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Abstract— Truly versatile robots operating in the real world
have to be able to learn about objects and their properties
autonomously, that is, without being provided with carefully
engineered training data. This paper presents an approach that
allows a robot to discover object classes in three-dimensional
range data in an unsupervised fashion and without a-priori
knowledge about the observed objects. Our approach builds on
Latent Dirichlet Allocation (LDA), a recently proposed prob-
abilistic method for discovering topics in text documents.We
discuss feature extraction, hypothesis generation, and statistical
modeling of objects in 3D range data as well as the novel
application of LDA to this domain. Our approach has been
implemented and evaluated on real data of complex objects.
Practical experiments demonstrate, that our approach is able
to learn object class models autonomously that are consistent
with the true classifications provided by a human. It furthermore
outperforms unsupervised method such as hierarchical clustering
that operate on a distance metric.

I. I NTRODUCTION

Home environments, which are envisioned as one of the
key application areas for service robots, typically contain a
variety of different objects. The ability to distinguish objects
based on observations and to relate them to known classes of
objects therefore is important for autonomous service robots.
The identification of objects and their classes based on sensor
data is a hard problem due to the varying appearances of the
objects belonging to specific classes. In this paper, we consider
a robot that can observe a scene with a 3D laser range scanner.
The goal is to perform

• unsupervised learning of a model for object classes,
• consistent classification of the observed objects, and
• correct classification of unseen objects belonging to one

of the known object classes.

Figure 1 depicts a typical point cloud of a scene considered in
this paper. It contains four people, a box, and a balloon-like
object. The individual colors of the 3D data points illustrate
the corresponding object classes that we want our algorithm
to infer.

An important distinction between different approaches to
object detection and recognition is the way the objects or
classes are modeled. Models can be engineered manually,
learned from a set of labeled training data (supervised learn-
ing) or learned from unlabeled data (unsupervised learning).
While the former two categories have the advantage that
detailed prior knowledge about the objects can be included
easily, the effort for manually building the model or labeling
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Fig. 1: Example of a scene observed with a laser range scanner
mounted on a pan-tilt unit. Points with the same color resemble
objects belonging to the same class (best viewed in color).

a significant amount of training data becomes infeasible with
increasing model complexity and larger sets of objects to
identify. Furthermore, in applications where the objects to
distinguish are not known beforehand, a robot needs to build
its own model, which can then be used to classify the data.

The contribution of this paper is a novel approach for
discovering object classes from range data in an unsupervised
fashion and for classifying observed objects in new scans
according to these classes. Thereby, the robot has no a-
priori knowledge about the objects it observes. Our approach
operates on a 3D point cloud recorded with a laser range
scanner. We apply Latent Dirichlet Allocation (LDA)[2], a
method that has recently been introduced to seek for topics in
text documents[9]. The approach models a distribution over
feature distributions that characterize the classes of objects.
Compared to most popular unsupervised clustering methods
such ask-means or hierarchical clustering, no explicit distance
metric is required. To describe the characteristics of surfaces
belonging to objects, we utilize spin-images as local features
that serve as input to the LDA. We show in practical experi-
ments on real data that a mobile robot following our approach
is able to identify similar objects in different scenes while at
the same time labeling dissimilar objects differently.

II. RELATED WORK

The problem of classifying objects and their classes in 3D
range data has been studied intensively in the past. Several
authors introduced features for 3D range data. One popular
free-form surface descriptor are spin-images, which have been
applied successfully to object recognition problems[13; 12;
14; 15]. In this paper, we propose a variant of spin-images
that—instead of storing point distributions of the surface—
stores the angles between the surface normals of points,
which we found to yield better results in our experiments.



An alternative shape descriptor has been introduced by[18].
It relies on symbolic labels that are assigned to regions. The
symbolic values, however, have to be learned from a labeled
training set beforehand. Stein and Medioni[19] present a point
descriptor that, similar to our approach, also relies on surface
orientations. However, it focuses on the surface normals in
a specific distance to the described point and models their
change with respect to the angle in the tangent plane of the
query point. Additional 3D shape descriptors are described
in [5] and[6].

A large amount of work has focused on supervised al-
gorithms that are trained to distinguish objects or object
classes based on a labeled set of training data. For example,
Anguelov et al. [1] and Triebelet al. [20] use supervised
learning to classify objects and associative Markov networks to
improve the results of the clustering by explicitly considering
relations between the class predictions. In a different approach,
Triebel et al. [21] use spin-images as surface descriptors
and combine nearest neighbor classification with associative
Markov networks to overcome limitations of the individual
methods. Another approach using probabilistic techniquesand
histogram matching has been presented by Hetzelet al. [10].
It requires a complete model of the object to be recognized,
which is an assumption typically not fulfilled when working on
3D scans recorded with a laser range finder. Ruhnkeet al. [17]
proposed an approach to reconstructing full 3D models of
objects by registering several partial views. The work operates
on range images from which small patches are selected based
on a region of interest detector.

In addition to the methods that operate on 3D data, much
research has also focused on image data as input. A common
approach to locate objects in images is the sliding window
method[4; 7]. Lampertet al. [16] proposed a new framework
that allows to efficiently find the optimal bounding box without
applying the classification algorithm explicitly to all possible
boxes. Another prominent supervised detector is the face
detector presented by Viola and Jones[22]. It computes Haar-
like features and applies AdaBoost to learn a classifier.

In the domain of unsupervised classification of text doc-
uments, several models that greatly surpass mere counting
of words have been proposed. These include probabilistic
latent semantic indexing (PLSI)[11] and Latent Dirichlet
Allocation [2], which both use the co-occurrence of words
in a probabilistic framework to group words into topics. In
the past, LDA has also been applied successfully to image
data. In contrast to text documents[9], images often contain
data of many different categories. Wang and Grimson[23],
therefore, first perform a segmentation before applying LDA.
Bosch et al. [3] used PLSI for unsupervised discovery of
object distributions in image data. As shown in[8], LDA
supersedes PLSI and it has been argued that the latter can
be seen as a special case of LDA, using a uniform prior and
maximum a posteriori estimation for topic selection. Fritzand
Schiele[7] propose the sliding window approach on a grid of
edge orientations to evaluate topic probabilities on subsets of
the whole image. While the general approach of these papers

Fig. 2: Variant of spin-images used to compute a surface signature:
the 3D object structure (yellow circle) is rotated around the surface
normal of a query point (large red point) and a grid model accumu-
lates the average angular distances between the surface normal at the
query point and those of the points falling into the grid cells (small
red points).

is related to ours, to the best of our knowledge the algorithm
described in this paper is the first to apply LDA on laser range
data and which addresses the specific requirements of this
domain.

III. D ATA PRE-PROCESSING ANDLOCAL SHAPE FEATURES

As most approaches to object detection, identification, and
clustering, we operate on local features computed from the
input data. Our primary focus lies on the description ofshape
as this is the predominant feature captured in 3D range data.
However, real-world objects belonging to the same class do not
necessarily have the same shape and vice versa. Humans, for
example, have a significant variability in shape. To deal with
this problem, we model classes of objects as distributions of
local shape features.

In the next sections, we first describe our local feature used
to represent the characteristics of surfaces and after than, we
address the unsupervised learning problem to estimate the
distributions over local features.

A. Representation and Data Pre-processing

Throughout this work, we assume our input data to be a
point cloud of 3D points. Such a point cloud can be obtained
with a 2D laser range finder mounted on a pan-tilt unit, a
standard setting in robotics to acquire 3D range data. An
example point cloud recorded with this setup is shown in the
motivating example in Figure 1 on the first page of this paper.

As in nearly all real world settings, the acquired data is
affected by noise and it is incomplete due to perspective
occlusions. The segmentation of range scans into a set of
objects and background structure is not the key focus of
this work. We therefore assume a ground plane as well as
walls that can be easily extracted and assume the objects to
be spatially disconnected. This allows us to apply a spatial
clustering algorithm to create segments containing only one
object.

B. Local Shape Descriptors

For characterizing the local shape of an object at a query
point, we propose to use a novel variant of spin-images[12].
Spin-images can be seen as small raster images that are aligned
to a point such that the upwards pointing vector of the raster
image is the surface normal of the point. The image is then
virtually rotated around the surface normal, “collecting”the



neighboring points it intersects. To account for the differences
in data density caused by the distance between sensor and
object, the spin-images are normalized.

To actually compute a normal for each data point, we
compute a PCA using all neighboring points in a local region
of 10cm. Then, the direction of the eigenvector corresponding
to the smallest eigenvalue provides a comparably stable but
smoothed estimate of the surface normal.

We have developed a variant of spin-images that does not
count the points “collected” by the pixels of the raster image.
Instead, we compute the average angle between the normal of
the query point for which the spin-image is created and the
normals of all collected points. See Figure 2 for an illustration.
The average between the normals is then discretized to obtain
a discrete feature space, as required in the LDA approach. As
we will show in our experiments, this variant of spin-images
provides better results, since they contain more information
about the shape of the object.

IV. PROBABILISTIC TOPIC MODELS FOROBJECTSHAPE

After segmenting the scene into a finite set of scan segments
and transforming the raw 3D input data to the discrete feature
space, the task is to group similar segments to classes and
to learn a model for these classes. Moreover, we aim at
solving the clustering and modeling problems simultaneously
to achieve a better overall model. Inspired by previous workon
topic modeling in text documents, we build on Latent Dirichlet
Allocation for the unsupervised discovery of object classes
from feature statistics.

Following this model, a multinomial distribution is used
to model the distribution of discrete features in an object
class. Analogously, another multinomial distribution is used
to model the mixture of object classes which contribute to a
scan segment. In other words, we assume a generative model,
in which (i) segments generate mixtures of classes and (ii)
classes generate distributions of features.

Starting from a prior distribution about these latent (i.e.,
hidden) mixtures, we update our belief according to the
observed features. To do this efficiently, we express our prior
P(θ ) as a distribution that is conjugate to the observation
likelihood P(y | θ ). P(θ ) being a conjugate distribution to
P(y | θ ) means that

P(θ | y) =
P(y | θ )P(θ )

∫
P(y | θ )P(θ ) dθ

(1)

is in the same family asP(θ ) itself. For multinomial distribu-
tions, the conjugate prior is the Dirichlet distribution, which
we explain in the following.

A. The Dirichlet Distribution

The Dirichlet distribution is a distribution over multivariate
probability distributions, i.e., a distribution assigning a prob-
ability density to every possible multivariate distribution. For
the multinomial variablex = {x1, . . . ,xK} with K exclusive
statesxi , the Dirichlet distribution is parameterized by a vector
α = {α1, . . . ,αK}. If αi = 1 for all i, the Dirichlet distribution

Fig. 3: Three Dirichlet distributions. On the left for the parameter
vectorα = {2,2,2}, in the middle forα = {3,6,3} and on the right
for α = {0.1,0.1,0.1}.

is uniform. One can think of(αi − 1) for αi ∈ N
>0 as the

number of observations of the statei. The Dirichlet distribution
can be calculated as

f (x) =
Γ
(

∑K
i=1 αi

)

∏K
i=1 Γ(αi)

︸ ︷︷ ︸

Normalization

K

∏
i=1

xαi−1
i , (2)

whereΓ(·) is the Gamma function and where the elements of
x have to be positive and sum up to one.

Consider the following example: let there be three object
classes “human”, “box”, and “chair” with a Dirichlet prior
parameterized byα = {2,2,2}. This prior assigns the same
probability to all classes and hence results in asymmetric
Dirichlet distribution. A 3D Dirichlet distributionDir (α) can
be visualized by projecting the the manifold where∑αi = 1 to
the 2D plane, as depicted in the left plot of Figure 3. Here the
third variable is given implicitly byα3 = 1−α1−α2. Every
corner of the depicted triangle represents the distributions
where only the respective class occurs and the center point
represents the uniform distribution over all classes. Now
consider an observation of one human, four boxes, and a chair.
By adding the observation counts to the elements ofα, the
posterior distribution becomesDir ({5,8,5}) which is shown
in the middle plot in Figure 3. The same result would of course
occur when calculating the posterior using Eq. (1).

However choosing the values ofαi larger than 1 favors
distributions that represent mixtures of classes, i.e. we expect
the classes to occur together. To express a prior belief that
either one or the other dominates we need to choose values
smaller than 1 for allαi . The shape of the distribution then
changes in a way that it has a “valley” in the middle of the
simplex and peaks at the corners. This is depicted in the right
plot in Figure 3. In our setting, where a Dirichlet distribution
is used to model the distribution of object classes, such a prior
would correspond to the proposition that objects are typically
assigned to one (or only a few) classes.

The calculation of theexpected probability distributionover
the states and can be performed easily based onα. The
expected probability forxi is given by

E[xi ] =
αi

∑i′ αi′
. (3)



B. Latent Dirichlet Allocation

Latent Dirichlet allocation is a fully generative probabilistic
model for semantic clustering of discrete data, which was
developed by Bleiet al. [2]. In LDA, the input data is assumed
to be organized in a number of discrete data sets—these
correspond to scan segments in our application. The scan
segments contain a set of discretized features (a spin image
for every 3D point). Obviously, a feature can have multiple
occurrencessince different 3D data points might have the
same spin image. Often, the full set of data (from multiple
scans) is referred to as “corpus”. A key feature of LDA is that
it does not require a distance metric between features as most
approaches to unsupervised clustering do. Instead, LDA uses
the co-occurrence of features in scan segments to assign them
probabilistically to classes—calledtopics in this context.

Being a generative probabilistic model, the basic assumption
made in LDA is that the scan segments are generated by ran-
dom processes. Each random process represents an individual
topic. In this work, we distinguish topics using the indexj and
scan segments are indexed byd. A random process generates
the features in the segments by sampling them from its own
specific discrete probability distributionφ ( j) over the features.
A segment can be created by one or more topics, each topic
having associated a distinct probability distribution over the
features.

To represent the mixture of topics in a segmentd, a
multinomial distribution θ (d) is used. For each feature in
the segment, the generating topic is selected by sampling
from θ (d). The topic mixtureθ (d) itself is drawn from a
Dirichlet distribution once for every segment in the corpus.
The Dirichlet distribution represents the prior belief about
the topic mixtures that occur in the corpus, i.e., whether the
segments are generated by single topics or from a mixture of
many topics. We express the prior belief with respect to the
topic distribution using the Dirichlet parameter vectorα.

Griffiths and Steyvers[9] extended LDA by additionally
specifying a Dirichlet priorDir (β ) on the conditional dis-
tributions φ ( j) over the features. This prior is useful in our
application since it enables us to model a preference for
selecting few characteristic features of a topic.

C. Learning the Model

In this section, we describe how to find the assignments
of topics to 3D data points in range scans following the
derivation of Griffiths and Steyvers[9]. Given the corpus
w = {w1,w2, ...wn} as the set of all feature occurrences, where
each occurrencewi belongs to exactly one scan segment.
We are then looking for the most likely topic assignment
vector z = {z1,z2, ...zn} for our dataw. Here, eachzi is an
index referring to topicj that generatedwi . Hence, we seek
to estimate the probability distributionP(z | w). Based on
P(z | w), we can then obtain the most likely topic assignment
for each 3D data point. Using Bayes rule, we know that

P(z | w) =
P(w | z)P(z)

P(w)
. (4)

Unfortunately, the partition functionP(w) is not known and
cannot be computed directly because it involvesTN terms,
where T is the number of topics andN is the number of
feature occurrences.

A common approach to approximate a probability distri-
bution, for which the partition functionP(w) is unknown,
is Markov chain Monte Carlo (MCMC) sampling. MCMC
approximates the target distributionP(z | w) by randomly
initializing the states of the variables—here the topic assign-
ments. Subsequently, it samples new states using a Monte
Carlo transition function leading to the target distribution.
Therefore, the target distribution has to be the equilibrium
distribution of the transition function. The transition function
obeys the Markov property, i.e., it is independent of all states
but the last. In our approach, we use Gibbs sampling as the
transition function where the new state (the topic assignment)
for each feature occurrence is sampled successively.

Gibbs sampling requires aproposal distributionto generate
new states. Therefore, the next section describes how to obtain
an appropriate proposal distribution for our problem.

D. Computing the Proposal Distribution for Gibbs Sampling

The proposal probability distribution over the possible topic
assignments of a feature occurrence is calculated conditioned
on the current assignments of the other feature occurrences.
A new topic assignment is then sampled from this proposal
distribution.

For estimatingP(z | w), we successively sample from the
distribution in the numerator on the right hand side of Eq. (4)
the topic assignmentzi for each feature occurrencewi given
the topics of all other features. The distribution over the topics
for samplingzi is given by

P(zi = j | z−i ,w) =

likelihood ofwi
︷ ︸︸ ︷

P(wi |zi = j,z−i ,w−i)

prior of zi
︷ ︸︸ ︷

P(zi = j|z−i)

∑T
j=1P(wi |zi = j,z−i ,w−i)P(zi |z−i)

. (5)

In Eq. (5),w−i denotes the setw without wi andz−i the cor-
responding assignment vector. We can express the conditional
distributions in the nominator of Eq. (5) by integrating over φ
and θ , whereφ denotes the feature distribution of all topics
andθ denotes the topic distribution for each scan segment.

The likelihood ofwi in Eq. (5) depends on the probability
of the distribution of topic j over features, so we need to
integrate over all these distributionsφ ( j):

P(wi = w | zi = j,z−i ,w−i) =
∫

P(wi = w | zi = j,φ ( j))
︸ ︷︷ ︸

φ ( j)
w

P(φ ( j) | z−i ,w−i)
︸ ︷︷ ︸

posterior ofφ ( j)

dφ ( j) (6)

Since the Dirichlet distribution is conjugate to the multi-
nomials (to whichφ ( j) belongs to), this posterior can be
computed easily from the prior and the observations by adding
the observations to the respective elements of the parameter
vectorβ of the prior (see also Section IV-A). As a result, we
obtain a Dirichlet posterior with parameter vectorβ + n(w)

−i, j



where the elements ofn(w)
−i, j are the number of occurrences of

featurew assigned to topicj by the assignment vectorz−i .
The first term on the right hand side of Eq. (6) is the proba-

bility for featurew under the multinomialφ ( j) and the second
term denotes the probability of that multinomial. Therefore,
solving this integral results in computing the expectationof
φ ( j)

w which is the probability ofw under φ ( j). According
to Eq. (3), this expectation can be easily computed. The
probability that an occurrencewi is featurew is

P(wi = w | zi = j,z−i ,w−i) = E(φ ( j)
w ) =

n(w)
−i, j + βw

∑w′ n(w′)
−i, j + βw′

. (7)

In the same way, we integrate over the multinomial distribu-
tions over topicsθ , to find the prior ofzi from Eq. (5). Withdi

being the index of the scan segment to whichwi belongs, we
can compute the probability of a topic assignment for feature
occurrencewi as:

P(zi = j | z−i) =
∫

P(zi = j | θ (di))
︸ ︷︷ ︸

θ (di )
j

P(θ (di) | z−i
︸ ︷︷ ︸

posterior ofθ (di )

) dθ (di) (8)

Let n(di)
−i, j be the number of features in the scan segmentdi

that are assigned to topicj. Then, analogous to Eq. (7), the
expected value ofθ (di)

j can be calculated by addingn(di)
−i, j to

the elements of the parameter vectorα of the prior:

P(zi = j | z−i) = E(θ (di)
j ) =

n(di)
−i, j + α j

∑ j ′ n
(di)
−i, j ′ + α j ′

(9)

Combining the results of Eq. (7) and (9) in Eq. (5), we
obtain theproposal distributionfor the sampling ofzi as

P(zi = j | z−i ,w) ∝
n(w)
−i, j + βw

∑w′ n(w′)
−i, j + βw′

n(di)
−i, j + α j

∑ j ′ n
(di)
−i, j ′ + α j ′

.(10)

Eq. (10) is the proposal distribution used in Gibbs sampling
to obtain next generation of assignments.

After a random initialization of the Markov chain, a new
state is generated by drawing the topic for each feature
occurrence successively from the proposal distribution. From
these samples, the distributionsθ andφ can be estimated by
using the sampled topic assignmentsz.

Note that in our work, we restrict the Dirichlet priors to be
symmetric. This implies that all topics and all features have the
same initial prior occurrence probability. As a result, we only
have to specify only value for the elements of the parameter
vectorsα andβ which we denote bŷα and β̂ . This leads to:

φ (w)
j ∼

n(w)
j + β̂

(

∑w′ n(w′)
j

)

+Wβ̂
θ (d)

j ∼
n(d)

j + α̂
(

∑ j ′ n
(d)
j ′

)

+Tα̂
(11)

whereT is the number of topics andW the number of features.
To summarize, we explained how to compute the proposal

distribution in Eq. (10) used in Gibbs sampling during MCMC.
The obtained samples can then be used to estimate the
distributionsφ and θ . Due to our restriction to symmetric
priors, only two parameters (α̂, β̂ ∈ R) have to be specified.

E. Unsupervised Topic Discovery and Classification of Newly
Observed Objects

This section briefly summarizes how the components pre-
sented so far are integrated to perform the unsupervised
discovery of object classes and the classification when new
observations are made.

First of all, we preprocess the data according to Section III-
A to extract the scan segments which correspond to objects in
the scene and for which we aim to learn a topic model. For
each data point in a scan segment, we compute our feature,
a variant of the spin-image, according to Section III-B to
describe the surfaces characteristics.

For the discovery of topics, we then compute the feature
distributions φ of the object classes as well as the topic
mixturesθ for the scan segments using MCMC as described
in the previous section. The learned distributionsθ denote a
probabilistic assignment of objects to topics.

Class inference, that is, the classification of objects con-
tained in new scenes can be achieved using the feature
distributionφ . In this case,φ andθ can be used to compute
the proposal distribution directly and are not updated.

Note that the approach presented here does not automati-
cally determine the number of object classes. This is similar
to other unsupervised techniques such ask-means clustering
or EM-based Gaussian mixture models in which the number
of object classes is assumed to be known. We experimentally
evaluated settings in which the number of topics was higher or
lower than the number of manually assigned classes in the data
set. Our observation was that a higher number of topics leads
to the detection of shape classes such as “corner”, “edge”, or
“flat surface” and that the objects are modeled as mixtures of
those.

F. The Influence of the Dirichlet Priorŝα and β̂
Two hyperparameterŝα ∈R andβ̂ ∈R need to be provided

as the input to the presented approach. They define the prior
distributions for the mixture of object classes in a data setand
for the mixture of features in an object class respectively.

As briefly discussed in Section IV-A, choosingα̂ larger than
one favors the occurrence of many topics in each scan segment,
while lower values result in less topics per scan segment.
Similarly, the lower the hyperparameterβ̂ for the Dirichlet
distribution over the features, the stronger the preference for
fewer features per topic and unambiguous ones. Due to the
segmentation in the preprocessing step, we assume that there
are only few topics per scan segment and thus a low value for
the hyperparameter is favored in this setting. Forβ̂ holds: On
the one hand different objects can yield the same individual
features (yet in distinct distributions). On the other hand, we
expect features to be related to specific topics.

From this intuitions about the Dirichlet parameters, a high
performance can be expected if both parameters are selected
between zero and one. This could be confirmed experimentally
and the results are given in Section V-D, where we analyze
the influence of the hyperparameters on manually labeled data
sets.



Fig. 4: Example point cloud segments of Corpus-A (box, balloon)
and Corpus-B (box, balloon, human, swivel chair, chair)

V. EXPERIMENTAL EVALUATION

In this section, we present experiments carried out to
evaluate our approach on recorded data. All results are based
on scans of real scenes acquired with an ActivMedia pioneer
robot equipped with a SICK LMS range finder mounted on
a Schunk pant-tilt unit. No simulator was involved in the
evaluation.

The goal of the evaluation is to answer the following
questions: (i) Are the proposed local shape features in con-
junction with the topic model approach expressive enough
to represent real-world objects? (ii) Is the approach able
to discover object classes from unlabeled point clouds and
are these classifications consistent with human-provided class
labels? (iii) How does our LDA-based approach compare to
conceptually simpler approaches for unsupervised clustering?
(iv) How sensitive is the proposed algorithm w.r.t to the choice
of parameters for the feature extraction step as well as of the
Dirichlet priors?

A. Test Data

For the experimental evaluation, we prepared and re-
arranged indoor scenes containing five different object types:
balloons, boxes, humans, and two types of chairs. In total,
we recorded 51 full laser-range scans containing 121 object
instances. The first part of this data set is termedCorpus-A.
It contains 31 object instances of low geometric complexity
(different boxes and balloons). The second and larger part
comprising of 82 object instances,Corpus-B, additionally
contains complex and variable shapes of chairs and humans.
See Figure 4 for examples of such object segments represented
as 3D point clouds.

The data was acquired and pre-processed as described in
Section III-A. Some difficulties, inherent in 3D data recorded
in this way, should be pointed out: Only one side of an object
can be recorded and non-convex objects typically occlude
themselves partially. Objects were scanned from differentview
points and thus different parts are observed. Different objects
of the same class were scanned (different humans, different
chairs, etc.). Metal parts, such as the legs of chairs, reflect the
laser beams and, thus, are invisible to the sensor. Finally,local
shape features extracted from the scans of humans are highly
diverse compared to the simpler objects.

Figure 5 shows typical classification results achieved by
our algorithm when applied to entire scans in three example

Fig. 7: Visualization of the confusion matrix of classification based
on matching spin-image histograms.

scenes. Here, the points are color-coded according to their
class assignments (elements of Corpus-A on the left and
Corpus-B in the middle and on the right). The labels assigned
to the individual points are taken from a sample of the pos-
terior distributionP(z | w) as generated during the clustering
process. It can be seen that the point labels are almost perfectly
consistent within each object segment and, thus, the maximum
likelihood class assignment per segment is unambiguous.

In addition to that, Figure 6 gives a visual impression of
the topics assigned by our approach to the 82 scan segments
of Corpus-B. The labels in this diagram show the true object
class. Each color in the diagram denotes one topic and the
ratios of colors denote for each object segment the class
assignment weight. As the diagram shows, except of one chair,
all objects are grouped correctly when using the maximum
likelihood assignment.

We furthermore analyzed the runtime requirements of our
approach, disregarding the time for pre-processing and the
computation of the spin images. In Corpus-B (82 objects from
39 different 3D scans, 300 000 spin image in total), it took
less than 20 s to learn the topic distributions via MCMC and
to classify the objects. Thus, the computation time per 3D
scan is around 500 ms which is faster than the time needed to
record a 3D scan.

B. Clustering by Matching Shape Histograms

In order to compare our LDA-based approach to an un-
supervised clustering technique, we implemented hierarchical
clustering (HC) using the similarity between spin-image his-
tograms as the distance metric. In this implementation, we
build a feature histogram for each object segment by counting
the occurrences of the individual spin-images from the (finite)
spin-image dictionary (see. Section III-B). To compare two
scan segments, we first normalize their histograms to sum
up to one over all bins. Among the popular measures for
comparing histograms, namely histogram intersection[10],
χ2 distance, and the Kullback Leibler divergence (KL-D),
histogram intersection appeared to provide the best results
in our domain. This is due to the fact that theχ2 distance
and the KL-D are heavily influenced by features with few
or no occurrences—an effect that can be observed frequently
in our data sets. The quantitative results comparing LDA to



Fig. 5: Example classification results on test scans from Corpus-A (left) and Corpus-B (middle and right). The detected object classes are
colored according to the LDA-assigned shape model.

Fig. 6: Resulting topic mixturesθ for 82 segments of Corpus-B computed via LDA (the labels werenot provided to the system).

HC are given in Table I. As can be seen for the simpler
setting of Corpus-A, HC gives acceptable results but is still
outperformed by LDA. In the more complex setting of Corpus-
B, however, HC was not able to find a good clustering of the
scene. In multiple runs using different setups, we found that
the difference is statistically significant.

Figure 7 visualizes the similarity matrix between scan
segments obtained using histogram intersection. Due to their
rather uniform shape, balloons can be well distinguished from
other objects. Objects with a more complex shape, however,
are confused easily. This indicates that approaches working
only based on such a distance metric are likely operate less
accurately in more complex scenes. In contrast to that, LDA
considers distributions of features and their dependencies and
therefore perform substantially better.

C. Parameters of the Spin-Image Features

In this experiment, we analyzed the difference of the cluster-
ing performance when the regular spin-images (referred to as
“Type 1”) and our variant (referred to as “Type 2”) is used. We
also investigated the influence of the parameters used to create
the features. These parameters are (i) the support distance, i.e.,
the size of the spinning image, (ii) the grid resolution, and(iii)
the discretization of the stored values.

To compare the two alternative types of spin images, we
collected statistics measuring the LDA clustering performance
on a labeled test set, integrating over the three feature pa-
rameters. That way, we analyzed 10 780 different parameter
settings—each for regular spin-images and for our variant.
Figure 8 shows the results of this experiment as a histogram.
The higher the bars on the right hand side of the histogram, the
better the results. As can be seen, our approach outperforms

TABLE I: Summary of the classification results on the test data sets.
The percentages give the average correct classifications achieved by
hierarchical clustering (HC) and the proposed model based on LDA.

Data set No. of scenes No. of segments HC LDA

Corpus-A 12 31 94.84% 99.89%
Corpus-B 39 82 71.19% 90.38%

Fig. 8: Classification using standard spin-image features (“Type 1”
shown in blue) generally labels less documents correctly than classi-
fication upon the features we proposed (“Type 2”, yellow).

HC

LDA

Fig. 9: Classification accuracy on Corpus-B for different discretiza-
tion resolutions and respect to support distances for HC (top) and
LDA (bottom).

regular spin-images.
In addition to that, we computed the clustering performance

of our approach and HC for a wide variety of feature param-
eters using Corpus-B. Figure 9 shows the results for HC and
LDA. Again, our approach clearly outperforms HC. The broad
spread of high classification rates over the range of parameters
demonstrates that the results presented in the previous section
were not caused by selecting feature parameters that were
suboptimal for HC.

We observe that for smaller support distances, a higher dis-



Fig. 10: Evaluation of classification accuracy for various values of
alpha and beta.

cretization resolutions work well and vice versa. The intuition
for this finding is that feature distributions with a large support
and a very accurate discretization have overly detailed features,
that do not match the distributions of other segments well.

The best results in our setting are obtained for features with
a discretization resolution between 5 and 27 and a rather short
support distance. In conclusion we see, that choosing such
parameters for the feature generation, we can achieve over
90 % correct classifications (compare lower plot in Figure 9).

D. Sensitivity of the Dirichlet Priors

We furthermore evaluated how sensitive our approach is
with respect to the choice of the parametersα̂ and β̂ for the
Dirichlet priors. Figure 10 depicts the average classification
rates for varying parameters. In this plot, we integrate over the
three feature parameters in a local region around the values
determined in the previous experiment to illustrate how robust
LDA performs. As can be seen from Figure 10, determining
the hyperparameters is not a critical task since the performance
stays more or less constant when varying them. Good values
for α̂ lie between 0.1 and 0.8 and between 0.1 and 0.3
for β̂ . In these ranges, we always achieved close-to-optimal
classification accuracies on labeled test sets.

VI. CONCLUSION

In this paper, we presented a novel approach for discovering
object classes from laser range data in an unsupervised fashion.
We use a feature-based approach that applies a novel variantof
spin-images as surfaces representations but is not restricted to
this kind of features. We model object classes as distributions
over features and use Latent Dirichlet Allocation to learn
clusters of 3D objects according to similarity in shape. The
learned feature distributions can subsequently be used as
models for the classification of unseen data. An important
property of our approach is that it is unsupervised and does
not need labeled training data to learn the partitioning.

We carried out experiments using 3D laser range data
acquired with a mobile robot. Even for datasets containing
complex objects with varying appearance such as humans,
we achieve a robust performance with over 90% correctly

grouped objects. We furthermore demonstrate that our ap-
proach clearly outperforms unsupervised clustering approaches
such as hierarchical clustering. Not only does LDA achieve
higher classification accuracy throughout the entire parameter
range, it is also less sensitive to the choice of parameters.
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