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Abstract— Truly versatile robots operating in the real world ‘ leil /(hqun)

have to be able to learn about objects and their properties
autonomously, that is, without being provided with carefuly
engineered training data. This paper presents an approachhiat
allows a robot to discover object classes in three-dimensial
range data in an unsupervised fashion and without a-priori
knowledge about the observed objects. Our approach buildsro
Latent Dirichlet Allocation (LDA), a recently proposed prob-
abilistic method for discovering topics in text documents.We
discuss feature extraction, hypothesis generation, and aistical
modeling of objects in 3D range data as well as the novel
application of LDA to this domain. Our approach has been Fig. 1: Example of a scene observed with a laser range scanner
implemented and evaluated on real data of complex objects. mounted on a pan-tilt unit. Points with the same color redemb
Practical experiments demonstrate, that our approach is ale oObjects belonging to the same class (best viewed in color).

to learn object class models autonomously that are consiste

with the true classifications provided by a human. It furthermore  a significant amount of training data becomes infeasiblé wit
outperforms unsupervised method such as hierarchical cluering  jncreasing model complexity and larger sets of objects to
that operate on a distance metric. identify. Furthermore, in applications where the objeds t
distinguish are not known beforehand, a robot needs to build
) ) o its own model, which can then be used to classify the data.
Home environments, which are envisioned as one of the-l-he contribution of this paper is a novel approach for

key_ apphca_tlon areas for service r(.)bots, t_yp|cally cgmta| discovering object classes from range data in an unsupervis
variety of different objects. The ability to distinguish jebts fashion and for classifying observed objects in new scans
based on observations and to relate them to known Classe%é)éording to these classes. Thereby, the robot has no a-
objects therefore is important for autonomous service 'mbopriori knowledge about the objects it observes. Our approac
The identification of objects and their classes based orosens . otes on a 3D point cloud recorded with a laser range
data is a hard problem due to the varying appearances of fhe oo \we apply Latent Dirichlet Allocation (LDA?], a
objects belonging to specific classe_s. In this paper, weigens method that has recently been introduced to seek for topics i
a robot thz_it can observe a scene with a 3D laser range SCanfIgt documentg9]. The approach models a distribution over
The goal is to perform feature distributions that characterize the classes ofatdj

« unsupervised learning of a model for object classes, Compared to most popular unsupervised clustering methods

« consistent classification of the observed objects, and such ak-means or hierarchical clustering, no explicit distance

« correct classification of unseen objects belonging to ofgetric is required. To describe the characteristics ofames

of the known object classes. belonging to objects, we utilize spin-images as local fiestu

Figure 1 depicts a typical point cloud of a scene consideredthat serve as input to the LDA. We show in practical experi-
this paper. It contains four people, a box, and a ballooa-liknents on real data that a mobile robot following our approach
object. The individual colors of the 3D data points illugtra is able to identify similar objects in different scenes wehdit
the corresponding object classes that we want our algoritiihe same time labeling dissimilar objects differently.
to infer.

An important distinction between different approaches to Il. RELATED WORK
object detection and recognition is the way the objects or

I deled. Model b d d The problem of classifying objects and their classes in 3D
classes are modeled. VIodels can be engineerec manu?ﬁ%’ge data has been studied intensively in the past. Several
learned from a set of labeled training data (superviseciea

. X a5 uthors introduced features for 3D range data. One popular
ing) or learned from unlabeled data (unsupervised Iea)nlngree_form surface descriptor are spin-images, which haenb

Whil_e the _former two_categories haV(_e the advantz_age t plied successfully to object recognition probleft8; 12;
detailed prior knowledge about the objects can be mcludﬁ - 19, In this paper, we propose a variant of spin-images

easily, the effort for manually building the model or |abgi that—instead of storing point distributions of the surface

F. Endres, C. Stachniss, and W. Burgard are with the Uniyeo$iFreiburg, Sto_res the angles b?tween the surfacg normals O.f points,
Germany. C. Plagemann is with Stanford University, CA, USA. which we found to yield better results in our experiments.
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An alternative shape descriptor has been introduceftl Bl

It relies on symbolic labels that are assigned to regiong Th

symbolic values, however, have to be learned from a labeled

training set beforehand. Stein and Medif®] present a point * y y
descriptor that, similar to our approach, also relies offiaser \( '

orientations. However, it focuses on the surface normals in l
a specific distance to the described point and models theig. 2: Variant of spin-images used to compute a surface signature:
change with respect to the angle in the tangent plane of fihe 3D object structure (yellow circle) is rotated around Hurface

; i ; : rmal of a query point (large red point) and a grid model aagu
query point. Additional 3D shape descriptors are descrlb?a@es the average angular distances between the surfatalnatthe

in [5] and][6]. ) uery point and those of the points falling into the grid s€émall
A large amount of work has focused on supervised &ged points).

gorithms that are trained to distinguish objects or object
classes based on a labeled set of training data. For examg@aglated to ours, to the best of our knowledge the algorithm
Anguelov et al. [1] and Triebelet al. [20] use supervised described in this paper is the first to apply LDA on laser range
learning to classify objects and associative Markov neltwton  data and which addresses the specific requirements of this
improve the results of the clustering by explicitly considg domain.
relations between the class predictions. In a different@gogh,
Triebel et al. [21] use spin-images as surface descriptoulél'
and combine nearest neighbor classification with assweiati As most approaches to object detection, identification, and
Markov networks to overcome limitations of the individuatlustering, we operate on local features computed from the
methods. Another approach using probabilistic technigures input data. Our primary focus lies on the descriptiorsbape
histogram matching has been presented by Hetrzel. [10]. as this is the predominant feature captured in 3D range data.
It requires a complete model of the object to be recognizedpwever, real-world objects belonging to the same classodo n
which is an assumption typically not fulfilled when working o necessarily have the same shape and vice versa. Humans, for
3D scans recorded with a laser range finder. Rulatke.[17]  example, have a significant variability in shape. To deahwit
proposed an approach to reconstructing full 3D models tifis problem, we model classes of objects as distributidns o
objects by registering several partial views. The work efes local shape features.
on range images from which small patches are selected baselh the next sections, we first describe our local feature used
on a region of interest detector. to represent the characteristics of surfaces and after than
In addition to the methods that operate on 3D data, mueldress the unsupervised learning problem to estimate the
research has also focused on image data as input. A comnd@tiributions over local features.
approach to locate objects in images is the sliding window . .
method[4; 7]. Lampertet al.[16] proposed a new framework”- Reépresentation and Data Pre-processing
that allows to efficiently find the optimal bounding box witito  Throughout this work, we assume our input data to be a
applying the classification algorithm explicitly to all milsle point cloud of 3D points. Such a point cloud can be obtained
boxes. Another prominent supervised detector is the fasith a 2D laser range finder mounted on a pan-tilt unit, a
detector presented by Viola and Joi2g]. It computes Haar- standard setting in robotics to acquire 3D range data. An
like features and applies AdaBoost to learn a classifier.  example point cloud recorded with this setup is shown in the
In the domain of unsupervised classification of text doenotivating example in Figure 1 on the first page of this paper.
uments, several models that greatly surpass mere countinds in nearly all real world settings, the acquired data is
of words have been proposed. These include probabilistiffected by noise and it is incomplete due to perspective
latent semantic indexing (PLSI)11] and Latent Dirichlet occlusions. The segmentation of range scans into a set of
Allocation [2], which both use the co-occurrence of wordsbjects and background structure is not the key focus of
in a probabilistic framework to group words into topics. Inhis work. We therefore assume a ground plane as well as
the past, LDA has also been applied successfully to imagells that can be easily extracted and assume the objects to
data. In contrast to text documen, images often contain be spatially disconnected. This allows us to apply a spatial
data of many different categories. Wang and Grim§@8l, clustering algorithm to create segments containing onlg on
therefore, first perform a segmentation before applying LDAbject.
Bosch et al. [3] used PLSI for unsupervised discovery of i
object distributions in image data. As shown [é], LDA B- Local Shape Descriptors
supersedes PLSI and it has been argued that the latter caRor characterizing the local shape of an object at a query
be seen as a special case of LDA, using a uniform prior apdint, we propose to use a novel variant of spin-imade.
maximum a posteriori estimation for topic selection. Feted Spin-images can be seen as small raster images that aredlign
Schiele[7] propose the sliding window approach on a grid afo a point such that the upwards pointing vector of the raster
edge orientations to evaluate topic probabilities on sishsk image is the surface normal of the point. The image is then
the whole image. While the general approach of these papeirsually rotated around the surface normal, “collectiriye
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neighboring points it intersects. To account for the défezes
in data density caused by the distance between sensor
object, the spin-images are normalized. .
To actually compute a normal for each data point, w#
compute a PCA using all neighboring points in a local regio
of 10cm. Then, the direction of the eigenvector correspopdi *.
to the smallest eigenvalue provides a comparably stable t -
smoothed estimate of the surface normal.
We have developed a variant of spin-images that does r

count the points colleﬁted by the plxlels of the raiter ®AJ o 3: Three Dirichlet distributions. On the left for the paranete

Instead, we compute the average angle between the normal Qo 4 — {2,2,2}, in the middle fora — {3,6,3} and on the right

the query point for which the spin-image is created and thér a = {0.1,0.1,0.1}.

normals of all collected points. See Figure 2 for an illustra

The average between the normals is then discretized torobtiai uniform. One can think ofa; — 1) for o € N>0 as the

a discrete feature space, as required in the LDA approach. mgnber of observations of the statd he Dirichlet distribution

we will show in our experiments, this variant of spin-imagesan be calculated as

provides better results, since they contain more inforomati K .\ K

about the shape of the object. f(x) = r(Zi:lal) |—| Qi*j-’ )
i
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IV. PROBABILISTIC TOPICMODELS FOROBJECTSHAPE

After segmenting the scene into a finite set of scan segments
and transforming the raw 3D input data to the discrete featuwherel (-) is the Gamma function and where the elements of
space, the task is to group similar segments to classes angave to be positive and sum up to one.
to learn a model for these classes. Moreover, we aim atConsider the following example: let there be three object
solving the clustering and modeling problems simultanBouslasses “human”, “box”, and “chair” with a Dirichlet prior
to achieve a better overall model. Inspired by previous vaork parameterized byr = {2,2,2}. This prior assigns the same
topic modeling in text documents, we build on Latent Direthl probability to all classes and hence results irsyanmetric
Allocation for the unsupervised discovery of object class@®irichlet distribution. A 3D Dirichlet distributiorDir (a) can
from feature statistics. be visualized by projecting the the manifold whére; =1 to

Following this model, a multinomial distribution is usedhe 2D plane, as depicted in the left plot of Figure 3. Here the
to model the distribution of discrete features in an objethird variable is given implicitly byaz = 1— a1 — a,. Every
class. Analogously, another multinomial distribution ised corner of the depicted triangle represents the distribstio
to model the mixture of object classes which contribute towehere only the respective class occurs and the center point
scan segment. In other words, we assume a generative modgdresents the uniform distribution over all classes. Now
in which (i) segments generate mixtures of classes and @Jnsider an observation of one human, four boxes, and a chair
classes generate distributions of features. By adding the observation counts to the elements pthe

Starting from a prior distribution about these latent (i.eposterior distribution becomesir ({5,8,5}) which is shown
hidden) mixtures, we update our belief according to tha the middle plotin Figure 3. The same result would of course
observed features. To do this efficiently, we express our prioccur when calculating the posterior using Eq. (1).
P(6) as a distribution that is conjugate to the observation However choosing the values af, larger than 1 favors
likelihood P(y | 8). P(8) being a conjugate distribution todistributions that represent mixtures of classes, i.e. xpeet

P(y| ) means that the classes to occur together. To express a prior belief that
P(y| 8)P(8) either one or the other dominates we need to choose values
POy = (1) smaller than 1 for allrj. The shape of the distribution then

JPly| &)P(8) d® changes in a way that it has a “valley” in the middle of the
is in the same family aB(0) itself. For multinomial distribu- simplex and peaks at the corners. This is depicted in the righ
tions, the conjugate prior is the Dirichlet distributionhieh plot in Figure 3. In our setting, where a Dirichlet distrilmut
we explain in the following. is used to model the distribution of object classes, suchiax pr
. . would correspond to the proposition that objects are tylyica
A. The Dirichlet Distribution assigned to one (or only a few) classes.

The Dirichlet distribution is a distribution over multivate The calculation of thexpected probability distributionver
probability distributions, i.e., a distribution assiggia prob- the states and can be performed easily basedaorThe
ability density to every possible multivariate distritarti For - expected probability fox; is given by
the multinomial variablex = {x1,...,xc} with K exclusive
statesx;, the Dirichlet distribution is parameterized by a vector E[x] = ai (3)

a={ai,...,ak}. If ay =1 for alli, the Dirichlet distribution Si Qi




B. Latent Dirichlet Allocation Unfortunately, the partition functioP(w) is not known and

Latent Dirichlet allocation is a fully generative probagic cannot be computed directly because it involve terms,
model for semantic clustering of discrete data, which wdéhere T is the number of topics andl is the number of

developed by Bleét al. [2]. In LDA, the input data is assumed €aturé occurrences.

to be organized in a number of discrete data sets—thesd' COMMON approach to approximate a probability distri-

correspond to scan segments in our application. The scffion. for which the partition functiorP(w) is unknown,

segments contain a set of discretized features (a spin imigdvarkov chain Monte Carlo (MCMC) sampling. MCMC
for every 3D point). Obviously, a feature can have multipl@PProximates the target distributioh(z | w) by randomly
occurrencessince different 3D data points might have thditializing the states of the variables—here the topidgrss
same spin image. Often, the full set of data (from multip/@€Nts. Subsequently, it samples new states using a Monte
scans) is referred to as “corpus”. A key feature of LDA is thdgarlo transition functlon I(_aadl_ng to the target dlstrlpm_

it does not require a distance metric between features as mpaerefore, the target distribution has to be the equiliriu
approaches to unsupervised clustering do. Instead, LDA u&istribution of the transition function. The transitionnfttion

the co-occurrence of features in scan segments to assign tfRPeYs the Markov property, i.e., it is independent of altesta
probabilistically to classes—calledpicsin this context. but the last. In our approach, we use Gibbs sampling as the

Being a generative probabilistic model, the basic assmnptitranSition function where the new state (the topic assigrijne

made in LDA is that the scan segments are generated by rifi-€ach feature occurrence is sampled successively.

dom processes. Each random process represents an indlividu§/PPS Sampling requiresroposal distributiorto generate
topic. In this work, we distinguish topics using the indeand new states. Therefore, the next section describes how &nobt

scan segments are indexed dhyA random process generate@n @Ppropriate proposal distribution for our problem.

the features in the segments by sampling them from its o

specific discrete probability distributiap!) over the features. o .
A segment can be created by one or more topics, each topi(:,rhe proposal probability distribution over the possiblgito

having associated a distinct probability distribution 0tlee assignments of a feature occurrence is calculated condiio
features. on the current assignments of the other feature occurrences

To represent the mixture of topics in a segmehta A new topic assignment is then sampled from this proposal

multinomial distribution 8@ is used. For each feature indistribution.

the segment, the generating topic is selected by samplind©" estimatingP(z | w), we successively sample from the
from 8@, The topic mixture8@ itself is drawn from a distribution in the numerator on the right hand side of Eq. (4

Dirichlet distribution once for every segment in the corpudh® topic assignmery for each feature occurrencg given
The Dirichlet distribution represents the prior belief abo the topics of all other features. The distribution over igids

the topic mixtures that occur in the corpus, i.e., whether tfor Samplingz is given by

‘W Computing the Proposal Distribution for Gibbs Sampling

segments are generated by single topics or from a mixture of likelihood ofw prior of z

many topics. We express the prior belief with respect to the - T

topic distribution using the Dirichlet parameter vector Pz=j|ziw)= PT(W'|Z' — J’Zf'_’WH)P(Z' —Jiz-i) . (5)
Griffiths and Steyverd9] extended LDA by additionally 3 j=1PWi|z = j,z-i,w-i)P(z|z-i)

specifying a Dirichlet priorDir (3) on the conditional dis- |n Eq. (5),w_; denotes the sat withoutw; andz_; the cor-
tributions ¢'!) over the features. This prior is useful in oukesponding assignment vector. We can express the coralition
application since it enables us to model a preference fgistributions in the nominator of Eq. (5) by integrating oge
selecting few characteristic features of a topic. and 8, where ¢ denotes the feature distribution of all topics
and 6 denotes the topic distribution for each scan segment.
The likelihood ofw; in Eq. (5) depends on the probability
In this section, we describe how to find the assignmeng$ the distribution of topicj over features, so we need to
of topics to 3D data points in range scans following thitegrate over all these distributions!):
derivation of Griffiths and Steyverfd]. Given the corpus

C. Learning the Model

W= {Wi1,W,,...Wn} as the set of all feature occurrences, where  P(Wi = Wiz =j,ziw.i)=

each occurrencey; belongs to exact_ly one scan segment. /p(Wi =wl|z=j,0 P |z_;,w_)dp!) (6)
We are then looking for the most likely topic assignment - _ -

vector z = {z,2,...z,} for our dataw. Here, eachy; is an al posterior ofg(l)

index referring to topicj that generatedi. Hence, we seek  gjnce the Dirichlet distribution is conjugate to the multi-
to estimate the probabMt_y dlstr|butloﬁ>(z | w)._Baseq ON homials (to whichg() belongs to), this posterior can be
P(z|w), we can then obtain the most likely topic assignmenf, ,,nted easily from the prior and the observations by agldin
for each 3D data point. Using Bayes rule, we know that  yhe gpservations to the respective elements of the paramete
P(w | z)P(z) vector B of the prior (see also Section IV-A). As a result, we
P(z|w)= Pw) ) obtain a Dirichlet posterior with parameter vec{®r- n&"iv?j



where the elements cn{"iv)- are the number of occurrences oE. Unsupervised Topic Discovery and Classification of Newly
featurew assigned to toﬁ)iq' by the assignment vectar ;. Observed Objects

The first term on the right hand side of Eq. (6) is the proba- Thjs section briefly summarizes how the components pre-
bility for featurew under the multinomia')) and the second sented so far are integrated to perform the unsupervised
term denotes the probability of that multinomial. Therefor giscovery of object classes and the classification when new
solving this integral results in computing the expectatdn spservations are made.
@/ which is the probability ofw under ¢')). According  First of all, we preprocess the data according to Section I
to Eq. (3), this expectation can be easily computed. Theto extract the scan segments which correspond to objects in

probability that an occurrenos; is featurew is the scene and for which we aim to learn a topic model. For
nW each data point in a scan segment, we compute our feature,
: () S B - oy - :
PWw=w|z=j,ziw_) =E(@’) = W . (7) a variant of the spin-image, according to Section IlI-B to
Swhiij+ By describe the surfaces characteristics.

In the same way, we integrate over the multinomial distribu- For the discovery of topics, we then compute the feature
tions over topic$, to find the prior ofz from Eq. (5). Withd;  distributions ¢ of the object classes as well as the topic
being the index of the scan segment to whighbelongs, we Mixturesé for the scan segments using MCMC as described

can compute the probability of a topic assignment for featuln the previous section. The learned distributighslenote a
occurrencen; as: probabilistic assignment of objects to topics.

Class inference, that is, the classification of objects con-
Pz=ijlz-) = /P(Zi =j|0W)P(6% |z)d6'™ (8) tained in new scenes can be achieved using the feature
distribution @. In this casegp and 6 can be used to compute
the proposal distribution directly and are not updated.

Let n@ii)- be the number of features in the scan segndent Note that the approach presented here does not automati-

that are assigned to topic Then, analogous to Eq. (7), thecally determine the number of object classes. This is simila
expected value 08'% can be calculated by addi d) 1o 1o other unsupervised techniques suchkaseans clustering

the elements of the parameter vectoof the prior: L) or EM-based Gaussian mixture models in which the number
of object classes is assumed to be known. We experimentally
Pz —ilz.) — m(O®)) — ) evaluated settings in which the number of topics was higher o
(z=1jlz-i) = E(6") = z_/n((j_i)_,+a_/ lower than the number of manually assigned classes in ttee dat
o VoL J_ set. Our observation was that a higher number of topics leads
Combining the results of Eq. (7) and (9) in Eq. (5), Wgg the detection of shape classes such as “corner”, “edge”, o
obtain theproposal distributionfor the sampling ofz as “flat surface” and that the objects are modeled as mixtures of
n(l/iV?j 4 Bu n(ji?j +aj L those.
S ”(V\i/} 4 B zj/n(d_i)_ +aj (10) F. The Influence of the Dirichlet Priord and
—i, —i,j’ R N )
Eq. (10) is the proposal distribution used in Gibbs samplingSTWO hyperparameterts €R andf €R need to be prowded .
to obtain next generation of assignments. _ the mput to the pr_esented approach. They define the prior
After a random initialization of the Markov chain, a ne\/\f“Str'bu'['o,nS for the mlxture.of objec.t classes in a datganmt
state is generated by drawing the topic for each featufl%r the T“'X‘“r_e of featu_res In an object class_ Arespectwely.
occurrence successively from the proposal distributioont As briefly discussed in Section IV-A,_ch(_)osmgarger than
these samples, the distributiofisand @ can be estimated by one favors the occurrence of many topics in each scan segment
' while lower values result in less topics per scan segment.

using the sampled topic assignments - o
Note that in our work, we restrict the Dirichlet priors to beSlmllarIy, the lower the hyperparametfr for the Dirichlet

symmetric. This implies that all topics and all featuresenthe ?'St”bllﬂt'on over the fegturez, the stgqnger the prefezeinc h
same initial prior occurrence probability. As a result, weyo ewer features per topic and unambiguous ones. Due to the

have to specify only value for the elements of the paramefifdmentation in the preprocessing step, we assume that ther
vectorsa and 8 which we denote byi andfi. This leads to: are only few topics per scan segment and thus a low value for
the hyperparameter is favored in this setting. Bdnolds: On

9J,<di) posterior ofg (%)

dj

Pz=j|ziw) O

W) ngw) +[§ (d) ngd) +a the one hand different objects can yield the same individual
@ ~ - 6" ~—"———(11) - it g
] (Z n(_w’)) TW3 ] (Z'/ n(d)) TG features (yet in distinct distributions). On the other hawd
W] y expect features to be related to specific topics.

whereT is the number of topics and/ the number of features.  From this intuitions about the Dirichlet parameters, a high

To summarize, we explained how to compute the propogarformance can be expected if both parameters are selected
distribution in Eq. (10) used in Gibbs sampling during MCMCbetween zero and one. This could be confirmed experimentally
The obtained samples can then be used to estimate #mel the results are given in Section V-D, where we analyze
distributions @ and 6. Due to our restriction to symmetricthe influence of the hyperparameters on manually labelea dat
priors, only two parametergx(8 € R) have to be specified. sets.
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V. EXPERIMENTAL EVALUATION Fig. 7: Visualization of the confusion matrix of classification bes

. . . . on matching spin-image histograms.
In this section, we present experiments carried out to

evaluate our approach on recorded data. All results aredbaggenes. Here, the points are color-coded according to their
on scans of real scenes acquired with an ActivMedia pioneghss assignments (elements of Corpus-A on the left and
robot equipped with a SICK LMS range finder mounted o@orpus-B in the middle and on the right). The labels assigned
a Schunk pantilt unit. No simulator was involved in thgg the individual points are taken from a sample of the pos-
evaluation. terior distributionP(z | w) as generated during the clustering

The goal of the evaluation is to answer the followingrocess. It can be seen that the point labels are almostigrfe
questions: (i) Are the proposed local shape features in cQimsistent within each object segment and, thus, the mawimu
junction with the topic model approach expressive enougRelihood class assignment per segment is unambiguous.
to represent real-world objects? (ii) Is the approach able|n addition to that, Figure 6 gives a visual impression of
to discover object classes from unlabeled point clouds agxk topics assigned by our approach to the 82 scan segments
are these classifications consistent with human-provitkssc of Corpus-B. The labels in this diagram show the true object
labels? (iii) How does our LDA-based approach compare {ass. Each color in the diagram denotes one topic and the
conceptually simpler approaches for unsupervised clagfer ratios of colors denote for each object segment the class
(iv) How sensitive is the proposed algorithm w.r.t to theicBo assignment weight. As the diagram shows, except of one,chair
of parameters for the feature extraction step as well asef th| objects are grouped correctly when using the maximum
Dirichlet priors? likelihood assignment.
AT We furthermore analyzed the runtime requirements of our

. Test Data . . . .

) _ approach, disregarding the time for pre-processing and the

For the experimental evaluation, we prepared and rgsmputation of the spin images. In Corpus-B (82 objects from
arranged indoor scenes containing five different quecdastyp 39 different 3D scans, 300000 spin image in total), it took
balloons, boxes, humans, and two types of chairs. In tfss than 20 to learn the topic distributions via MCMC and
we recorded 51 full laser-range scans containing 121 Obj%tclassify the objects. Thus, the computation time per 3D

instances. The first part of this data set is terf@pus-A  scan is around 500 ms which is faster than the time needed to
It contains 31 object instances of low geometric complexitcord a 3D scan.

(different boxes and balloons). The second and larger part
comprising of 82 object instance€orpus-B additionally B- Clustering by Matching Shape Histograms
contains complex and variable shapes of chairs and humandn order to compare our LDA-based approach to an un-
See Figure 4 for examples of such object segments represesigpervised clustering technique, we implemented hiereaith
as 3D point clouds. clustering (HC) using the similarity between spin-imags- hi
The data was acquired and pre-processed as describetbgrams as the distance metric. In this implementation, we
Section IlI-A. Some difficulties, inherent in 3D data recedd build a feature histogram for each object segment by cogntin
in this way, should be pointed out: Only one side of an objetfie occurrences of the individual spin-images from thetéjni
can be recorded and non-convex objects typically occludpin-image dictionary (see. Section 11I-B). To compare two
themselves partially. Objects were scanned from diffeveaw  scan segments, we first normalize their histograms to sum
points and thus different parts are observed. Differenéaisj up to one over all bins. Among the popular measures for
of the same class were scanned (different humans, differenmparing histograms, namely histogram intersecfib,
chairs, etc.). Metal parts, such as the legs of chairs, tafiec x? distance, and the Kullback Leibler divergence (KL-D),
laser beams and, thus, are invisible to the sensor. Fihadlg] histogram intersection appeared to provide the best eesult
shape features extracted from the scans of humans are highlyur domain. This is due to the fact that tiy@ distance
diverse compared to the simpler objects. and the KL-D are heavily influenced by features with few
Figure 5 shows typical classification results achieved tr no occurrences—an effect that can be observed frequently
our algorithm when applied to entire scans in three exampte our data sets. The quantitative results comparing LDA to



Fig. 5: Example classification results on test scans from Corpukef)) @nd Corpus-B (middle and right). The detected objéasses are
colored according to the LDA-assigned shape model.
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Balloons Boxes
Fig. 6: Resulting topic mixture® for 82 segments of Corpus-B computed via LDA (the labels wereprovided to the system).
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HC are given in Table | AS can be seen for the SimplG 350Evaliti_c:;poefforrectlyClassified Document Percentages per Spin Image Type
setting of Corpus-A, HC gives acceptable results but i$ st =250 \iypez‘
outperformed by LDA. In the more complex setting of Corpus 3";‘;3
B, however, HC was not able to find a good clustering of th: 100 |||| ‘ | H ‘ ‘ H|||
scene. In multiple runs using different setups, we found th ---||||” et L 100
the difference is statistically significant. Percent Correct Classified

Figure 7 visualizes the similarity matrix between scaRig. 8: Classification using standard spin-image features (“Type 1
segments obtained using histogram intersection. Due fo th&hown in blue) generally labels less documents correctiy tHassi-
rather uniform shape, balloons can be well distinguishechfr fication upon the features we proposed (“Type 27, yellow).
other objects. Objects with a more complex shape, however,

Average Correct Classifications

are confused easily. This indicates that approaches wgrkin S 1o ml 1100
only based on such a distance metric are likely operate less & '2 " gg
accurately in more complex scenes. In contrast to that, LDA A 0:20m .. 70 ,
considers distributions of features and their dependsranid HC g 0-30m 60
therefore perform substantially better. g 040m 1 150
S 40
a 0.50 m ‘ ‘ ‘ ‘ ‘ ‘ ] 0
C. Parameters of the Spin-Image Features 2 2 e cretization Rosaiutiore> 24
In this experiment, we analyzed the difference of the cluste Average Correct Classifications
ing performance when the regular spin-images (referrecgto a S o010m 100
“ ” 3 @ "\ c 90
Type 17) and our variant (referred to as “Type 2”) is used. We & 020m 80
also investigated the influence of the parameters used &becre B o30m 70
the features. These parameters are (i) the support distamce DA g ° " 60
the size of _the_spmnmg image, (i) the grid resolution, &yl 2 0s0m 20
the discretization of the stored values. «n 2 3 4 6 O 13 190 28 42 63 94 —30
To compare the two alternative types of spin images, we Discretization Resolution

collected statistics measuring the LDA clustering perfance iy o: classification accuracy on Corpus-B for different disami

on a labeled test set, integrating over the three feature fian resolutions and respect to support distances for H@) (&md
rameters. That way, we analyzed 10780 different parameté&A (bottom).

settings—each for regular spin-images and for our variant. o

Figure 8 shows the results of this experiment as a histograrrﬁgular Spin-images. _

The higher the bars on the right hand side of the histograen, th N addition to that, we computed the clustering performance

better the results. As can be seen, our approach outperfofh§Ur approach and HC for a wide variety of feature param-
eters using Corpus-B. Figure 9 shows the results for HC and

TABLE I: Summary of the classification results on the test data sefHA Again, our approach clearly outperforms HC. The broad
The percentages give the average correct classificatidnievad by ) ! o )
hierarchical clustering (HC) and the proposed model basedDA. spread of high classification rates over th_e range of pamet
demonstrates that the results presented in the previotisrsec
Data set || No. of scenes| No. of segments] HC | LDA were not caused by selecting feature parameters that were
Corpus-A H 12 31 H 94.84% | 99.89% suboptimal for HC

Corpus-B 39 82 71.19% | 90.38% ) ) .
We observe that for smaller support distances, a higher dis-
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grouped objects. We furthermore demonstrate that our ap-
proach clearly outperforms unsupervised clustering agugres
such as hierarchical clustering. Not only does LDA achieve
higher classification accuracy throughout the entire patam
range, it is also less sensitive to the choice of parameters.
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£0.100
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0.012
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60
55
50
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0{9 OQS 0\3\0 ]00 900 700 (900
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Fig. 10: Evaluation of classification accuracy for various values df]
alpha and beta.

cretization resolutions work well and vice versa. The itiomi
for this finding is that feature distributions with a larggport
and a very accurate discretization have overly detailedifea, [6]

that do not match the distributions of other segments well.

The best results in our setting are obtained for features wijt;]
a discretization resolution between 5 and 27 and a rathet sho
support distance. In conclusion we see, that choosing sqgjh
parameters for the feature generation, we can achieve over
90 % correct classifications (compare lower plot in Figure 9[)9]
(10

We furthermore evaluated how sensitive our approach is
with respect to the choice of the parametérand 3 for the [11]
Dirichlet priors. Figure 10 depicts the average classificat
rates for varying parameters. In this plot, we integrater tive
three feature parameters in a local region around the values
determined in the previous experiment to illustrate howsab [13
LDA performs. As can be seen from Figure 10, determining
the hyperparameters is not a critical task since the pedooa [14]
stays more or less constant when varying them. Good values
for & lie between 0.1 and 0.8 and between 0.1 and 0
for B. In these ranges, we always achieved close-to-optimal
classification accuracies on labeled test sets.

D. Sensitivity of the Dirichlet Priors

[16]
VI. CONCLUSION

In this paper, we presented a novel approach for discoverifg
object classes from laser range data in an unsuperviseidfash
We use a feature-based approach that applies a novel vafiar[tlS]
spin-images as surfaces representations but is not testiic
this kind of features. We model object classes as distobsti
over features and use Latent Dirichlet Allocation to leartd
clusters of 3D objects according to similarity in shape. The
learned feature distributions can subsequently be used[zb
models for the classification of unseen data. An important
property of our approach is that it is unsupervised and dogg
not need labeled training data to learn the partitioning.

We carried out experiments using 3D laser range d tz%]
acquired with a mobile robot. Even for datasets containing
complex objects with varying appearance such as humaizs]
we achieve a robust performance with over 90% correctly

ﬁi] A.E. Johnson and M. Hebert.
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