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Abstract— Mobile robots rely on the ability to sense the geo-
metry of their local environment in order to avoid obstacles or
to explore the surroundings. For this task, dedicated proximity
sensors such as laser range finders or sonars are typically
employed. Cameras are a cheap and lightweight alternative to
such sensors, but do not directly offer proximity information.
In this paper, we present a novel approach to learning the
relationship between range measurements and visual features
extracted from a single monocular camera image. As the
learning engine, we apply Gaussian processes, a non-parametric
learning technique that not only yields the most likely range
prediction corresponding to a certain visual input but also
the predictive uncertainty. This information, in turn, can be
utilized in an extended grid-based mapping scheme to more
accurately update the map. In practical experiments carried
out in different environments with a mobile robot equipped
with an omnidirectional camera system, we demonstrate that
our system is able to produce proximity estimates with an
accuracy comparable to that of dedicated sensors such as sonars
or infrared range finders.

I. I NTRODUCTION

Cameras have become popular sensors in the robotics
community. Compared to proximity sensors such as laser
range finders, they have the advantage of being cheap,
lightweight, and energy efficient. The drawback of cameras,
however, is the fact that due to the projective nature of the
image formation process, it is not possible to sense depth
information directly. From a geometric point of view, one
needs at least two images taken from different locations
to recover the depth information analytically. An alternative
approach, that requires just one monocular camera and that
we follow in this work, is to learn from previous experience
how visual appearance is related to depth. Such an ability
is also highly developed in humans who are able to utilize
monocular cues for depth perception [22].

As a motivating example, consider Figure 1, which depicts
the (warped) image of an office environment. Overlayed
in white, we visualize the most likely area of free space
that is predicted by our approach. We explicitly do not
try to estimate a depth map for the whole image, as for
example Saxanaet al. [18]. Rather, we aim at learning the
function that, given an image, maps measurement directions
to their corresponding distances to the closest obstacles.We
believe that such a function can be utilized to solve various
tasks of mobile robots including local obstacle avoidance,
localization, mapping, exploration, or place classification.
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Fig. 1. Our approach estimates proximity information from a single image
after having learned how visual appearance is related to depth.

In this paper, we formulate the range estimation task as
a supervised regression problem, in which the training set
is build by acquiring images of the environment as well
as proximity data provided by a laser range finder. We
discuss how appropriate visual features can be extracted
from the images using algorithms for edge detection and
dimensionality reduction. We apply Gaussian processes as
the learning framework in our proposed system, since this
technique is able to model non-linear functions, offers a
direct way of estimating uncertainties for its predictions, and
it has proven successful in previous work involving range
functions [15].

The paper is organized as follows. After discussing related
work, we formalize our problem and introduce the proposed
learning framework in Section III. In Section IV we then
discuss appropriate visual features and how they can be
extracted from images. Section V presents the experimental
evaluation of our algorithm as well as an application to the
mapping problem. Finally, we conclude in Section VI and
give an outlook to future research.

II. RELATED WORK

The problem of recovering geometric properties of a
scene from visual measurements is one of the fundamental
problems in computer vision and is also frequently addressed
in the robotics literature. Stereo camera systems are widely
used to estimate the missing depth information that single
cameras cannot provide directly. Stereo systems either requi-
re a careful calibration to analytically calculate depth using
geometric constraints or, as Sinzet al. [20] demonstrated,



can be used in combination with non-linear, supervised
learning approaches to recover depth information. Often, sets
of features such as SIFT [12] are extracted from two images
and matched against each other. Then, the feature pairs are
used to constrain the poses of the two camera locations
and/or the point in the scene that corresponds to the image
feature. In this spirit, the motion of the camera is considered
by [5], [21]. Sim and Little [19] present a stereo-vision based
approach to the SLAM problem, which also includes the
recovery of depth information. Their approach contains both
the matching of discrete landmarks as well as dense grid
mapping using vision cues.

An active way of sensing depth using a single monocular
camera is known asdepth from defocus[8] or depth from
blur. Corresponding approaches typically adjust the focal
length of the camera and analyze the resulting local changes
in image sharpness. Torralba and Oliva [24] present an
approach for estimating the mean depth of full scenes from
single images using spectral signatures. While their approach
is likely to improve a large number of recognition algorithms
by providing a rough scale estimate, the spatial resolutionof
their depth estimates does not appear to be sufficient for the
problem studied in this paper. Dahlkampet al. [3] learn a
mapping from visual input to road traversability in a self-
supervised manner.

The problem dealt with in this paper, is closely related
to the work of Saxenaet al. [18], who utilize Markov
random fields (MRFs) for reconstructing dense depth maps
from single monocular images. An alternative approach that
predicts 2D range scans based using reinforcement learning
techniques has been presented by Michels et al. [13]. Com-
pared to these methods, our Gaussian process formulation
provides the predictive uncertainties for the depth estimates
directly, which is not straightforward to achieve in an MRF
model. Hoiemet al. developed an approach to monocular
scene reconstruction based on local features combined with
global reasoning [11]. Whereas Han and Zhu presented a
Bayesian method for reconstructing the 3D geometry of wire-
like objects in simple scenes [10], Delageet al. introduced
an MRF model on orthogonal plane segments to recover the
3D structure of indoor scenes [6].

As mentioned above, one potential application of the
approach described in this paper is to learn occupancy grid
maps. This type of maps and an algorithm to update such
maps based on ultrasound data has been introduced by
Moravec and Elfes [14]. In the past, different approaches
to learn occupancy grid maps from stereo vision have been
proposed [23], [17]. If the positions of the robot are unknown
during the mapping process, the entire task turns into the
so-called simultaneous localization and mapping (SLAM)
problem. Vision-based techniques have been proposed by
Elinaset al. [7] and Davisonet al. [5] to solve this problem.
In contrast to the mapping approach presented in this paper,
these techniques mostly focus on landmark-based represen-
tations.

III. L EARNING DEPTH FROMMONOCULAR V ISION

FEATURES

The goal of this work is to learn the relationship between
visual input and the extent of free space around the robot. By
using a regular range sensors, it is comparably easy to acqui-
re training data for this task, so that we can formulate the pro-
blem as a supervised learning problem. Figure 2 (a) depicts
the configuration of our robot used for data acquisition. An
omnidirectional camera system (catadioptric with a parabolic
mirror) is mounted on top of a SICK laser range finder. This
setup allows the robot to perceive the full surrounding area
at every time step as the two example images in Figure 2 (b)
and (c) illustrate. The omnidirectional images can be mapped
directly to the laser scans, since both measurements can be
represented in a common, polar coordinate system. Note that
our approach is not restricted to omnidirectional cameras
in principle. However, the correspondence between range
measurements and omnidirectional images is a more direct
one and the field of view is considerably larger compared to
standard perspective optics.

A. A Gaussian Process Model for Range Functions

We extract for every viewing directionα a vector of
visual featuresx from the images and phrase the problem as
learning the range functionf(x) = y that maps the visual
input x to distancesy. We learn this function in a supervised
manner using a training setD = {xi, yi}

n
i=1

of observed
featuresxi and corresponding laser range measurementsyi.
If we place a Gaussian process (GP) prior [16] on the non-
linear functionf , i.e., we assume that all range samplesy
indexed by their corresponding feature vectorsx are jointly
Gaussian distributed, we obtain

f(x∗) ∼ N (µ, σ) (1)

with

µ = k
∗T

(K + σ2

nI)−1y (2)

σ = k(x∗,x∗)− k
∗T

(K + σ2

nI)−1k
∗ (3)

as the predictive distribution for the range function at new
query pointsx∗. Here, K denotes then × n-dimensional
covariance matrix constructed asKij = k(xi,xj) using a
covariance functionk, which is parameterized by a set of
hyper-parametersθ. The termy denotes the vector of given
target values from the training set,k

∗ stands for the vector of
covariances between the new query pointx∗ and the training
points withk

∗

i = k(x∗,xi). Finallyσn denotes a global noise
parameter. In this work, we apply the often-used squared
exponential covariance function

k(xp,xq) = σ2

f · exp

(

−
1

2ℓ2
|xp − xq|

)

, (4)

which depends on the Euclidian distance between points
xp and xq as well as on the amplitude parameterσ2

f and
the length-scaleℓ. These parameters as well as the noise
parameterσn in Eq. (2) and (3) can be learned from data.
Starting from an initial guess, we apply conjugate gradient-
based optimization to find the values for{ℓ, σ2

f , σ2

n} that



(a) (b) (c)

Fig. 2. The left diagram depicts our experimental setup: the training set was recorded using a mobile robot equipped with anomnidirectional camera
(monocular camera with a parabolic mirror) as well as a laser range finder. The next two images illustrate two typical omnidirectional images recorded at
the University of Freiburg (b) and at the DFKI in Saarbruecken (c).

minimize the negative log marginal likelihood of the GP
model.

A particularly useful property of Gaussian processes for
our application is the availability of the predictive uncertainty
(see Eq. (3)) at every query point. This means, that visual
featuresx∗, which lie close to pointsx of the training set
result in more confident predictions than features, which fall
into a less densely sampled region of feature space.

IV. FEATURES IN OMNIDIRECTIONAL IMAGES

The part of an omnidirectional image which is most
strongly correlated with the distance to the nearest obstacle in
a certain directionα is the strip of pixels oriented in the same
direction and going from the center of the image to its marg-
ins. With the type of camera used in our experiments, such
strips have a dimensionality of 420 (140 pixels, each having
a hue, saturation, and avaluecomponent). In order to make
these strips easier accessible to filter operators, we warp the
omnidirectional images (e.g., see Figure 2 (b) and (c)) into
panoramic views (e.g., see Figure 5 (a)), such that angles in
the polar representation now correspond to column indices in
the panoramic one. This transformation allows us to replace
complicated image operations in the polar domain by easier
and more robust ones. In the following, we describe several
ways of extracting useful low-dimensional feature vectorsx

from the 420-dimensional image columns, which can then
be directly used to index the training and test targets in the
GP framework.

1) Unsupervised Dimensionality Reduction:As a classic
way of reducing the complexity of a data set, we applied
the principle component analysis (PCA) to the raw 420-
dimensional pixel vectors that are contained in the columns
of the panoramic images. The PCA is implemented using
eigenvalue decomposition of the covariance matrix of the
training vectors. It yields a linear transformation which
brings the input vectors into a new basis such that their
dimensions are now ordered by the amount of data-set
variance they carry. In this way, we can truncate the vectors
to a few components without losing a large amount of
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Fig. 3. The amount of variance explained by the the first principle
components (eigenvectors) of the pixel columns in the two datasets.

information. The diagram in Figure 3 depicts the relative
amount of variance that is explained for two different data
sets when truncating the transformed data vectors after a
certain number of components. In the experiments reported
below, we trained the PCA on 600 input images and retained
the first six principle components. Our experiments revealed
that thevaluechannel of the visual input is more important
thanhueandsaturationfor our task. The GP model learned
with these 6-dimensional features is termedPCA-GP in the
experimental section.

2) Edge-based Features:The PCA is an unsupervised
method that does not take into account prior information
that might be available about the task to be solved – in this
case, the fact that distances to the closest obstacles are tobe
predicted. Driven by the observation that, especially in indoor
environments, there is a strong correlation between the extent
of free space and the presence of horizontal edge features in
the panoramic image, we also assessed the potential of edge-
type features in our approach.

Laws’ convolution masks [4] provide an easy way of
constructing local feature extractors for discretized signals.
The idea is to define three basic convolution masks

• L3 = (1, 2, 1)T (Weighted Sum: Averaging),
• E3 = (−1, 0, 1)T (First difference: Edges),
• S3 = (−1, 2,−1)T (Second difference: Spots),



Fig. 4. Feature histogram forLaws5+LMD edge features. Each cell
in the histogram is indexed by the pixel location of the edge feature
(x-axis) and the length of the corresponding laser beam (y-axis). The
optimized (parametric) mapping function that is used as a benchmark in
our experiments is overlaid in green.

each having a different effect on (1-dimensional) patterns,
and to construct more complex filters by a combination of
the basic masks. In our application domain, we obtained good
results with the (2-dimensional) directed edge filterE5L

T
5

,
which is the outer product ofE5 and L5. Here, E5 is a
convolution ofE3 with L3 andL5 denotesL3 convolved with
itself. After filtering with this mask, we apply an optimized
threshold to yield a binary response. This feature type is
denoted asLaws5 in the experimental section. As another
well-known feature type, we applied theE3L

T
3

filter, i.e., the
Sobel operator, in conjunction with Canny’s algorithm [2].
This filter yields binary responses at the image locations
with maximal grey-value gradients in gradient direction. We
denote this feature type asLaws3+Cannyin Section V. For
both edge detectors,Laws5 and Laws3+Canny, we search
along each image column for the first detected edge. This
pixel index then constitutes the feature value.

To increase the robustness of the edge detectors described
above, we appliedlightmap dampingas an optional prepro-
cessing step to the raw images. This means that, in a first
step, a copy of the image is converted to gray scale and
strongly smoothed with a Gaussian filter, such that every
pixel represents the brightness of its local environment. This
is referred to as thelightmap. The brightness of the original
image is then scaled with respect to the lightmap, such that
the valuecomponent of the color is increased in dark areas
and decreased in bright areas. In the experimental section,
this operation is marked by adding+LMD to the feature
descriptions.

All parameters involved in the edge detection procedures
described above were optimized to yield features that lie as
close as possible to the laser end points projected onto the
omnidirectional image using the acquired training set. For
our regression model, we can now construct 4-dimensional
feature vectorsx consisting of the Canny-based feature,
the Laws5-based feature, and both features with additional
preprocessing using lightmap-damping. Since every of these
individual features captures slightly different aspects of the
visual input, the combination of all in what we call the
Feature-GPyields more accurate predictions than any single
one.

As a benchmark for predicting range information from
edge features, we also evaluated the individual features
directly. For doing so, we fitted a parametric function to trai-
ning samples of feature-range pairs. This mapping function
computes for each pixel location of an edge feature the length
of the corresponding laser beam. The diagram in Figure 4
depicts the feature histogram for theLaws5+LMD features
from one of our test runs that was used for the optimization.
The color of a cell(x, y) in this diagram encodes the relative
amount of features that were extracted at the pixel location
x (measured from the center of the omnidirectional image)
and that have a corresponding laser beam with a length of
y in the training set. The optimized projection function is
overlayed in green.

V. EXPERIMENTS

The experiments presented in this section are designed to
evaluate how well the proposed system is able to estimate
range data from single monocular camera images. We docu-
ment a series of different experiments: First, we evaluate the
accuracy of the estimated range scans using the individual
edge features directly, thePCA-GP, and theFeature-GP,
which constitutes our regression model with the 4 edge-
based vision features as input dimensions. Then, we illustrate
how these estimates can be used to build grid maps of the
environment. We also evaluated, whether applying the GBP
model [15] as a post-processing step to the predicted range
scans can further increase the prediction accuracy. The GBP
model places a Gaussian process prior on the range function
(rather than on the function that maps features to distances)
and, thus, also models angular dependencies. We denote
these models byFeature-GP+GBPandPCA-GP+GBP.

The two data sets used for the experiments have been
recorded using a mobile robot equipped with a laser scanner,
an omnidirectional camera, and odometry sensors at the
AIS lab at the University of Freiburg (Figure 2 (b)) and
at the DFKI lab in Saarbrücken (Figure 2 (c)). The two
environments have quite different characteristics – especially
in the visual aspects. While the environment in Saarbrücken
mainly consists of solid, regular structures and a homoge-
neously colored floor, the lab in Freiburg exhibits many glass
panes, an irregular, wooden floor, and challenging lighting
conditions.

A. Accuracy of Range Predictions

We evaluated eight different system configurations, each
on both test data sets. Table I summarizes the average
RMSE (root mean squared error) obtained for the individual
scenarios. The error is measured as the deviation of the range
predictions using the visual input from the corresponding
laser ranges recorded by the sensor. The first four configura-
tions, referred to as C1 to C4, apply the optimized mapping
functions for the different edge features (see Figure 4).
Depending on the data, the features provide estimates with
an RMSE of between 1.7 m and 3 m. We then evaluated the
configurations C5 and C6 which use the four edge-based
features as inputs to a Gaussian process model as described
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Fig. 5. (a) Estimated ranges projected back onto the camera image using the feature detectors directly (small dots) and usingthe Feature-GPmodel (red
points). (b) Prediction results and the true laser scan at one of the test locations. The evolution of the root mean squarederror (RSME) for the individual
images of the Saarbrücken (c) and Freiburg (d) data sets.

in Section III to learn the mapping from the feature vectors
to the distances. The learning algorithm was able to perform
range estimation with an RMSE of around 1 m. Note that
we measure the prediction error relative to the recorded laser
beams rather than to the true geometry of the environment.
Thus, we report a conservative error estimate that also
includes errors due to reflected laser beams contained in
the test set. To give a visual impression of the prediction
accuracy of theFeature-GP, we give a typical laser scan
and the mean predictions in diagram (b) of Figure 5.

TABLE I

AVERAGE ERRORS OBTAINED WITH THE DIFFERENT METHODS

RMSE on test set
Configuration Saarbrücken Freiburg
C1: Laws5 1.70m 2.87m
C2: Laws5+LMD 2.01m 2.08m
C3: Laws3+Canny 1.74m 2.87m
C4: Laws3+Canny+LMD 2.06m 2.59m
C5: Feature-GP 1.04m 1.04m
C6: Feature-GP+GBP 1.03m 0.94m
C7: PCA-GP 1.24m 1.40m
C8: PCA-GP+GBP 1.22m 1.41m

As configuration C7, we evaluated thePCA-GPapproach
that does not require engineered features, but rather works
on the low-dimensional representation of the raw visual
input computed using the PCA. The resulting 6-dimensional
feature vector is used as input to the Gaussian process model.
With an RMSE of 1.2 m to 1.4 m, thePCA-GPoutperforms
all four engineered features, but is not as accurate as the
Feature-GP. For configurations C6 and C8, we predicted
the ranges per scan using the two different methods and
additionally applied the GBP model [15] to incorporate
angular dependencies between the predicted beams. This
post-processing step yields slight improvements compared
to the original variants C5 and C7.

Figure 5 (a) depicts an example images showing the
predictions based on the individual vision features and the
Feature-GP. It can be clearly seen from the image, that
the different edge-based features model different parts of

the range scan well. TheFeature-GPfuses these unreliable
estimates to achieve high accuracy on the whole scan. The
result of theFeature-GP+GBPvariant for the same situation
is given in Figure 1. The evolution of the RMSE for the
different methods over time is given in Figures 5 (c) and (d).
As can be seen from the diagrams, the prediction using
the Feature-GPmodel outperforms the other techniques and
achieves a near-constant error rate.

B. Application to Mapping

Our approach can be applied to a variety of robotics tasks
such as obstacle avoidance, localization, or mapping. To
illustrate this, we show how to learn a grid map of the envi-
ronment from the predictive range distributions. Compared
to occupancy grid mapping where one estimates for each cell
the probability of being occupied or free, we use the so called
reflection probability maps. A cell of such a map models the
probability that a laser beam passing this cell is reflected
or not. Reflection probability maps, which are learned using
the so calledcounting model, have the advantage of requiring
no hand-tuned sensor model such as occupancy grid maps
(see [1] for further details). The reflection probabilitymi of
a cell i is given by mi = αi/(αi + βi) where αi is the
number of times an observation hits the cell, i.e., ends in it,
andβi is the number of misses, i.e., the number of times a
beam has intercepted a cell without ending in it. Since our
GP approach does not estimate a single laser end point, but
rather a full (normal) distributionp(z) of possible end points,
we have to integrate over this distribution. More precisely,
for each grid cellci, we update the cell’s reflectance values
according to the predictive distributionp(z) according to the
following formulas:

αi ← αi +

∫

z∈ci

p(z) dz (5)

βj ← βi +

∫

z>ci

p(z) dz . (6)

Note that for perfectly accurate predications, the extended
update rule is equivalent to the standard formula stated above.



Fig. 6. Maps of the Freiburg AIS lab (top row) and DFKI Saarbrücken
(bottom row) using real laser data (left) and the predictions of theFeature-
GP (right).

We applied this extended reflection probability mapper
to the trajectories and range predictions that resulted from
the experiments reported on above. Figure 6 gives the laser-
based maps using a standard mapper (left column) and the
extended mapper using the predicted ranges (right column)
for both environments (Freiburg on top and Saarbrücken
below). In both cases, it is possible to build an accurate
map, which is comparable to maps obtained with infrared
proximity sensors [9] or sonars [23].

VI. CONCLUSIONS

We presented a novel approach for predicting range func-
tions from single images recorded with a monocular camera.
Our model is based on a Gaussian process model for regres-
sion, utilizing edge-based features extracted from the image
or, alternatively, using the PCA to find a low-dimensional
representation of the visual input in an unsupervised manner.
Both models outperform the optimized individual features.
We showed in experiments with a real robot that the range
predictions are accurate enough to feed them into an exten-
ded mapping algorithm for predictive range distributions and
that the resulting maps are comparable to maps obtained with
infrared or sonar sensors.

In future research we would like to evaluate alternative
techniques for dimensionality reduction, especially those
taking the actual task into account (supervised PCA, LDA)
or others that are directly integrated into the GP framework.
Furthermore, we would like to evaluate our approach in other
robotics tasks, such as exploration or place classification.
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