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Abstract—This paper presents a fuzzy traffic controller that in
an autonomous, centralized and optimal way, manages traffic flow
in a group of intersections. The system obtains information from
a network of cameras and through machine vision algorithms can
detect the number of vehicles in each of the roads. Using this
information, the fuzzy system selects the sequence of phases that
optimize traffic flow globally. To evaluate the performance of
the controller, a scenario was developed where it was possible
to simulate through artificially created videos two adjacent
intersections. System performance was compared versus fixed
time controllers as they are currently the most used in the
city of Bogota. As a control variable it was used the average
waiting time of each vehicle. The results show that the system
performance increases by about 20% over situations with heavy
traffic conditions and that the controller is able to adapt smoothly
to different flow changes.

Index Terms—traffic control; computer vision; optimization;
fuzzy control; object detection; classifiers.

I. INTRODUCTION

NOWADAYS Bogota city presents a serious mobility
problem, which affects a great part of the citizens and

harms drastically its productivity and competitiveness [4]. One
of the main reasons, which contributes to this situation, is
the use of inefficient and obsolete traffic controllers, which
are not capable to manage in an efficient way the traffic flow
in the roads of the city. These fixed time controllers, require
a periodical configuration based on statistical flow analyses,
which generally do not reflect in an accurate way the real
traffic flow conditions [1].

In order to solve this problem, new control techniques
have been developed, allowing the creation of completely
autonomous systems, that based in the data collected by a
set of sensors (inductive, capacitive, acoustical), are able to
manage in an optimal and dynamical way the vehicular flow
[8].

Although the performance of these systems easily exceeds
the performance of fixed time controllers, they present a
maintenance problem mainly concerning the kind of sensors
used. The great majority of the current solutions use the
information provided by inductive sensors, which are installed
directly into the asphalt. This kind of deployment leaves them
exposed to all kind of physical interactions, which reduce
drastically their useful life.

To avoid this problem, in this work a completely au-
tonomous dynamical controller was developed, which is ca-

pable of manage in a coordinated and centralized way, the
state of the traffic lights in a simulated scenario using the
information provided by a set of cameras. This kind of
sensor gives the system great installation flexibility, due to
the possibility of strategic location within the control zone,
avoiding the problems described above and increasing the
durability, efficiency and profitability of the system.

The main contribution within the development of this con-
troller is the use of a vehicular detection algorithm, which
allows it to identify in an accurate way the number of vehicles
present in each road. Besides, the controller has a diffuse
optimization algorithm, which using the data provided by the
detection algorithm switches the state of the traffic lights,
ensuring a continuous, homogeneous, and fair traffic flow.

In the next section, the basic theory of vehicular traffic
controllers and object detection techniques are summarized. At
Section III the details of the system developed are presented.
Section IV presents the characteristics of the test scenario
designed while the results are showed at Section V. Finally
at Section VI the conclusions achieved are presented.

II. BACKGROUND AND PREVIOUS RESEARCH

Bellow, the most relevant terms and investigations in the
area of traffic controllers and vehicle detection inside images
are mentioned.

A. Traffic controllers

There are two main kinds of traffic controllers: static ones
and dynamical ones. The first ones are those where a sequence
of actions previously programed are followed, while the other
kind makes use of a certain acquisition method, which allows
the system to identify the state of the traffic flow on the roads
and guide his actions to optimize the traffic flow [2].

On the other hand, it is important to define a basic terminol-
ogy: phase, cycle and coordination. A phase is a traffic signal
which allows a flow of non-conflictive movements. For exam-
ple, Phase 1 showed in Figure 1 allows traffic flow from west
to east and vice versa. In the same way, a succession of phases
which is repeated continuously is considered a cycle. Figure
1 shows a cycle made-up of 4 phases. Finally, coordination is
the action of programing the signalized intersections in such a
way, that the flow of a corridor can achieve a constant speed
without detentions, generating what is known as green waves.
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Figure 1. Four-phase cycle

Taking this into account, the action of controlling an inter-
section implies the determination of the phases which will be
part of the cycle and also the duration of each of these phases.

One of the control strategies, that better results has achieved,
is fuzzy logic. This technique allows controlling the traffic in
an intersection in a similar way to the actions taken by a traffic
officer, which turns out to be the main advantage of this kind
of controllers. Lee et al. [3] proposed a distributed system
capable of controlling the phase duration and the sequence of
these, adapting to the different traffic situations, achieving a
complete control over an intersections set.

B. Object detection
In the object detection field, there are two main strategies

concerning the vehicle detection task: the first one is based
on background and optical flow estimation, while the second
one uses machine learning techniques. Background estimation
analyzes the difference between a predefined model (image)
of an empty road and an image of the incoming traffic,
obtaining perturbations, that overlapped to the predefined
model are interpreted as vehicles [16], [17]. A great portion
of the investigations about machine learning methods has been
framed to the ‘on-road’ vehicle detection (a camera installed
inside a car), instead of applications for traffic control on
intersections. Examples of methods used within this area are:
Boosted Cascade of haar Features, Sift (Scale Invariant Feature
Transform) matching and neural networks.

In the same way, there is certain terminology which is
important and will help understand this portion of the work.
Classifier is an operator which uses the features of a data
set, identifying the class or group to which each of these
data belongs. Boosting is a meta-algorithm, which pretends
to create a strong classifier through the addition of weak
classifiers, and a feature is considered as an important piece
of information [9].

There are plenty of investigations in the area of vehicle
detection through images; the following are some of the most
important researches in this field: in [10] and [11], an on
road vehicle detector was developed through a Haar like
feature detector, obtaining an accuracy detection of 88,6%
and 76% respectively. In [12] and [13] authors used the
background estimation technique with an efficiency rate over
90% in both cases. On the other hand, in [14] a morphological
edge detector (SMED) was developed, which presents more
insensitiveness to illumination changes than the background
estimation, obtaining an accuracy of 95%.

III. TRAFFIC CONTROL SYSTEM

Figure 2 shows a physical diagram of the solution. At each
intersection a computer is placed, this is in charge of acquiring

images from a network of cameras. This computer is connected
to a centralized server that processes the information and
executes the detection and control algorithms. Finally all the
decisions taken are sent back to each computer, which change
the traffic lights depending on these orders.

Figure 2. Physical diagram of the solution

A. Fuzzy control system

The controller developed is based on the model presented by
Lee et al. in [3], which evaluates not only the variables related
to the controlled intersection, but also analyzes the variables
related to traffic flow at nearby intersections. This allows
the system to operate in a coordinated way, thus generating
so-called "green waves", avoiding unnecessary detentions for
vehicles traveling through the roads and avoiding sending
vehicles to areas of high congestion.

The controller basically consists of the three modules
showed in Figure 3. The ’Next Phase’ Module is responsible
for assessing the level of urgency of each of the phases
that are not active, the ’Observation’ Module is in charge of
studying traffic flow corresponding to the green phase, and the
’Decision’ Module determines whether the active phase at the
intersection is changed to the one with the highest degree of
urgency (depending on the module ’Next Phase’) or remains
constant for a longer period.

It should be noted, that the level of urgency is just an
analysis of how timely and favorable would be the exchange
of the active phase.

The operating mode of each of these modules is described
below:

Figure 3. Schematic diagram of the controller
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• Next Phase Module
This is responsible for selecting among all the phases
that are not active, the one whose level of urgency is
higher. To achieve this, this module evaluates the urgency
of each of the flows associated with each phase and the
average of these values will be the level of urgency of
the phase analyzed. For example, the level of urgency
of the phase showed in Figure 4 is the average of the
values obtained evaluating the north-south flow (green)
and north-east flow (red).

Figure 4. Sample situation

To obtain the level of urgency of each flow, four variables
are evaluated: NumCar is the number of vehicles waiting
for the green signal, in Figure 4 they are represented in
color blue; RedTime represents the number of periods that
the evaluated phase has been deactivated; NumCarAnt is
an estimate of the number of vehicles that could arrive
from the lanes before the intersection, and FNumCar is
the number of vehicles on the road in front of the inter-
section, for the north-south flow in Figure 4 this variable
is represented with green color. In this way, the variables
RedTime and NumCar reflect traffic conditions locally,
while NumCarAnt and FNumCar allow the system to
coordinate different neighboring intersections.
Figure 5 shows the Fuzzy Set of this module and Table I
presents some of its rules. For example, R2 states that if
the number of vehicles waiting to cross is High (NumCar
= H), the number of periods in which the analyzed phase
has not been active is High (RedTime = H) and the
number of vehicles waiting in the following lane is Low
(FNumCar = L), then the urgency of this phase will be

Figure 5. The Fuzzy Set of NumCar, FNumCar, RedTime, NumCarAnt and
Urgency

Table I
SOME RULES OF THE NEXT PHASE MODULE

NumCar RedTime NumCarAnt FNumCar Urgency
R1 Z Z L L
R2 H H L VH
R3 H L VH L
R4 M L VH H
... ... ... ... ... ...

very high (Urgency = VH).
• Observation Module

This module is responsible for assessing traffic conditions
for the active phase and determines, how timely it would
be to stop that phase. The fuzzy rules of this module
have two inputs and one output: ONumCar indicates
the number of cars that still are on stanby; OFNumCar
represents the number of vehicles at the next intersection
and Stop is the output of the module and indicates,
whether or not should be necessary to stop the phase.
The behavior of the input variables is very similar to
variables NumCar and FNumCar, therefore their fuzzy
sets are equal. Figure 6 shows the Fuzzy Set for the Stop
variable.
Table II presents some rules of this module. R4 indicates
that if the number of vehicles waiting for the active phase
is still high (ONumCar = H) and the number of vehicles
in the following lane is high too (OFNumCar = H), then
the phase must be stopped (Stop = Yes). This is because
it would be a waste of time to allow a flow that will be
obstructed later.

• Decision Module
This module decides whether or not change the active
phase. The inputs in this module are Urgency and Stop
and the output is Decision. The two input variables are the
outputs of the modules ’Next Phase’ and ’Observation’,
respectively. The module changes the active phase for
that which is candidate, as long as the result of the
defuzzification is above a given threshold.
Table III shows some of the rules of this module. The
first rule indicates that, although the candidate phase has
a medium congestion (Urgency = M), if the Stop level of
the active phase is low (Stop = N), then the module will

Figure 6. The Fuzzy Set of Stop

Table II
SOME RULES OF THE OBSERVATION MODULE

ONumCar OFNumCar Stop
R1 Z Y
R2 H Z N
R3 L L M
R4 H H Y
... ... ... ...
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Table III
SOME RULES OF THE DECISION MODULE

Urgency Stop Decision
R1 M N N
R2 H M Y
R3 VH N Y
R4 Z Y N
... ... ... ...

have to keep the same phase (Decision = N, no change).
The Fuzzy Set of this module is presented in Figure
7 (Urgency and Stop variables appear in the previous
modules).

B. Detection algorithms

As a detection algorithm, the one proposed in [5], [6]
is used, this consist of a Haar features classifier cascade;
accordingly to several authors [9], [10], [15] this method
presents better or at least similar performance, than the best
previous object detector systems. The implementation of this
method is made up of two big phases, one dedicated to the
training of the classifiers through a machine learning algorithm
called Adaboost and the construction of the cascade, and the
other where the detection is adapted to the own needs of the
interest object and the context where these objects exist.

Within training phase, Adaboost creates several weak clas-
sifiers hj , each of these evaluates a Haar characteristic j over
an image xj and through the comparison between the obtained
value from the evaluation and a threshold θ, it decides if this
characteristic represents effectively the interest object. A weak
classifier is defined by Equation (1).

hj(x) =

{
1 fj(x) < θj

0 fj(x) ≥ θj
(1)

Adaboost will find the best threshold and the best classifier
through linear searches and reweighting of the examples with
highest classificacion error εj , thus maximizing the margin
between a positive and negative set of examples (xj , yj), being
yj1 or 0 for positives and negatives examples respectively. The
classification error is defined by Equation (2).

εj =
∑

i wi|hj(xj)− yi| (2)

Then Adaboost will use the best classifier to create a combi-
nation that has better discrimination accuracy, this combination
is called strong classifier h and is defined by Equation (3).

h(x) =

{
1

∑T
t=1 αhj(x) ≥

∑T
t=1 α

0
∑T

t=1 αhj(x) <
∑T

t=1 α
(3)

Where α = − log βt & β = εj/ (1− εj)

Figure 7. The Fuzzy Set of Decision

Table IV
PERFORMANCE COMPARISON BETWEEN DIFFERENT SIZES OF INPUT

PATTERN.

Input pattern
size

Hit rate (%) False
positives (%)

False
negatives (%)

18x18 0.83447099 0.24420402 0.16552901
20x20 0.7440273 0.11919192 0.2559727
24x24 0.71331058 0.43206522 0.28668942
20x18 0.74573379 0.14145383 0.25426621

For the present work, the positive examples set (xj , yj)
being y = 1 is extracted from traffic videos of several points
of the city. From these videos 6364 images are obtained, for
each one of these images true regions are annotated; 10050
true regions were found, thus obtaining the same number of
positive examples. In order to obtain the negative example
set, videos from daily scenes of parks and walkways are used,
besides the image datasets from Google, CALTECH, CMU,
TU Darmstadt, UIUC, VOC2005 y TU GRAZ are used too,
from these, 8131 images are extracted in which do not exist
a single car with frontal view.

The performance of the whole object detection system
depends on several training parameters of the strong and weak
classifiers, as well as the cascade itself, some examples of
these parameters are: the size of the example sets, number of
stages of the cascade, type of weak classifier... etc. In order
to estimate the optimal values for these parameters, a series
of experiments based on the work of [7] were conducted, but
for the specific case of vehicles as interest objects.

In order to carry-out these experiments, a sub-set test
was extracted from the positive example set, consisting of
152 images which contain 586 vehicles (likewise 586 true
regions are annotated). These vehicles fulfills the criteria to
be considered interest object, having a frontal or top frontal
view and a maximum rotation from the frontal view of 30°
just as Figure 8 shows.

Figure 8. Terms of the car position, to be considered an object of interest

Then, the cascade with the evaluated parameters is used to
obtain new true regions, and these ones are compared to those
previously annotated. The criteria for true positive and false
positive are determined by two difference margins between
new true regions and previous ones. One margin is for size,
and has a maximum difference between each other of 50%.
The other one is for location, with a maximum difference of
30%.

Table IVshows the influence of pattern training size in the
performance of the cascade. The size patterns which obtains
better performance (less false positives and a higher hit rate)
are 18x18 and 20x20.

Table V shows the influence of the numbers of features
used to train the weak classifier on the cascade performance.
Three types of weak classifiers are used: one with one feature
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Table V
PERFORMANCE COMPARISON BETWEEN THE NUMBER OF FEATURES PER

WEAK CLASSIFIER

Weak
classifier

Hit rate (%) False
positives (%)

False
negatives (%)

Stump 0.83447099 0.24420402 0.16552901
CART2 0.73720137 0.13253012 0.26279863
CART4 0.69624573 0.12258065 0.30375427

(Stump), and two with 2 and 4 features respectively (CART).
CART classifier with 2 features (hereinafter known as CART2)
has shown the best overall performance, since it presents
a reduction of 45% in false positives compared to Stump
classifier, and only a 11% reduction in the hit rate.

The influence of Haar features set types, can be observed in
Table VI. There are two types of Haar features sets, the basic
one, proposed in [18] and the extended one, proposed in [7].
Extended set has shown a reduction on the presence of false
positives up to 71% compared to the basic one, with a similar
hit rate.

During the training phase, it is assumed that vehicles are
symmetrical regard vertical axes, but what if this assumption
is omitted? Probably, the detector could be more robust against
rotations of the vehicle view. Table VII shows that this
assumption is not valid, since the cascade without symmetry
presents a drop in the detection rate, with little improvement
on the insensitivity to false positives.

Based on the observations made in the previous experi-
ments, the values for the final training parameters are shown
in Table VIII.

Besides, based on the literature, other parameters were
established e.g. the number of cascade stages must be between
15 and 23 stages, and the size of the training sets should be of
about 5000 positives examples and 10000 negatives examples.

IV. EXPERIMENTAL FRAMEWORK

In order to verify system performance in a controlled, but
projectable environment, it was necessary to implement a
test scenario using artificial videos. For this, an algorithm
was developed using MATLAB, which is capable of creating
random videos that simulate traffic flow in a lane (see Figure
9a).

Table VI
PERFORMANCE COMPARISON BETWEEN THE TWO EXISTING SETS OF

HAAR FEATURES

Feature set Hit rate (%) False
positives (%)

False
negatives (%)

Basic 0.84300341 0.35085414 0.15699659
Extended 0.83447099 0.24420402 0.16552901

Table VII
PERFORMANCE COMPARISON BETWEEN ASSUMPTION OF VERTICAL

SYMMETRY

Vertical
symmetry

Hit rate (%) False
positives (%)

False
negatives (%)

With 0.77133106 0.22068966 0.22866894
Without 0.83447099 0.24420402 0.16552901

Table VIII
TRAINING PARAMETERS

Training parameter Parameter value
Input pattern size 18x18 and 20x20

Weak classifier type CART2
Features set Extended

Vertical simmetry Yes
Relationship between

training sets 1:2 (Positive : Negative)

(a) Artificial created frame (b) Scenario diagram

Figure 9. Test scenario designed

As shown in Figure 9b, the designed scenario includes 4
simple two-way intersections, therefore a total of 16 videos
were created representing each of the pathways of interest.

In order to compare the performance of the developed
system over fixed-time controllers, both of them were tested
under the same traffic conditions. Ten evaluation plans were
designed and each of them varies the level of congestion on the
tracks as shown in Table IX. This level of congestion depends
on the type of the lane; Figure 9b shows that there are three
types of lanes (I, II and III) and also shows the distribution of
these types between the available lanes.

Table IX
GENERATION PLANS

Type
I II III

P1 Very High Low Medium
P2 Medium High Low
P3 Low Medium High
P4 Very High Very High Low
P5 Very High Medium High
P6 Medium Medium Low
P7 Medium→High High→Very High Medium→Low
P8 Low→High High→Very High Medium→High
P9 Low→Medium Medium→High Medium→Low

P10 High→Low Medium→High High→Medium

V. RESULTS

For each controller (Fixed-time and Fuzzy), each of the
plans was executed for 20 minutes. In order to compare the
performance of each of them, two control variables were
evaluated: the first one was the average delay time of each of
the simulated vehicles, and the other was the number of cars
that each controller was able to handle in the same period of
time.

According to Table X, the results show that the developed
system reduces the time delay caused by unnecessary stops
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in about 20%. It is also important to note that the system
was able to adapt quickly and efficiently in those plans where
there was a change in the level of congestion (7, 8, 9 and 10),
outperforming the standard controller up to 26%.

On the other hand, Table XI shows that the controller
developed was able to deal with a number of vehicles much
larger than the standard controller, improving performance by
up to 28.45%.

Finally, as explained in Section III-B - Table VIII, two iden-
tical classification cascades were created, the only difference
between them was the size of the input pattern. In this way
Cascade No. 1 has a size of 18x18 pixels while Cascade No.
2 has a size of 20x20 pixels. The results obtained with each
cascade are shown in Table XII.

Besides both cascades presented similar performance in
terms of processing speed, reaching a detection rate between
22 and 27 frames per second on images of 320x240 pixels.

Table X
AVERAGE DELAY TIME FOR EACH CONTROLLER

Delay Time (%) Imprv. (%)Fixed-Time Fuzzy
P1 58,94 49,46 16,08
P2 59,01 44,79 24,09
P3 56,22 42,82 23,83
P4 64,54 58,64 9,14
P5 64,81 56,01 13,57
P6 57,36 26,45 26,45
P7 62,92 50,98 18,98
P8 60,62 51,69 14,72
P9 58,68 43,35 26,13

P10 61,21 47,19 22,9

Table XI
NUMBER OF SIMULATED VEHICLES FOR EACH CONTROLLER

Average number of simulated vehicles Imprv. (%)Fixed-Time Fuzzy
P1 1251 1543,6 23,38
P2 1284,8 1483 15,42
P3 1231,8 1348,6 9,48
P4 1400,2 1779,6 27,09
P5 1379,2 1765,6 28,01
P6 1240,2 1342,6 8,25
P7 1345,6 1635,8 21,56
P8 1265,2 1625,2 28,45
P9 1270,6 1424,6 12,12
P10 1330 1541,4 15,89

Table XII
PERFORMANCE OF THE CLASIFFICATION CASCADES DEVELOPED

Cascade Hit rate (%) False
positives (%)

False
negatives (%)

No.1 0.8830 0.04381 0.117
No.2 0.8641 0.08143 0.1359

VI. CONCLUTIONS

The created vehicle detector is robust against several kinds
of noise, just like moderate lighting variations, shadows,
reflections and other types of phenomena caused by climatic

condition. This advantage puts the chosen method above
others, like background estimation and optic flow estimation.

Unlike vehicle detection methods based on optic flow cal-
culation, the constructed detector is able to locate the vehicles
even when these are stopped. In the same way, unlike methods
based on tripline techniques, the constructed method does not
show problems if vehicles change lanes intermittently or if
these does not transit through certain predefined areas of the
image.

On the other hand, the results show that the proposed con-
troller’s performance far exceeds that of fixed-time controllers,
and also this can be optimally adapted to a large number of
situations. Similarly, the project is applicable to any situation,
regardless of the number of intersections or distribution.

Finally, it is observed that machine vision algorithm pro-
posed for the detection of vehicles, presents a clear disadvan-
tage, as is the lack of robustness to the presence of occlusions
of the objects of interest, requiring that these occlusions are
less than the 10% of the total area of the object. Therefore
the location and height at which video sensors are installed
should be considered, so that the level of occlusion between
vehicles could be reduced.
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