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Abstract— Mobile robots rely on the ability to sense the geo-
metry of their local environment in order to avoid obstacles or
to explore the surroundings. For this task, dedicated proximity
sensors such as laser range finders or sonars are typically
employed. Cameras are a cheap and lightweight alternative to
such sensors, but do not directly offer proximity information.

In this paper, we present a novel approach to learning the
relationship between range measurements and visual features
extracted from a single monocular camera image. As the
learning engine, we apply Gaussian processes, a non-parametric
learning technique that not only yields the most likely range
prediction corresponding to a certain visual input but also
the predictive uncertainty. This information, in turn, can be
utilized in an extended grid-based mapping scheme to more
accurately update the map. In practical experiments carried
out in different environments with a mobile robot equipped
with an omnidirectional camera system, we demonstrate that
our system is able to produce proximity estimates with an Fig. 1. Our approach estimates proximity information from ak&rimage
accuracy comparable to that of dedicated sensors such as sosar after having learned how visual appearance is related tthdep

or infrared range finders.

|. INTRODUCTION In this paper, we formulate the range estimation task as
. a _supervised regression problem, in which the training set

Cameras have become popular sensors in the robotics| . A ;
: - IS build by acquiring images of the environment as well
community. Compared to proximity sensors such as laser 2 : !
. . as proximity data provided by a laser range finder. We

range finders, they have the advantage of being chea ) .

I5cuss how appropriate visual features can be extracted

lightweight, and energy efficient. The drawback of camera : : : ;
however, is the fact that due to the projective nature of thié‘om the images using algorithms for edge detection and

image formation process, it is not possible to sense dep imensionality reduction. We apply Gaussian processes as

information directly. From a geometric point of view, onet € leamning framework in our proposed system, since this

) . ._technique is able to model non-linear functions, offers a
needs at least two images taken from different location o . . .
irect way of estimating uncertainties for its predictipasd

to recover the depth information analytically. An alteivat . . . ) .
L it pas proven successful in previous work involving range
approach, that requires just one monocular camera and t?&nctions [15]

we follow in this work, is to learn from previous experience . : . .
: . ... The paper is organized as follows. After discussing related
how visual appearance is related to depth. Such an abilit . X
ork, we formalize our problem and introduce the proposed

Lioa::zzur;;grh(%edse¥§:odpe}e(1r:n chrgaggnvgg]are able to UtIIIZFearning framework in Section Ill. In Section IV we then
As a motivatin exarr? Iepcons?der Fi urél which de ictgiscuss appropriate visual features and how they can be
ng pie, ) g ' P gxtracted from images. Section V presents the experimental
the (warped) image of an office environment. Overlaye

. . . ) . evaluation of our algorithm as well as an application to the
in white, we visualize the most likely area of free space g PP

. g . apping problem. Finally, we conclude in Section VI and
that is pr_edlcted by our approach. We exp_I|C|tIy do nogive an outlook to future research.
try to estimate a depth map for the whole image, as f
example Saxanat al. [18]. Rather, we aim at learning the 1. RELATED WORK

Iuntﬁtpn that, glveg_an g?“';‘ge' me:pst?ealsurer:\egtti;r)}ecnons.rhe problem of recovering geometric properties of a
0 their corresponding distances 1o the CloSest ObSIalles. o0 from visual measurements is one of the fundamental

?el:(eve fthrit E;:Chr abfL![nCitLOT 3""‘: ble UI:“ZEdttO Isolvve i\éar;?tgroblems in computer vision and is also frequently addigesse
Ias f Ot' obrie robots Tu i g loca IO X alce ?moat'a §h the robotics literature. Stereo camera systems are widel
ocalization, mapping, exploration, or place classl : used to estimate the missing depth information that single
) _— ) cameras cannot provide directly. Stereo systems eithei-req
The authors are with the University of Freiburg, Departmdr@amputer . . . .
Science, Georges-Koehler-Allee 79, 79110 Freiburg, Geyman re a cart_—eful cahbrquon to analyucally calculate deptings
{plagem, endres, hess, stachnis, burga@ informatik.uni-freiburg.de geometric constraints or, as Siet al. [20] demonstrated,



can be used in combination with non-linear, supervised Ill. L EARNING DEPTH FROMMONOCULAR VISION
learning approaches to recover depth information. Oftets, s FEATURES

of features such as SIFT [12] are extracted from two images The goal of this work is to learn the relationship between
and matched against each other. Then, the feature pairs g§,al input and the extent of free space around the robot. By
used to constrain the poses of the two camera Iocatiog,ging a regular range sensors, it is comparably easy to-acqui
and/or the point in the scene that corresponds to the imageraining data for this task, so that we can formulate tioe pr
feature. In thi; spirit, t_he motion of the camera is_ gonsa'der blem as a supervised learning problem. Figure 2 (a) depicts
by [5], [21]. Sim and Little [19] present a stereo-vision 8ds the configuration of our robot used for data acquisition. An
approach to the SLAM problem, which also includes thgmnidirectional camera system (catadioptric with a paiabo
recovery of depth information. Their approach containﬁbotmirror) is mounted on top of a SICK laser range finder. This
the matching of discrete landmarks as well as dense grigtyp allows the robot to perceive the full surrounding area
mapping using vision cues. at every time step as the two example images in Figure 2 (b)

An active way of sensing depth using a single monocul _nd (c) illustrate. The omnidirectional images can be mdppe

camera is known agepth from defocugg] or depth from irectly to the laser scans, since both measurements can be
blur. Corresponding approaches typically adjust the fOcans‘presented in a common, polar coordinate system. Note that

length of the camera and analyze the resulting local chang%‘ér a}pproach s not restricted to omnidirectional cameras
in image sharpness. Torralba and Oliva [24] present R principle. However, the correspondence between range

approach for estimating the mean depth of full scenes fro easurement_s and o_mni_directio_nal images is a more direct
single images using spectral signatures. While their aquroaone and the field qf view is considerably larger compared to
is likely to improve a large number of recognition algorithm standard perspective optics.

by providing a rough scale estimate, the spatial resolution A. A Gaussian Process Model for Range Functions

their depth estimates does not appear to be sufficient for the\we extract for every viewing directiom a vector of

problem studied in this paper. Dahlkanep al. [3] learn a igyal featuresc from the images and phrase the problem as
mapping from visual input to road traversability in a Self'learning the range functiorfi(x) = y that maps the visual
supervised manner. inputx to distanceg. We learn this function in a supervised
gnanner using a training sé? = {x;,y;};_, of observed

to the work of Saxenzet al. [18], who utilize Markov featuresx; and corresponding laser range measuremgnts

random fields (MRFs) for reconstructing dense depth mapsWe Place a Gaussian process (GP) prior [16] on the non-

from single monocular images. An alternative approach théﬂ"e"’lr funcnonf, .e., we assume that all range sgr_npj;es

predicts 2D range scans based using reinforcement learnifif€xed by their corresponding feature vecterare jointly

techniques has been presented by Michels et al. [13]. Corff2ussian distributed, we obtain

pared to these methods, our Gaussian process formulation f(x*) ~ N(w,o0) )

provides the predictive uncertainties for the depth edtisia |

directly, which is not straightforward to achieve in an MRFWIth

model. Hoiemet al. developed an approach to monocular T k*T(KJrgi])*ly 2)

scene reconstruction based on local features combined with —_ «T 2 7\ —1p.%

global reasoning [11]. Whereas Han and Zhu presented a o = R -k (K o)k 3)

Bayesian method for reconstructing the 3D geometry of wireds the predictive distribution for the range function at new

like objects in simple scenes [10], Delageal. introduced query pointsx*. Here, K denotes then x n-dimensional

an MRF model on orthogonal plane segments to recover tig@variance matrix constructed ds;; = k(x;,x;) using a

3D structure of indoor scenes [6]. covariance functiork, which is parameterized by a set of

_ ) o hyper-parameter8. The termy denotes the vector of given

As mentioned above, one potential application of thearget values from the training sét* stands for the vector of

approach described in this paper is to learn occupancy gri@variances between the new query poihitand the training

maps. This type of maps and an algorithm to update su@pints withk! = k(x*, x;). Finally o, denotes a global noise

Moravec and Elfes [14]. In the past, different approachesyponential covariance function

to learn occupancy grid maps from stereo vision have been

proposed [23], [17]. If the positions of the robot are unknow k(xp,%,) = U}% -exp (_12|Xp _ Xq) , (4)
during the mapping process, the entire task turns into the 2t

so-called simultaneous localization and mapping (SLAMyvhich depends on the Euclidian distance between points
problem. Vision-based techniques have been proposed Ry and x, as well as on the amplitude parametej?r and
Elinaset al. [7] and Davisoret al. [5] to solve this problem. the length-scale/. These parameters as well as the noise
In contrast to the mapping approach presented in this papparameters,, in Eq. (2) and (3) can be learned from data.
these techniques mostly focus on landmark-based repres&tarting from an initial guess, we apply conjugate gradient
tations. based optimization to find the values f¢¢,0%, 07} that

The problem dealt with in this paper, is closely relate
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Fig. 2. The left diagram depicts our experimental setup: thiming set was recorded using a mobile robot equipped witbranidirectional camera
(monocular camera with a parabolic mirror) as well as a laseggedimder. The next two images illustrate two typical omnidie@l images recorded at
the University of Freiburg (b) and at the DFKI in Saarbruacke).
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minimize the negative log marginal likelihood of the GP
model.

A particularly useful property of Gaussian processes for
our application is the availability of the predictive unizénty
(see Eq. (3)) at every query point. This means, that visual
featuresx*, which lie close to pointx of the training set
result in more confident predictions than features, whidh fa
into a less densely sampled region of feature space. 0

Relative energy content

12345678 910
IV. FEATURES IN OMNIDIRECTIONAL IMAGES Number of eigenvectors

The part of an omnidirectional image which is mostFig- 3. The amount of variance explained by the the first ppieci
strongly correlated with the distance to the nearest olestac components (eigenvectors) of the pixel columns in the two dets.
a certain direction is the strip of pixels oriented in the same
direction and going from the center of the image to its marg- . ) o . .
ins. With the type of camera used in our experiments, su¢Aformation. The diagram in Figure 3 depicts the relative
strips have a dimensionality of 420 (140 pixels, each havin@moum of variance that is explained for two different data
a hue saturation and avalue component). In order to make sets when truncating the transformed data vectors after a
these strips easier accessible to filter operators, we \aarp {€tain number of components. In the experiments reported
omnidirectional images (e.g., see Figure 2 (b) and (c)) intg€!ow, we trained the PCA on 600 input images and retained
panoramic views (e.g., see Figure 5 (a)), such that anglesth'\e first six principle components. Qur experiments revkale
the polar representation now correspond to column indites {hat thevalue channel of the visual input is more important
the panoramic one. This transformation allows us to repladBanhueandsaturationfor our task. The GP model learned
complicated image operations in the polar domain by easi¥fith these 6-dimensional features is ternfedA-GPin the
and more robust ones. In the following, we describe severgkPerimental section. _ _
ways of extracting useful low-dimensional feature vectors ~2) Edge-based FeaturesThe PCA is an unsupervised
from the 420-dimensional image columns, which can thefethod that does not take into account prior information

be directly used to index the training and test targets in tH@at might be available about the task to be solved — in this
GP framework. case, the fact that distances to the closest obstacles hee to

1) Unsupervised Dimensionality ReductioAs a classic Predicted. Driven by the observation that, especially troor
way of reducing the complexity of a data set, we app"egnvwonments, there is a strong correla_tlon between thenéext _
the principle component analysis (PCA) to the raw 4200f free space a_nd the presence of horizontal edge _features in
dimensional pixel vectors that are contained in the columri§€ panoramic image, we also assessed the potential of edge-
of the panoramic images. The PCA is implemented usintyPe features in our approach.
eigenvalue decomposition of the covariance matrix of the Laws’ convolution masks [4] provide an easy way of
training vectors. It yields a linear transformation whichconstructing local feature extractors for discretizechalg.
brings the input vectors into a new basis such that thekhe idea is to define three basic convolution masks
dimensions are now ordered by the amount of data-sete L3 = (1,2,1)7 (Weighted Sum: Averaging),
variance they carry. In this way, we can truncate the vectorse E3 = (—1,0,1)T  (First difference: Edges),
to a few components without losing a large amount of « S3 = (—1,2,—1)7 (Second difference: Spots),



As a benchmark for predicting range information from
edge features, we also evaluated the individual features
i directly. For doing so, we fitted a parametric function ta-tra
ning samples of feature-range pairs. This mapping function
computes for each pixel location of an edge feature the ltengt
i of the corresponding laser beam. The diagram in Figure 4
depicts the feature histogram for thews5+LMD features

—_— from one of our test runs that was used for the optimization.
0 20 40 60 80 100 120 140 160 . . . .
Feature location (Pixel) The color of a cellz, y) in this diagram encodes the relative
_ _ amount of features that were extracted at the pixel location
Fig. 4.  Feature histogram fotaws5+LMD edge features. Each cell . (measured from the center of the omnidirectional image)
in the histogram is indexed by the pixel location of the edgatdre . .
(x-axis) and the length of the corresponding laser beamxig)aThe and that have a corresponding laser beam with a length of

optimized (parametric) mapping function that is used as a beadhin  y in the training set. The optimized projection function is
our experiments is overlaid in green. overlayed in green.

World distance (meter)

V. EXPERIMENTS

each having a different effect on (1-dimensional) patterns The experiments presented in this section are designed to
and to construct more complex filters by a combination oévaluate how well the proposed system is able to estimate
the basic masks. In our application domain, we obtained goednge data from single monocular camera images. We docu-
results with the (2-dimensional) directed edge filleyLZ, ment a series of different experiments: First, we evaluage t
which is the outer product of’s and L;. Here, E5 is a accuracy of the estimated range scans using the individual
convolution ofE’3 with Lz and Ls denotes.; convolved with  edge features directly, thBCA-GP, and the Feature-GR
itself. After filtering with this mask, we apply an optimized which constitutes our regression model with the 4 edge-
threshold to yield a binary response. This feature type isased vision features as input dimensions. Then, we itestr
denoted ad aws5in the experimental section. As anotherhow these estimates can be used to build grid maps of the
well-known feature type, we applied tti& L filter, i.e., the environment. We also evaluated, whether applying the GBP
Sobel operator, in conjunction with Canny’s algorithm [2].model [15] as a post-processing step to the predicted range
This filter yields binary responses at the image locationscans can further increase the prediction accuracy. The GBP
with maximal grey-value gradients in gradient directiore W model places a Gaussian process prior on the range function
denote this feature type dasaws3+Cannyin Section V. For (rather than on the function that maps features to distances
both edge detectors,aws5and Laws3+Canny we search and, thus, also models angular dependencies. We denote
along each image column for the first detected edge. Thisese models b¥feature-GP+GBPand PCA-GP+GBP
pixel index then constitutes the feature value. The two data sets used for the experiments have been

To increase the robustness of the edge detectors describedorded using a mobile robot equipped with a laser scanner,
above, we applietightmap dampingas an optional prepro- an omnidirectional camera, and odometry sensors at the
cessing step to the raw images. This means that, in a fir&tS lab at the University of Freiburg (Figure 2 (b)) and
step, a copy of the image is converted to gray scale aral the DFKI lab in Saarliicken (Figure 2 (c)). The two
strongly smoothed with a Gaussian filter, such that evemnvironments have quite different characteristics — dafhgc
pixel represents the brightness of its local environmehis T in the visual aspects. While the environment in Sazcken
is referred to as théghtmap The brightness of the original mainly consists of solid, regular structures and a homoge-
image is then scaled with respect to the lightmap, such thagously colored floor, the lab in Freiburg exhibits many glas
the value component of the color is increased in dark areaganes, an irregular, wooden floor, and challenging lighting
and decreased in bright areas. In the experimental secti@onditions.
this operation is marked by addingLMD to the feature o
descriptions. A. Accuracy of Range Predictions

All parameters involved in the edge detection procedures We evaluated eight different system configurations, each
described above were optimized to yield features that lie @ both test data sets. Table | summarizes the average
close as possible to the laser end points projected onto tRMSE (root mean squared error) obtained for the individual
omnidirectional image using the acquired training set. Facenarios. The error is measured as the deviation of therang
our regression model, we can now construct 4-dimensionptedictions using the visual input from the corresponding
feature vectorsx consisting of the Canny-based feature]aser ranges recorded by the sensor. The first four configura-
the Lawsb-based feature, and both features with additiontbns, referred to as C1 to C4, apply the optimized mapping
preprocessing using lightmap-damping. Since every ofethefunctions for the different edge features (see Figure 4).
individual features captures slightly different aspedtshe Depending on the data, the features provide estimates with
visual input, the combination of all in what we call thean RMSE of between 1.7 m and 3 m. We then evaluated the
Feature-GPyields more accurate predictions than any singleonfigurations C5 and C6 which use the four edge-based
one. features as inputs to a Gaussian process model as described
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Fig. 5. (a) Estimated ranges projected back onto the camerainnsigg the feature detectors directly (small dots) and usiadgreature-GPmodel (red
points). (b) Prediction results and the true laser scan atadrihe test locations. The evolution of the root mean squeareat (RSME) for the individual
images of the Saarbicken (c) and Freiburg (d) data sets.

in Section Il to learn the mapping from the feature vectorghe range scan well. Theeature-GPfuses these unreliable

to the distances. The learning algorithm was able to perforestimates to achieve high accuracy on the whole scan. The
range estimation with an RMSE of around 1 m. Note thatesult of theFeature-GP+GBPvariant for the same situation
we measure the prediction error relative to the recordeat lasis given in Figure 1. The evolution of the RMSE for the
beams rather than to the true geometry of the environmentifferent methods over time is given in Figures 5 (c) and (d).
Thus, we report a conservative error estimate that alsds can be seen from the diagrams, the prediction using
includes errors due to reflected laser beams contained time Feature-GPmodel outperforms the other techniques and
the test set. To give a visual impression of the predictioachieves a near-constant error rate.

accuracy of theFeature-GR we give a typical laser scan

and the mean predictions in diagram (b) of Figure 5. B. Application to Mapping
TABLE | Our approach can be applied to a variety of robotics tasks
AVERAGE ERRORS OBTAINED WITH THE DIFFERENT METHODS such as obstacle avoidance, localization, or mapping. To
illustrate this, we show how to learn a grid map of the envi-
o RMSE on test set ronment from the predictive range distributions. Compared
Configuration Saarbriicken | Freiburg to occupancy grid mapping where one estimates for each cell
C1: Laws5 1.70m 2.87m o . .
C2' Laws5+LMD >.01m 5.08m the probability of being occupied or free, we use the so dalle
C3: Laws3+Canny 1.74m 2.87m reflection probability mapsA cell of such a map models the
C4: Laws3+Canny+LMD| _ 2.06m 2.59m probability that a laser beam passing this cell is reflected
oo Fealure 0P ap Toam s or not. Reflection probability maps, which are learned using
C7: PCA-GP 1.24m 1.40m the so calledounting modelhave the advantage of requiring
C8: PCA-GP+GBP 1.22m 1.41m no hand-tuned sensor model such as occupancy grid maps

(see [1] for further details). The reflection probability; of
a cell i is given bym; = «;/(a; + 5;) whereq; is the
umber of times an observation hits the cell, i.e., ends,in it
ﬁdﬂi is the number of misses, i.e., the number of times a

out ted using the PCA. Th ting 6-di . eam has intercepted a cell without ending in it. Since our
INput computed using the - | N€ resutting d-dimension approach does not estimate a single laser end point, but

I/(?/ithure Vgi;OSrE'S l:csleg astlnpluZto t?ﬁ@%ﬁjsggn ;t)roc;ass MOG&ther a full (normal) distributiop(z) of possible end points,
Ith an orL.cmlo 1l.4m, -routperiorms (E;Ef have to integrate over this distribution. More precisely

As configuration C7, we evaluated tReCA-GPapproach
that does not require engineered features, but rather wor
on the low-dimensional representation of the raw visu

all four engineered features, but is not as accurate as t each grid celk;, we update the cell's reflectance values

Feature-GP For conflgurgtlons Cc6 anq C8, we predicte cording to the predictive distributigr{z) according to the
the ranges per scan using the two different methods a?(ﬁlowing formulas:

additionally applied the GBP model [15] to incorporate

angular dependencies between the predicted beams. This
post-processing step yields slight improvements compared Qi T +/Z€C_p(z) dz ®)
to the original variants C5 and C7. '

Figure 5 (a) depicts an example images showing the B < 5z‘+/z>c p(z)dz . (6)

predictions based on the individual vision features and the
Feature-GP It can be clearly seen from the image, thalNote that for perfectly accurate predications, the extdnde
the different edge-based features model different parts apdate rule is equivalent to the standard formula statedeabo
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Fig. 6. Maps of the Freiburg AIS lab (top row) and DFKI Sa#édken
(bottom row) using real laser data (left) and the predictiohtheFeature-
- (7]
GP (right).
(8]

We applied this extended reflection probability mapperig
to the trajectories and range predictions that resulteth fro
the experiments reported on above. Figure 6 gives the laser
based maps using a standard mapper (left column) and the
extended mapper using the predicted ranges (right column)
for both environments (Freiburg on top and Saacken
below). In both cases, it is possible to build an accurate
map, which is comparable to maps obtained with infrarefi2]
proximity sensors [9] or sonars [23]. [13]

VI. CONCLUSIONS

14

We presented a novel approach for predicting range funE:- :
tions from single images recorded with a monocular camer
Our model is based on a Gaussian process model for regres
sion, utilizing edge-based features extracted from thegena
or, alternatively, using the PCA to find a low-dimensional16!
representation of the visual input in an unsupervised nrann 7]
Both models outperform the optimized individual features.
We showed in experiments with a real robot that the range
predictions are accurate enough to feed them into an extefg,
ded mapping algorithm for predictive range distributions a
that the resulting maps are comparable to maps obtained wi#f!
infrared or sonar sensors.

In future research we would like to evaluate alternative
techniques for dimensionality reduction, especially thosl20]
taking the actual task into account (supervised PCA, LDAp
or others that are directly integrated into the GP framework
Furthermore, we would like to evaluate our approach in other
robotics tasks, such as exploration or place classification )

]

ACKNOWLEDGMENTS
[23]

We would like to thank Kristian Kersting for the fruitful
discussions and Andrzej Pronobis and Jie Luo for creating
the data sets. This work has partly been supported by the EC
under contract numbers FP6-004250-CoSy, FP6-IST-03414@4]
and FP6-1ST-045144, by the DFG under contract number

SFB/TR-8, and by the German Ministry for Education and
Research (BMBF) through the DESIRE project.

REFERENCES

W. Burgard, C. Stachniss, and D. Haehnélutonomous Navigation
in Dynamic Environmentsvolume 35 of STAR Springer tracts in
advanced robotigschapter Mobile Robot Map Learning from Range
Data in Dynamic Environments. Springer Verlag, 2007.

F. Canny. A computational approach to edge detecti&fE Trans.
Pattern Analysis and Machine Intelligengeages 679-714, 1986.

H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G.R.dBka
Self-supervised monocular road detection in desert terriinProc.
of Robotics: Science and Systems (R3606.

E. R. Davies. Laws texture energy in texture. NMachine Vision:
Theory, Algorithms, PracticalitiesAcedemic Press, 1997.

A. Davision, I. Reid, N. Molton, and O. Stasse. MonoslaneaR
time single camera slamEEE Transaction on Pattern Analysis and
Machine Intelligence29(6), 2007.

E. Delage, H. Lee, and A.Y. Ng. Automatic single-image 3dore
structions of indoor manhattan world scenes. Pimceedings of the
12th International Symposium of Robotics Research (ISRB)5.

P. Elinas, R. Sim, and J. J. LittleocSLAM: Stereo vision SLAM
using the rao-blackwellised particle filter and a novel migtproposal
distribution. InProc. of ICRA 2006.

P. Favaro and S. Soatto. A geometric approach to shapededotus.
IEEE Trans. Pattern Anal. Mach. Intell27(3):406—417, 2005.

Y.S. Ha and H.H. Kim. Environmental map building for a mobitdbot
using infrared range-finder sensorAdvanced Roboti¢sl8(4):437—
450, 2004.

F. Han and S.-C. Zhu. Bayesian reconstruction of 3d eband
scenes from a single image. IBEEE Intern. Workshop on Higher-
Level Knowledge in 3D Modeling and Motion Analysis (Hlpg&ge 12,
Washington, DC, USA, 2003.

D. Hoiem, A.A. Efros, and M. Herbert. Recovering surfdagout
from an image.lJCV, 75(1), October 2007.

D. Lowe. Distinctive image features from scale-invati&eypoints.
International Journal of Computer Visioi$0(2):91-110, 2004.

J. Michels, A. Saxena, and A.Y. Ng. High speed obstaglEdance
using monocular vision and reinforcement learning.|OML, pages
593-600, 2005.

H.P. Moravec and A.E. Elfes. High resolution maps frontevangle
sonar. InProc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), pages 116-121, St. Louis, MO, USA, 1985.

C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard. Garsbeam
processes: A nonparametric bayesian measurement model fa¢ rang
finders. InProc. of Robotics: Science and Systems (R3®)7.

C.E. Rasmussen and C. William&aussian Processes for Machine
Learning MIT Press, 2006.

K. Sabe, M. Fukuchi, J.-S. Gutmann, T. Ohashi, K. Kawamatad
T. Yoshigahara. Obstacle avoidance and path planning foranoid
robots using stereo vision. Broc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA) New Orleans, LA, USA, 2004.

A. Saxena, S.H. Chung, and A.Y. Ng. 3-d depth reconttndrom

a single still imagelntern. Journal of Computer Vision (IJCV2007.
R. Sim and J. J. Little. Autonomous vision-based exgloraand
mapping using hybrid maps and Rao-Blackwellised particler§ilt In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots andt&ys
(IROS) pages 2082-2089, 2006.

F. Sinz, J. Quinonero-Candela, G. Bakir, C. RasmussahM Franz.
Learning depth from stereo. @6th DAGM Symposiun2004.

H. Strasdat, C. Stachniss, M. Bennewitz, and W. Burgaxdsual
bearing-only simultaneous localization and mapping with oupd
feature matching. Iifachgespache Autonome Mobile Systeme (AMS)
2007.

G. Swaminathan and S. Grossberg. Laminar cortical meshmemni
for the perception of slanted and curved 3-D surfaces anid fhe
D pictorical projectionsJ. Vis, 2(7):79-79, 11 2002.

S. Thrun, A. Bicken, W. Burgard, D. Fox, T. Bhlinghaus, D. Hennig,
T. Hofmann, M. Krell, and T. Schimdt. Map learning and high-
speed navigation in RHINO. In D. Kortenkamp, R.P. Bonasso,
and R. Murphy, editorsAl-based Mobile Robots: Case studies of
successful robot system®IT Press, Cambridge, MA, 1998.

A. Torralba and A. Oliva. Depth estimation from image sture.
IEEE Transactions on Pattern Analysis and Machine Learn2@D2.



