_{\mathrm{x}^{\prime}}^{\mathrm{x}}\right) \leq \mathbf{b}$

Geometric Nontermination Argument

Let $P=$ (STEM, LOOP) be a linear lasso program such that LOOP is defined by the formula $A\binom{\mathbf{x}}{\mathbf{x}^{\prime}} \leq \mathbf{b}$. The tuple $N=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y}, \lambda\right)$ is called a geometric nontermination argument for P iff the following properties hold.

$$
\begin{aligned}
\text { (domain) } & \mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y} \in \mathbb{R}^{n}, \lambda \in \mathbb{R} \text { and } \lambda>0 . \\
\text { (init) } & \left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \in \mathrm{STEM} \\
\text { (point) } & A\binom{\mathbf{x}_{1}}{\mathbf{x}_{1}+\mathbf{y}} \leq \mathbf{b} \\
\text { (ray) } & A\binom{\mathbf{y}}{\lambda \mathbf{y}} \leq \mathbf{0}
\end{aligned}
$$

Geometric Nontermination Argument

Let $P=$ (STEM, LOOP) be a linear lasso program such that LOOP is defined by the formula $A\binom{\mathbf{x}}{\mathbf{x}^{\prime}} \leq \mathbf{b}$. The tuple $N=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y}, \lambda\right)$ is called a geometric nontermination argument for P iff the following properties hold.

$$
\begin{aligned}
\text { (domain) } & \mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y} \in \mathbb{R}^{n}, \lambda \in \mathbb{R} \text { and } \lambda>0 . \\
\text { (init) } & \left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \in \mathrm{STEM} \\
\text { (point) } & A\binom{\mathbf{x}_{1}}{\mathbf{x}_{1}+\mathbf{y}} \leq \mathbf{b} \\
\text { (ray) } & A\binom{\mathbf{y}}{\lambda \mathbf{y}} \leq \mathbf{0}
\end{aligned}
$$

Theorem (Soundness)

If the conjunctive linear lasso program $P=$ (STEM, LOOP) has a geometric nontermination argument $N=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y}, \lambda\right)$ then P has the following infinite execution.

$$
\mathbf{x}_{0}, \quad \mathbf{x}_{1}, \quad \mathbf{x}_{1}+\mathbf{y}, \quad \mathbf{x}_{1}+(1+\lambda) \cdot \mathbf{y}, \quad \mathbf{x}_{1}+\left(1+\lambda+\lambda^{2}\right) \cdot \mathbf{y}, \quad \ldots
$$

Geometric Nontermination Argument

Let $P=$ (STEM, LOOP) be a linear lasso program such that LOOP is defined by the formula $A\binom{\mathbf{x}}{\mathbf{x}^{\prime}} \leq \mathbf{b}$. The tuple $N=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y}, \lambda\right)$ is called a geometric nontermination argument for P iff the following properties hold.

$$
\begin{aligned}
\text { (domain) } & \mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y} \in \mathbb{R}^{n}, \lambda \in \mathbb{R} \text { and } \lambda>0 . \\
\text { (init) } & \left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \in \mathrm{STEM} \\
\text { (point) } & A\binom{\mathbf{x}_{1}}{\mathbf{x}_{1}+\mathbf{y}} \leq \mathbf{b} \\
\text { (ray) } & A\binom{\mathbf{y}}{\lambda \mathbf{y}} \leq \mathbf{0}
\end{aligned}
$$

We obtain $N=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y}, \lambda\right)$ via constraint solving

Geometric Nontermination Argument

Let $P=$ (STEM, LOOP) be a linear lasso program such that LOOP is defined by the formula $A\binom{\mathbf{x}}{\mathbf{x}^{\prime}} \leq \mathbf{b}$. The tuple $N=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y}, \lambda\right)$ is called a geometric nontermination argument for P iff the following properties hold.

$$
\mathbf{x}_{0}, \quad \mathbf{x}_{1}, \quad \mathbf{x}_{1}+\mathbf{y}, \quad \mathbf{x}_{1}+(1+\lambda) \cdot \mathbf{y}, \quad \mathbf{x}_{1}+\left(1+\lambda+\lambda^{2}\right) \cdot \mathbf{y}, \quad \ldots
$$

relation $\operatorname{LOOP}\left(a, a^{\prime}\right)$

```
while (a \geq 2) {
    a := 2*a + 1
}
```

$\left(\begin{array}{cc}-1 & 0 \\ -2 & 1 \\ 2 & -1\end{array}\right)\binom{a}{a^{\prime}} \leq\left(\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right)$

Constraints for Geometric Nontermination Argument

(domain) $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y} \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ and $\lambda>0$.
(init) $\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \in$ STEM
(point) $A\binom{\mathbf{x}_{1}}{\mathbf{x}_{1}+\mathbf{y}} \leq \mathbf{b}$
(ray) $A\binom{\mathbf{y}}{\lambda \cdot \mathbf{y}} \leq \mathbf{0}$

For $a_{0}=2, a_{1}=2, y=3$ and $\lambda=2$, the tuple $N=\left(a_{0}, a_{1}, y, \lambda\right)$ is a geometric nontermination argument and the following sequence of states is an infinite execution of P.

$$
a_{0}=2, a_{1}=2, a_{2}=5, a_{3}=11, a_{4}=23, a_{5}=47, a_{6}=95, a_{7}=191, \ldots
$$

Theorem (Soundness)

If the conjunctive linear lasso program $P=(\mathrm{STEM}$, LOOP $)$ has a geometric nontermination argument $N=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y}, \lambda\right)$ then P has the following infinite execution.

$$
\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{1}+\mathbf{y}, \mathbf{x}_{1}+(1+\lambda) \mathbf{y}, \mathbf{x}_{1}+\left(1+\lambda+\lambda^{2}\right) \mathbf{y}, \ldots
$$

Proof.

Define $\mathbf{z}_{0}:=\mathbf{x}_{0}$ and $\mathbf{z}_{t}:=\mathbf{x}_{1}+\sum_{i=0}^{t} \lambda^{i} \mathbf{y}$. Then $\left(\mathbf{z}_{t}\right)_{t \geq 0}$ is an infinite execution of P : by (init), $\left(\mathbf{z}_{0}, \mathbf{z}_{1}\right)=\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \in$ STEM and

$$
A\binom{\mathbf{z}_{t}}{\mathbf{z}_{t+1}}=A\binom{\mathbf{x}_{1}+\sum_{i=0}^{t} \lambda^{i} \mathbf{y}}{\mathbf{x}_{1}+\sum_{i=0}^{t+1} \lambda^{\prime} \mathbf{y}}=A\binom{\mathbf{x}_{1}}{\mathrm{x}_{1}+\mathbf{y}}+\sum_{i=0}^{t} \lambda^{i} A\binom{\mathbf{y}}{\lambda_{\mathbf{y}}} \leq \mathbf{b}+\sum_{i=0}^{t} \lambda^{i} \mathbf{0}=\mathbf{b},
$$

by (point) and (ray).
infinite execution
$\mathbf{x}_{0}, \quad \mathbf{x}_{1}, \quad \mathbf{x}_{1}+\mathbf{y}, \quad \mathbf{x}_{1}+(1+\lambda) \cdot \mathbf{y}, \quad \mathbf{x}_{1}+(\underbrace{1+\lambda+\lambda^{2}}_{\text {geometric series }}) \cdot \mathbf{y}$,
closed formula
for $i \geq 2 \quad \mathbf{x}_{i}=\mathbf{x}_{1}+\frac{\lambda^{i+1}-1}{\lambda-1} \cdot \mathbf{y}$

Example

The following linear lasso program has an infinite execution, e.g. $\binom{2^{i}}{3^{i}}_{i \geq 0}$, but it does not have a geometric nontermination argument.

$$
\begin{aligned}
& \text { while }(a \geq 1 \& \& b \geq 1)\{ \\
& \\
& \quad \mathrm{a}:=2 * \mathrm{a} \\
& \mathrm{~b}:=3 * \mathrm{~b}
\end{aligned}
$$

Let $|\cdot|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ denote some norm. We call an infinite execution $\left(\mathbf{x}_{t}\right)_{t \geq 0}$ bounded iff there is a real number $d \in \mathbb{R}$ such that for each state its norm in bounded by d, i.e. $\left|\mathbf{x}_{t}\right| \leq d$ for all t.

Lemma (Fixed Point)

Let $P=$ (STEM, LOOP) be a linear loop program such that STEM $=i d$. The loop P has a bounded infinite execution if and only if there is a fixed point $\mathbf{x}^{*} \in \mathbb{R}^{n}$ such that $\left(\mathbf{x}^{*}, \mathbf{x}^{*}\right) \in$ LOOP.

Corollary

If the linear loop program $P=$ (id, LOOP) has a bounded infinite execution, then it has a geometric nontermination argument.

Recurrence Set

A recurrence set S is a set of states such that

- at least one state of S is in the range of stem, i.e.

$$
\exists \mathbf{x}, \mathbf{x}^{\prime} .\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \operatorname{STEM} \wedge \mathbf{x}^{\prime} \in S, \text { and }
$$

- for each state in S there is at least one loop-successor that is in S, i.e.,

$$
\forall \mathbf{x} . \mathbf{x} \in S \rightarrow \exists \mathbf{x}^{\prime} .\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \operatorname{LOOP} \wedge \mathbf{x}^{\prime} \in S
$$

If we restrict the form of S to a convex polyhedron, (i.e. $\left.S=\bigwedge_{i} \mathbf{a}_{i} \cdot \mathbf{x} \geq d_{i}\right)$
we can encode its existence using algebraic constraints.

[^0]Rybalchenko Constraint solving for program verification theory and practice by example (CAV 2010)

Recurrence Set

Lemma

Let $P=$ (sTEM, LOOP) be a linear lasso program and $N=\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y}, \lambda\right)$ be a geometric nontermination argument for P. The following set S is a recurrence set for P.

$$
S=\left\{\mathbf{x}_{1}+\sum_{i=0}^{t} \lambda^{i} \mathbf{y} \mid t \in \mathbb{N}\right\}
$$

Integers vs. Reals

Terminating over the Reals \Rightarrow Terminating over the Integers

Constraints for Geometric Nontermination Argument

(domain) $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y} \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ and $\lambda>0$.
(init) $\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right) \in$ STEM
(point) $A\left(\left(\begin{array}{c}\mathbf{x}_{1}+\mathbf{y}\end{array}\right) \leq \mathbf{b}\right.$
(ray) $A\binom{\mathbf{y}}{\lambda \cdot y} \leq \mathbf{0}$

Future Work

- If loop is linear update and STEM is identity then termination is decideable.

Ashish Tiwari Termination of linear programs (CAV 2004)
Mark Braverman Termination of integer linear programs (CAV 2006)
Approach: analyze eigenvalues

- Our approach: relations LOOP and STEM given by linear constraints

Can we combine both approaches?

Our tool: LassoRanker

http://ultimate.informatik.uni-freiburg.de/LassoRanker/

[^0]: Gupta, Henzinger, Majumdar, Rybalchenko, $X u \quad$ Proving non-termination (POPL 2008)

