
Master Thesis in
Artificial Intelligence and Robotics

Academic Year 2012/13

Whole-Body Motion Planning for Robotic
Manipulation of Articulated Objects

Author: Felix Burget

Submitted on Dezember 14, 2012 in Partial Fulfillment of the
Requirements for the Degree of Master of Science

Supervisors (Università di Roma - La Sapienza):
Prof. Giuseppe Oriolo

Prof.ssa Marilena Vendittelli

Supervisors (Albert-Ludwigs-Universität Freiburg):
Prof. Maren Bennewitz
Dipl.-Inf. Armin Hornung

In memory of my beloved grandfather Alois Burget,
a great engineer, artist and person

Declaration
I hereby declare, that I am the sole author and composer of my Thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work. I hereby also declare, that my Thesis has not been prepared for another
examination or assignment, either wholly or excerpts thereof.

Place, date Signature

Abstract
In this thesis, we present a sampling-based approach to generate whole-body motions
for a humanoid robot. In particular, the planner developed is capable to generate valid
whole-body motions for body repositioning as well as for grasping and manipulation of
articulated objects, such as doors or drawers. Besides the generic constraints involved
in motion planning, such as joint limits and collision avoidance, motions of a humanoid
robot are required to satisfy stability and closure constraints. Additionally manipulation
constraints arise, once the robot has grasped the handle of an object to be manipulated.
In the work at hand, our planner, which is an extended variant of the RRT-CONNECT
algorithm, will be presented. In the experiments we will show that the whole-body
motion planner allows to perform tasks that are not feasible by a decomposition approach
that plans motions for the lower and upper body consecutively. Furthermore, examples
of manipulation planning will be presented and the planner is thoroughly evaluated.
The experiments have been carried out successfully on both, the simulated and real
humanoid robot platform.

Acknowledgements

At this point I would like to thank everyone who helped and supported me throughout
the development of this thesis. I would particularly like to thank Prof. Maren Bennewitz
and Prof. Giuseppe Oriolo, who supervised this thesis and helped a lot with their
experience and advice. Special thanks also goes to Dipl.-Inf. Armin Hornung, Dipl.-
Inf. Daniel Maier and Prof. Marilena Vendittelli, who contributed to the success of
this thesis by stimulating discussions and versatile and helpful remarks. Furthermore,
I would like to express my thanks to Dr. Ioan Sucan from Willow Garage Inc. for his
continuous assistance with the MoveIt! framework in ROS and for always being available
for questions concerning implementation issues. Another thank you goes to all of my
friends in Rome, especially to Pouya, Gio, Enrico, Simone, Daniele, Martina and Taigo;
the 2 years in Italy have been a great experience that I don’t want to miss. A big thank
you of course is dedicated to my family, friends in Germany and especially to Britta,
who always believed in me and have been an essential support during my studies and
adventures abroad.

Contents

Contents

List of Figures III

1 Introduction 10

1.1 Contribution . 12

1.2 Structure of the Thesis . 12

2 Related Work 14

2.1 Jacobian-based approaches . 14

2.2 Sampling-based approaches . 16

3 Background 19

3.1 The Concept of Motion Planning. 19
3.1.1 Problem Definition . 19
3.1.2 The Configuration Space . 21
3.1.3 Distance Metric . 23
3.1.4 C-Space Obstacles . 24

3.2 Probabilistic Motion Planning 26
3.2.1 Sampling Strategies . 26
3.2.2 Local Planner . 27
3.2.3 Path Search . 29
3.2.4 Path Smoothing . 29
3.2.5 Notion of Completeness . 30

3.3 Sampling-based Algorithms . 31
3.3.1 Probabilistic Roadmap Planner 31
3.3.2 Rapidly Exploring Random Trees Planner 33

3.4 Motion Constraints . 35
3.4.1 Actuator Limitations . 35
3.4.2 Collision Avoidance . 36
3.4.3 Closure Constraint . 37
3.4.4 Stability Constraint . 39

3.5 Manipulability of Kinematic Structures 41

I

Contents

4 Motion Planning for Humanoids 43

4.1 Planning Assumptions . 43

4.2 Whole-Body Motion Planning 44
4.2.1 RRT-CONNECT Planner for Humanoids 44
4.2.2 Precomputing Stable Configurations 48
4.2.3 Goal Pose Generation . 50
4.2.4 Path Shortcutter . 52
4.2.5 Motion Trajectory . 53

4.3 Whole-Body Manipulation Planning 54
4.3.1 Articulated Objects . 55
4.3.2 Extended RRT-CONNECT Planner 55
4.3.3 Tree Initialization Considering Manipulation Constraints 57
4.3.4 Tree expansion under Manipulation Constraints 58

4.4 Implementation Details . 59

5 Experiments 60

5.1 Humanoid Robot Platform . 60

5.2 Trajectory Execution for the NAO Robot 62

5.3 Planning Setup . 62

5.4 Evaluation of Whole-Body Motion Planning 62

5.5 Planning Collision-Free Motions 63

5.6 Manipulating Articulated Objects 64

5.7 Collision-Free Object Manipulation 66

5.8 Pick and Place an Object . 67

5.9 Discussion of the Results . 68

6 Conclusion 70

6.1 Summary . 70

6.2 Future Work . 71

Bibliography 73

II

List of Figures

List of Figures

1.1 Humanoid Robot Platforms. 10
1.2 Locomotion and Manipulation for Humanoid Robots. 11

3.1 The Piano Mover’s Problem. 20
3.2 Workspace and Configuration Space of a circular mobile robot. 21
3.3 Fixed base planar manipulator with two revolute joints (2R). 22
3.4 Configuration space of a 2R planar manipulator. 22
3.5 Examples of C-space obstacles in Euclidean space. 24
3.6 Examples of C-space obstacles for a 2R planar manipulator. 25
3.7 Local Planner. Simple connection strategy. 28
3.8 Local Planner. Control-based connection strategy. 28
3.9 Smoothing a raw solution path . 30
3.10 Roadmap Construction . 32
3.11 PRM Query . 32
3.12 Example of a tree expansion step . 33
3.13 Collision Model for the HRP-2 robot . 36
3.14 Collision detection using swept volumes 37
3.15 Closed Kinematic Chain . 37
3.16 Active-Passive Link Decomposition . 38
3.17 Parameters of a 4 link manipulator . 39
3.18 Support polygon and projected CoM . 40
3.19 Manipulability ellipsoid . 42

4.1 Support polygon for stability check . 47
4.2 Example of the tree expansion with CONNECT 48
4.3 Frames of the kinematic model . 49
4.4 Examples of statically stable double support configurations 50
4.5 Examples of valid goal configurations . 52
4.6 Creating shortcuts on the solution path 53
4.7 Generating a time-parameterized trajectory from the geometric path . . . 54
4.8 Two examples of articulated objects: A drawer and a door. 55
4.9 Start and goal configurations for manipulation planning 56
4.10 Example end-effector trajectories . 57
4.11 Tree expansion under manipulation constraints 59

5.1 Kinematic model of the NAO robot . 60
5.2 Original and approximated model of the NAO robot 61

III

List of Figures

5.3 Reachability map of the right hand . 63
5.4 Execution of a whole-body plan to reach into different shelfs of a cabinet 64
5.5 Execution of a whole-body manipulation plan for a drawer 65
5.6 Execution of a whole-body manipulation plan for a door 65
5.7 Trajectory of CoM and right hand while opening a drawer and door . . . 66
5.8 Whole-body manipulation plan for a drawer with collision avoidance . . . 67
5.9 Pick and Place an Object . 68

IV

CHAPTER 1. INTRODUCTION

1 Introduction

In recent years robots have made significant progress in hardware such that they are
nowadays expected to be able to perform complicated tasks in complex cluttered en-
vironments. Today various kinds of robots exist, among most of them are particularly
designed to meet the requirements of a specific workspace in mind. One of the most
interesting and challenging field of robotics, subject to ongoing research, is the develop-
ment of cognitive as well as physical skills of humanoid robots (see Fig. 1.1). As opposed
to other kinds of robots, humanoids are expected to operate in environments originally
designed for humans. With their body composition being based on the human skele-
ton, humanoid robots are required to imitate human motions such as walking, climbing
stairs, grasping and manipulating objects as well as interacting with other individuals
no matter whether humans or other robots.

Figure 1.1: Humanoid Robot Platforms. From left to right: Asimo (Honda Motor Co. [1]),
HRP-2 (Kawada Industries Inc. [2]), Nao (Aldebaran Robotics [3]), Hubo (Korea Advanced
Institute of Science and Technology [4]).

From a roboticist point of view a humanoid robot represents a highly redundant and
complex system with usually a number of degrees of freedom n in the order of n > 20.
Generating motions for these systems is a very difficult task for several reasons. First,
we have to find a way to deal with redundancy. Unlike humans which naturally exploit
redundancy to select motions according to ergonomic considerations or simply to sustain
their health, humanoid robots must often choose a motion from an infinite set of solutions
achieving the task based on some energy-related measures. Second, the sought motion
must satisfy many fundamental constraints: the physical capabilities of the robot such
as joint limits and actuator differential properties must be respected, collisions with
obstacles in the environment must be avoided, and particulary the robot must keep

10

CHAPTER 1. INTRODUCTION

the projection of its center of mass inside the support polygon, i.e., keeping balance.
Additional constraints are imposed when the robot is asked to grasp or to manipulate
objects. Grasping objects, for instance, often comes with a restriction on the possible
hand orientations or carrying a glass of water requires to keep the hands orientation
fixed throughout the motion.

Due to the high-dimensionality of the motion planning problem for humanoid robots,
many of the current approaches generate motions in advance by a functional decomposi-
tion of the degrees of freedom into a set of lower body and upper body joints. With this
approach locomotion and manipulation can be considered as two decoupled problems.
Manipulation has been subject to extensive research with the emergence of industrial
robot arms and reliable methods has been developed to realize bipedal locomotion (see
Fig. 1.2).

Figure 1.2: Locomotion and Manipulation for Humanoid Robots. Left: The Nao robot
(Aldebaran Robotics) is walking from a start to a goal location [5]. Right: The Asimo robot
(Honda Motor Co.) opens a bottle of water [6].

The major drawback of this decoupling approach is that a manipulation task cannot
affect the locomotion and vice versa. Thus, only tasks that allow a sequencing of walking
and manipulation, i.e., actuating the lower body and upper body limbs consecutively,
can be performed. Many task in the real world however, such as picking up an object
from the floor or opening a door or drawer, require to plan a coordinated motion of the
lower and upper body parts.

This requirement leads us to the motivation of this work. Interacting with the environ-
ment can be generally seen as performing three tasks: reach, grasp and manipulate. As
humans naturally do, we want humanoid robots to exploit their kinematic redundancy
to accomplish these task in an efficient way. For doing so, all of the humanoids physical
capabilities need to be taken into account when planning motions for the robot structure.
Considering all degrees of freedom will permit to execute tasks through a whole-body
motion, which before have been impossible to realize by a locomotion-manipulation se-
quence.

11

CHAPTER 1. INTRODUCTION

1.1 Contribution

In this work, the generic RRT-CONNECT planner, introduced in [7], has been modi-
fied to obtain a planner capable of planning statically stable collision-free whole-body
motions for a humanoid robot. In order to speed up the search for valid configurations
during planning, our RRT-CONNECT variant relies on a pre-computed set of stable
whole-body configurations within the tree expansion process. To find a valid path, i.e.,
a sequence of configurations and links between them, the RRT-CONNECT planner gen-
erally performs a bidirectional search in the configuration space by growing two trees
rooted at a start and goal configuration, respectively. Whereas the start configuration
usually corresponds to the current state of the robot, the goal configuration is typically
not known in advance. In this thesis, we generate a set of goal configurations that have
the robot’s hand at a desired pose and select the best among them for planning con-
sidering the manipulability of the kinematic structure. In a second step, the planner
has been extended towards manipulation of articulated objects. With the robot’s hand
being attached to an object’s handle, the planning algorithm is required to ensure that
the hand remains on the handle trajectory throughout the whole-body motion. In the
experiments, the planner developed has shown to reliably plan whole-body motions for
collision-free body repositioning as well as for grasping and manipulating objects. For
the planning queries of different complexity, the performance of the planner has been
thoroughly evaluated. Furthermore, the whole-body motion trajectories generated from
the geometric path, obtained from the planner, have proven to be safely executable on
both, the simulated and the real robot platform.

1.2 Structure of the Thesis

The reminder of this thesis is structured as follows:

In Chapter 2 we will first discuss the related work. Here, we consider several approaches
from the literature that deal with the problem of generating whole-body motions for
complex high-DOF robots. Furthermore, techniques addressing the problem of object
manipulation are introduced.

In Chapter 3 we cover the theoretical background for the thesis. After describing the
general concept of motion planning we will elaborate on probabilistic motion planning,
which is the method of our choice. Then, two sampling-based algorithms are described
before introducing the constraints typically involved in motion planning for humanoid
robot platforms. At the end of the chapter, we treat the topic of manipulability of
kinematic structures, which is an important component of our planner, used to evaluate
the quality of configurations.

12

CHAPTER 1. INTRODUCTION

Chapter 4 presents the planner developed in this thesis for whole-body motion and
manipulation planning. For simplicity, we will first explain the functionality of the
planner in the absence of manipulation constraints, i.e., for planning statically stable
collision-free body repositioning motions. Then, the extensions added to the planner in
order to allow manipulation of articulated objects are presented.

Chapter 5 presents the experimental setup and results. In this context, the performance
of the planner has been evaluated considering different planning scenarios. Furthermore,
the feasibility of motion plans generated by our planner has been examined by executing
them on the real robot platform.

Finally, Chapter 6 will give an overview of the issues covered in this thesis. In the
summary we discuss the positive and negative aspects of the choices made in this work.
Additionally an outlook to possible future works and improvements on our planning
framework will be given.

13

CHAPTER 2. RELATED WORK

2 Related Work

The problem of generating whole-body motions for complex, high-DOF robots can be
considered as a relatively new research area in the young field of robotics. Approaches
addressing this problem, gathered in the literature so far, can generally be classified
into one of the two categories: Jacobian-based methods or randomized, sampling-based
motion planning techniques. Although approaches belonging to the former category
rather deal with online motion generation, many of their concepts can be inherited for
planning motions offline. In the following we will present some of the approaches for
each category.

2.1 Jacobian-based approaches

Jacobian-based approaches follow the idea of defining multiple task, eventually of differ-
ent priority, whose associated task function depends on the current robot configuration.
Using generalized inverse kinematics with task specific jacobians, joint velocities that
minimize these task functions are iteratively computed. In the following a couple of
works belonging to this category are presented.

The work of Kanoun et al. in [8] is based on the prioritized kinematic control scheme
to plan local motions for a humanoid robot. For any kind of articulated structure a
motion of the structures joints is calculated to achieve a certain goal task. Mostly this
task is related to a desired position and/or orientation, defined in the workspace, of a
body in the articulated structure. Considering a task function and an associated desired
goal value, a task jacobian can be calculated in order to compute joint velocities that
cause the function to tend towards the desired value. Since humanoid robots are highly
redundant systems, the authors define multiple task, represented by linear equality and
inequality systems. The novelty of their approach is that these tasks/systems can be
organized in an arbitrary order of priority, usually going from the most to least critical.
To solve the systems in the specified order of priority, a resolution algorithm is provided.
This algorithm iteratively searches solutions for lower priority systems within the set of
higher priority systems solutions. The approach has been applied successfully on the
humanoid robot platform HRP-2, for the task of reaching a ball underneath an object.
Although the authors stated that their algorithm is generally capable of dealing with
tasks requiring locomotion, no such applications has been presented at this stage.

In 2010, Kanoun et al. [9] presented an extension to their approach from [8]. In this
work also locomotion is considered by building a virtual kinematic structure composed

14

CHAPTER 2. RELATED WORK

of the robot kinematic model and a number of articulated footsteps. Here, the footsteps
are modeled as a chain of rotational and prismatic joints, which allows the application
of their numerical inverse kinematics framework. First, they defined a fixed number
of footsteps for the virtual chain. In a reaching task those footsteps, being initially
folded, are iteratively unfold until the task is completed. The actual motion for the
legs, required to follow the sequence of footsteps, is obtained using the dynamic walking
pattern generator from [10]. In a second stage they introduced an algorithm and a
specific criterion to adapt the number of footsteps progressively. This approach however
bears the risk of the virtual chain being trapped in a local minima, an issue generally
encountered with numerical optimization methods.

Another contribution to the work of Kanoun is presented by Dang et al. in [11]. As
before robot motion is resolved in the form of an optimization problem. This time
however motion planning is modified to run online. Using visual sensor feedback in the
control loop the proposed approach allows to adapt tasks and hence to perform real time
replanning.

In [12], Yoshida et al. present an approach that couples generalized inverse kinematics
with Kajita’s dynamic walking pattern generator. The foundation is again a set of
prioritized tasks, as described in [8]. Using the associated task jacobians, the generalized
inverse kinematics algorithm generates whole-body motions that gradually perform these
tasks. Meanwhile during the motion, several criteria such as manipulability and joint
limits are monitored. As soon as the monitor detects that the task is unfeasible due
to unsatisfied criteria, a support polygon planner is activated. This planner computes
a new location for one of the feet in order to extend the robot’s reachable space. The
stepping motion itself is created by the walking pattern generator, mentioned earlier. A
remarkable feature of this work is that the task execution further proceeds taking into
account the simultaneously performed stepping motion.

In [13], Mansard et al. propose to implement visual servoing to generate full-body
motions for a humanoid robot. In their work they present the idea of splitting the
control into several sensor-based control tasks that are executed simultaneously by a
structure termed stack of tasks. This structure can be used for task level control and in
combination with the task sequencing framework, already introduced in the literature.
When the control law is computed, only the tasks currently being in the stack are
considered. Tasks are sorted in increasing order of priority and can be removed or
added to the stack during execution, while the latter is only admissible if some DOFs
remain free after applying the active tasks. With control at the task level the humanoid
robot HRP-2 was able to grasp an object while walking. Due to the robustness of visual
servoing even grasping a slowly moving object was successfully performed by the robot.
Obstacle and self-collision avoidance however has not been taken into account.

15

CHAPTER 2. RELATED WORK

2.2 Sampling-based approaches

Motion planning algorithms commonly represent the robot as a point in a n-dimensional
configuration space C, where n corresponds to the number of degrees of freedom of the
robot. The intend of these methods is to search in the configuration space for a collision
free sequence of motions, also referred to as a path, connecting a given start and goal
configuration. Several algorithms, such as the Retraction method, Cell Decomposition
or Artificial Potential Fields has been developed, which however require the availability
of an explicit representation of the configuration space [14]. In high-dimensional config-
uration spaces, with robot structures having n > 6 DOF’s , such a representation does
not exist and therefore methods based on the idea of a probabilistic exploration of the
search space are adopted. In recent years a number of such randomly exploring methods
have been successfully proposed in the literature [15, 16, 17, 7, 18]. Although these
methods have proven to be efficient for planning collision free paths in high-dimensional
configuration spaces, their application to humanoid robots is still a challenging task.
The main issue that prohibits the direct application of classical probabilistic motion
planning techniques lies in the fact that humanoid robots are subject to a high number
of constraints in addition to collision avoidance.

In 2002, Kuffner et al. [19] were the first to apply the idea of probabilistic motion
planning to generate whole-body motions for humanoid robots. In their work, they
presented an extended variant of the RRT-CONNECT planner, that mainly differs from
the classical version in the way in which the configuration space is sampled and how new
samples are connected to the search trees by the local planner. Since it is very unlikely
that samples, randomly generated from the configuration space, are valid their planner
resorts to a pre-computed set of statically stable configurations in the tree expansion
process. In a second phase the collision free statically stable path returned by the
planner is smoothed and transformed into a dynamically stable trajectory. The planner
proposed has shown to produce nice results for both simulated and real humanoid robots.
A limitation of their planner is that the location of the support foot (or feet in the case
of double-support) is not allowed to change during planning. In the thesis at hand,
this work is extended towards manipulation of articulated objects. In manipulation
planning additional constraints on the robot’s end-effector motion, imposed by the object
trajectory, need to be considered.

Another approach presented by Stilman in [20] deals with motion planning under task
constraint. These task constraints are defined as a restriction on the freedom of motion
of a robot end-effector. As in [19], an extension of the RRT algorithm is used to find
a valid motion sequence. In particular, the local planner used in the tree expansion
process is enhanced by a method projecting the sampled configurations on the sub-
manifold of C that solves the task. The approach has shown to work well for a mobile
manipulator opening a door and drawer. The drawback of this work is that it only
considers constraints regarding the relative motion of the robot end-effector with respect
to some fixed world frame, which is not sufficient for planning motions for systems

16

CHAPTER 2. RELATED WORK

involving a static stability constraint. Another disadvantage is that the proposed method
is not capable to deal with multiple constraints.

Berenson et al. [21] follow an approach similar to the work of Stilman. In their work, they
introduce the Constrained Bidirectional RRT planner, which considers constraints as
Task Space Regions (TSR), a concept previously used for goal-specification. To describe
more complex constraints, these TSR’s can also be linked together thus building TSR
Chains. Results of motion planning for the HRP3 humanoid robot, considering stability,
manipulation and closure constraints, are presented.

In [22], Vahrenkamp et al. follow a multi-level motion planning approach to move
a robot to a target object. To bypass the complexity of motion planning for high-
dimensional configuration spaces they divide the robot into subsystems like arms or
hands and adaptively control the set of joints considered for planning, depending on
the current situation. This approach leads to a sequence of motion planning problems
of lower dimensionality. The decision about which joints to consider for the respective
planning phase is delivered by measuring the distance of the robot to the target object’s
location. Thus, only the lower body joint are involved in motion planning until the
target object enters the robots upper body workspace. In their work results using both,
the unidirectional and the bi-directional RRT planner, are presented. With a humanoids
upper body mounted on a mobile base, also here equilibrium constraints are not taken
into account for motion planning.

In [23], Oriolo and Vendittelli propose a control-based approach to task-constrained
motion planning. As opposed to previous approaches their RRT planner makes use of
a motion generation scheme that allows continuous constraint satisfaction when moving
towards randomly sampled configurations. Given a sequence of task coordinates along
a predefined cartesian path the planner produces forward, backwards and self-motions
motions traversing the associated task-constrained configuration space leaves Ctask. Since
back and forth motions of the end-effector are not desired, arcs representing backwards
motions are reversed before storing them in the tree structure. The tree expansion
process proceeds iteratively until either a forwards motion to a configuration in the last,
or a backwards motion to a configuration in the first, task-constrained configuration
space leave has been found. In this case the algorithm checks whether a optimal path
from the start to the goal configuration exists. In the negative case the search continues,
otherwise the path is returned. Results are presented for a fixed-base manipulator and
a robot with free-flying base. Other constraints such as closure constraints and stability
constraints, required in motion planning for humanoids, are not considered at this stage.
Generally however, it is possible to consider such constraints by extending the task
jacobian used in the motion generation scheme.

In [24], Dalibard et al. propose a way of using local jacobian-based methods within
randomized motion planning. The core of their planner is based on the RRT-CONNECT
algorithm. In a first stage they define a number of tasks with different priorities, where

17

CHAPTER 2. RELATED WORK

task are considered equivalent to constraints in this context. Using these tasks a local
planner which employs a prioritized pseudo-inverse technique, already introduced in [12],
is adopted. This local planner is used for two purposes, namely to generate a number
of goal configurations prior planning and to project randomly generated samples onto
the constraint manifold in the tree expansion process. Generating more than one goal
configuration has the major benefit that multiple goal trees can be grown for the path
search. When a solution path, connecting the start tree with one of the goal trees, has
been found, an additional optimization of the reached goal posture is performed in order
to obtain a more natural whole-body motion. As in [19], this work does not permit the
support state (single-leg or double support) to change during motion planning.

18

CHAPTER 3. BACKGROUND

3 Background

In this chapter, we will describe the theoretical background used throughout the remain-
der of the thesis. First, the fundamental concepts and principles of motion planning will
be covered. Then, we will elaborate on probabilistic motion planning, the method of our
choice, and present some of the most widespread sampling-based algorithms. Afterwards
we will discuss various kinds of constraints involved in motion planning for humanoid
platforms. Finally, we will conclude by highlighting the topic of manipulability of kine-
matic structures, an important component of our approach.

3.1 The Concept of Motion Planning

We will first give a definition of the basic motion planning problem. Furthermore, we
will introduce the notion of configuration space and describe how distances in that space
can be measured. At the end, we will outline the correlation between the workspace and
the configuration space in terms of obstacles.

3.1.1 Problem Definition

In the last decades several types of robotic platforms, such as mobile robots, fixed and
mobile base manipulators, as well as humanoid robots have been developed. While the
workspace of these platform may differ, all of them are expected to perform a variety of
tasks. In general, tasks can be of different nature. Robots, for example, consisting of a
single rigid body, also referred to as mobile robots, are typically required to drive from
one location to another. Fixed base manipulators, on the other hand, are usually ex-
pected to interact with objects in their accessible workspace. In the case of mobile base
manipulators or humanoid platforms, tasks often involve both locomotion and simulta-
neous manipulation. Here, the fundamental problem is to find a sequence of motions
that allow the robot to successfully execute such tasks. A first solution to this problem
is provided by trajectory planning methods. These methods have proven to be efficient,
but are only applicable under the simplifying assumption that the workspace is empty,
i.e., when it does not contain any obstacles. In most real world applications however,
the workspace is populated by obstacles and another technique, referred to as Motion
Planning, is adopted to solve the problem. As opposed to trajectory planning methods,
motion planning techniques enable a robot to successfully execute tasks while avoid-
ing collisions with obstacles. Another important issue in motion planning is whether
the obstacles are considered to be static or moving. In the former case, a geometric
representation of the obstacles can be made available in advance and planning can be

19

CHAPTER 3. BACKGROUND

Figure 3.1: The Piano Mover’s Problem in R3. A start and a goal posture in W (left) and a
solution to the motion planning problem (right), [26].

performed off-line. In the latter case the robot is required to adjust its motion according
to environment changes perceived via its on-board sensors. In this case planning is said
to be performed on-line. According to the literature [14] the problem of motion planning
is then defined as follows.

Let us consider a free-flying robot B moving in an Euclidean space W = RN , with
N = 2 or 3, also called the workspace. The workspace is assumed to be populated
by a number of i fixed obstacles, referred to as O1, . . . ,Oi. Furthermore, both the
geometry of B and O1, . . . ,Oi as well as the pose of O1, . . . ,Oi in W are supposed to
be known in advance. Given these assumption and a start and goal posture ps, pg for B
in W , the problem of motion planning is then formulated as follows: Find a sequence of
postures inW , also called a path, connecting the two postures ps and pg without hitting
any obstacles. If a path exists, return the solution found, otherwise report failure. A
classical version of this motion planning problem is sometimes referred to as the Piano
Movers Problem [25], in which movers are asked to transfer a piano in R2 from an initial
to a final posture. In the generalized version of the piano movers problem, as shown in
Fig. 3.1, the same task needs to be solved by moving the piano in R3.

Obviously, many of the assumption made in the classical formulation of the motion
planning problem are not valid in practice. First, many robotic platform are not free-
flying and are subject to nonholonomic constraints, i.e., the robot is not capable of
instantly moving in any direction. Secondly, the geometry and pose of obstacles are
not always known in advance and may probably change while the robot is moving,
thus making on-line motion planning inevitable. Moreover, manipulation and assembly
problems, that can be seen as a controlled collision between the robot and an object,
clearly do not conform with the assumptions described above. Although the classical
formulation does not capture these problems, it still represents a foundation to solve a
variety of more advanced motion planning problems.

While tasks assigned to the robot are usually defined in the workspace either in R2 or
R3, the problem of motion planning operates in another space, called the configuration
space, which will be the subject of the next section.

20

CHAPTER 3. BACKGROUND

3.1.2 The Configuration Space

In motion planning, a complete description of the geometry of a robot B and a workspace
W is provided. The workspace is a static environment populated with obstacles. In order
to find a collision-free path for B to move from an initial to a final location, a complete
specification of every point on the robot geometry is required. To achieve this, motion
planning approaches commonly use a convenient abstraction of the problem, called the
configuration space C. The advantage of this representation is that all possible poses
of the robot in W are reduced to single points in C, called configurations q. Thus, the
problem of motion planning for a robot becomes equivalent to motion planning for a
point in C [27]. When planning is performed in the configuration space it is of course
also mandatory to properly map the obstacles O contained in W to C. The resulting
portion of the configuration space occupied by these obstacles, also called obstacle region
Cobs , is then defined as

Cobs = {q ∈ C | B(q) ∩ O 6= ∅}. (3.1)

where B(q) ⊂ W denotes the set of points occupied by the robot in the workspace,
when being in the configuration q. The remaining set of collision-free configurations
is then finally given by Cfree = C \ Cobs , where \ is the subtraction operator used for
sets. For a detailed explanation of the relation between workspace obstacles and the
configuration space, we want to refer the reader to Sec. 3.1.4. While the workspace is
either of dimension 2 or 3, the dimension of the configuration space n is determined by
the minimum number of parameters needed to specify the configuration of the robot.
In practice, this number usually corresponds to the number of degrees of freedom of the
robot system. The simplest example one can think of is presented by a circular mobile
robot moving in a two-dimensional Euclidean space, whose configuration can be specified
by the location of its center (x, y), expressed w.r.t. some fixed coordinate system (see
Fig. 3.2). Then, given the radius of the robot platform r, one can easily deduce the set
of points occupied by the robot. Note that the workspace and the configuration space
are not identical in this case, although they have the same dimension.

Figure 3.2: Workspace and Configuration Space of a circular mobile robot. Obstacles are
mapped into C following the procedure explained in Sec. 3.1.4.

21

CHAPTER 3. BACKGROUND

q2

q1

Figure 3.3: Fixed base planar manipulator with two revolute joints (2R).

Figure 3.4: Configuration space of a 2R planar manipulator. A locally valid representation
as a Euclidean space (left) and the correct representation as a torus shaped space (right), [14].

This fact becomes particularly clear when we consider more complex robotic systems.
The configuration vector of a polygonal mobile robot, for example, contains a rotational
component θ in addition to a translation, thus making the C-space three-dimensional.
Even more complex is the problem of motion planning for fixed and mobile base manip-
ulators, where the configuration space often has a dimension of n > 5. The significant
difference between the configuration space of a circular mobile robot and mechanical
structures, whose configuration vector contain angular coordinates, is that the topology
of C does no longer correspond to an Euclidean space. To illustrate this issue, let us
consider a fixed-base planar manipulator with two revolute joints q1, q2, as shown in
Fig. 3.3, and two configurations qA and qB.

When representing the configurations qA and qB in an Euclidean space Q (see Fig. 3.4)
it obviously seems as the two configurations are far away from each other. However,
examining the corresponding postures of the robot in the workspaceW , it turns out that
qA and qB are actually very similar. This implies, that the representation as an Euclidean
space is only valid considering small fractions of C. A topology of the configuration space
that correctly reflects the properties of the workspace, is obtained by first bending Q
such that the two horizontal lines at q2 = 2π and q2 = 0 touch each other. The resulting
’tube’ then needs to be bent a second time such that the two ends are connected. At
the end we obtain a topology in the shape of a torus.

22

CHAPTER 3. BACKGROUND

3.1.3 Distance Metric

An important notion, used throughout all motion planning methods, is the configuration
space distance. The choice of the distance metric adopted, generally depends on the
topology of the configuration space C. For simplicity, let us again consider the circular
mobile robot, shown in Fig. 3.2, whose configuration is defined by the vector q = (x, y).
An approach to describe the distance between two configurations qA, qB, is presented
by considering the corresponding space in W , occupied by the set of points B(q) on the
robot B. With p(qA) and p(qB), being the location in W of a point p on the robot in
configuration qA and qB respectively, the distance can be defined as follows

d1(qA, qB) = max
p∈B
‖p(qA)− p(qB)‖, (3.2)

where ‖ · ‖ denotes the Euclidean distance, for our example in R2. Concisely said,
Eq. (3.2) defines the distance w.r.t. two points on the robot geometry that maximize
the displacement in the workspace.

In practical motion planning algorithms however, the computational expense to find
these points is not acceptable and the simple Euclidean norm, defined as

d2(qA, qB) = ‖qA − qB‖, (3.3)

is used instead. Recalling the discussion of the configuration space in the previous
section it reveals that the distance measures d1 and d2 are only appropriate as long as
C is euclidian or rather small fractions of C are considered.

For the 2R planar manipulator, such as the one shown in Fig. 3.3, the distance measures
do not correctly reflect the distance between two configurations on the torus. When the
configurations qA and qB are represented by a vector (q1, q2) of angular coordinates, the
following additional computations need to be performed

min diff [i] = min(|qA[i]− qB[i]|, 2π − |qA[i]− qB[i]|), for i = 1, 2 (3.4)

d3(qA, qB) =
√

(min diff [1])2 + (min diff [2])2. (3.5)

where qA[i] and qB[i] denote the value of the i-th angular component in configuration
qA and qB, respectively. Note that, besides being a correct measure for the distance
between two points on the torus, d3 only involves simple math operations. This issue
becomes particularly important when considering motion planning algorithms regarding
their runtime.

23

CHAPTER 3. BACKGROUND

3.1.4 C-Space Obstacles

So far, we have only discussed the representation of the robot B in the configuration
space. When searching in C for a collision-free path, the obstacles of the workspace
O obviously need to be represented in the same space as well. Here, the mapping of
obstacles again strongly depends on the configuration space topology. For the sake of
convenience, let us first consider C to be an Euclidean space, either R2 or R3. In this
case a representation of the obstacles in C can be obtained by circling the obstacles in
W with the point on the robot geometry, previously selected to represent the robot in
the configuration space. In Fig. 3.5, two examples of this mapping are illustrated.

As one can easily see, the shape of workspace obstacles simply grow when they are
mapped into C. When considering non-Euclidian spaces, as encountered with the 2R
planar manipulator, the same mapping becomes slightly more difficult. In this case, a
graphical representation of C-space obstacles can be generated by sampling the configu-
ration space with a proper resolution and applying collision checking (see Sec. 3.4.2) for
each of these configurations. In comparison to the mapping of obstacles in Euclidean
space this operation obviously comes along with a much higher computational effort.
Fig. 3.6 shows the result of the C-space obstacles building procedure for the 2R planar
manipulator in two different cases. Note that the configuration spaces shown are only
illustrated as squares for the purpose of a better understanding.

Figure 3.5: Examples of C-space obstacles. Mapping of a workspace obstacle (left column)
into the configuration space (right column) for a circular robot (top) and a polygonal robot
moving translational in W (bottom), [14].

24

CHAPTER 3. BACKGROUND

Figure 3.6: Examples of C-space obstacles for a 2R planar manipulator. The robot and
the obstacles in the workspace (left column) and the corresponding C-space obstacles in the
configuration space build by generating samples and applying collision checks (right column),
[14].

The correct visualization of the C-space as a two-dimensional torus would require to
apply the folding procedure described in Sec. 3.1.2. Examining Fig. 3.6, one can also
see that the assignment of configuration space obstacles to the respective workspace
obstacles becomes everything else than straightforward.

Many motion planning methods from the literature, such as the Cell Decomposition [16]
and Planning via Retraction [28] method, rely on the availability of an explicit represen-
tation of the C-space obstacles. In high-dimensional configuration spaces however, the
computational expense required for the building procedure typically becomes intractable
and other techniques such as Probabilistic Motion Planning are employed. As opposed to
the previously mentioned methods, probabilistic motion planning methods are capable
of finding collision-free paths without prior computation of such a representation.

25

CHAPTER 3. BACKGROUND

3.2 Probabilistic Motion Planning

Probabilistic approaches to motion planning follow the idea of randomly exploring the
configuration space in order to find a collision-free path. In probabilistic algorithms,
configurations are sampled from C using a specific sampling scheme and connected by
a local planner. In the following section, a brief overview of the basic components of
a probabilistic planner will be given. Moreover, we will present the available practices
to perform path search and path smoothing. At the end, the section concludes by
introducing the notion of completeness.

3.2.1 Sampling Strategies

Over the years, several strategies for sampling the configuration space have been devel-
oped. Depending on the complexity of the motion planning problem, the choice of the
sampling strategy can have a significant impact on the performance of a planner.

The simplest strategy, suitable for many problems, is to sample configurations randomly
from a uniform distribution. Although this strategy is easy to implement and works
well for high-dimensional configuration spaces, it has the disadvantage that, in difficult
planning problems, the running time of a planner might vary across different runs [15].
Another drawback of the strategy reveals when considering planning problems in which
the robot is required to traverse narrow passages in the configuration spaces in order to
reach a desired final destination. In this scenario, the probability of sampling collision-
free configurations within the narrow passage is very small and thus the planner is forced
to invest a lot of work, leading to a poor overall performance.

This problem motivates another kind of sampling strategy, referred to as obstacle-based
sampling [29]. Here, the idea is to generate samples in the vicinity of obstacle bound-
aries, thus allowing to discover collision-free paths through narrow passages. Initially
the strategy proceeds by sampling a number of random configurations using a uniform
distribution. Then each of these configurations is checked for collision. Instead of simply
discarding those configurations qc found to be in collision, the sampler generates stepwise
new configurations from qc in an arbitrary direction until a collision-free configuration
qfree has been found. Given qc and qfree , it finally performs a binary search to find the
closest configuration q to the contour of the obstacle contained in Cfree . At the end of
this procedure, q is added to the data structure maintained by the planner, while qc and
qfree are discarded.

Another approach to address the narrow passage problem is to sample the configuration
space by a Gaussian distribution that is biased towards the contour of obstacles [30].
The procedure applied by the so called Gaussian sampler is relatively simple. First,
a configuration q1 is randomly sampled from a Gaussian distribution. Then a second
configuration q2 at a distance d from q1 is generated. Here, the distance d is chosen ran-
domly from a uniform distribution. If both configurations are detected to be in collision

26

CHAPTER 3. BACKGROUND

or collision-free, both of them are discarded. Otherwise, if one sample is collision-free
and the other one is in collision, only the collision-free sample is added to the data
structure maintained by the planner.

An alternative sampling strategy that tries to keep the number of samples a plan-
ner needs to maintain as low as possible is presented by the visibility-based sampling
method [31]. In this context the visibility of a configuration q is defined with respect
to the number of previously sampled configurations that the local planner is capable to
connect to it. In order to be added to the list of configurations a planner maintains,
a configuration needs to satisfy one of the following criteria. Either none of the ex-
isting configurations in the list can be connected to q, in which case q is considered a
new component, or q allows to connect at least two elements from the list. By follow-
ing these rules, visibility-based sampling provides a way for exploring the configuration
space while keeping the storage requirements low.

Manipulability-based sampling is a further sampling strategy that considers the manip-
ulability measure associated with a manipulator for generating samples in C. Generally,
the manipulability indicates the freedom of motion of a manipulator in a given configura-
tion. In configurations, for example, with a high manipulability measure the kinematic
structure exhibits a high dexterity. Low values for the manipulability, on the other
hand, imply to be close to a singular configuration and thus allow only a limited range
of admissible motions for the manipulator. Considering this aspect in sampling, it is
naturally to sample those regions of C with a low manipulability more densely than areas
where manipulability is high. For doing so, the manipulability-based sampler builds a
cumulative density function (CDF) for the manipulability measure. Then, samples are
generated from the configuration space and rejected with a probability proportional to
the associated CDF value of their manipulability value [15].

3.2.2 Local Planner

The Local Planner of a probabilistic algorithm is the component in charge of connecting
points in the configuration space by a collision-free path. To do so it refers to the list
of configurations already sampled from C and maintained by the planning algorithm.
Then, given a randomly sampled configuration qrand , it first searches for the closest
configurations to qrand in that list, adopting one of the distance metrics introduced in
Sec. 3.1.3. In the following, this configuration is referred to as the nearest neighbor qnear .
The simplest strategy for connecting the two configurations is based on generating a
discrete set of intermediate states, equally spaced along the straight line segment joining
qnear and qrand in C. Note that while probabilistic roadmap methods typically consider
the whole segment, other methods only generate intermediate states towards qrand until a
certain distance ε from qnear is reached. Once the intermediate states have been created,
the local planner checks whether they are collision free (see Sec. 3.4.2). If yes, both the
last configuration along the line and the edge connecting it to qnear are added to the data
structure maintained by the algorithm. In Fig. 3.7 an example for the simple connection

27

CHAPTER 3. BACKGROUND

qrand

qnear
ε

Figure 3.7: Local Planner. Connecting configurations by a discrete set of intermediate states
along the straight line segment joining qnear and qrand .

qrand

qnear

Figure 3.8: Local Planner. Connecting configurations by incrementally generating control
inputs that move the robot from qnear towards qrand .

strategy is illustrated. Although the simple connection strategy represents an easy and
efficient way for connecting configurations, it often does not comply with constraints
imposed by robotic systems or tasks assigned. When dealing with systems subject to
nonholonomic or task constraints, another more advanced connection strategy needs to
be adopted. In the literature, kinematic or task constraints are typically formulated
in the context of control laws. Then, given a configuration qnear , these control laws
produce control inputs for the robotic system that generate an incremental motion from
qnear towards qrand while keeping the respective constraints satisfied. As before, collision
checks are performed as the point moves in C. Finally, the integration stops when either
qrand has been reached, an invalid state has been encountered or a certain preset time
has expired. The resulting motion in C, shown in Fig. 3.8, usually deviates from the
straight line segment between qnear and qrand . As with the simple connection strategy,
the final configuration reached and the edge from qnear is stored in the data structure
maintained by the planner.

28

CHAPTER 3. BACKGROUND

3.2.3 Path Search

In probabilistic motion planning we differentiate between single-query and multi-query
path search algorithms. Multi-query algorithms, like the Probabilistic Roadmap Plan-
ner [18], construct a graph by first finding a certain number of collision-free configu-
rations in C. After that, each of them is connected to the configurations in its neigh-
borhood. For all subsequent queries, the start and goal configuration simply need to
be connected to the nearest configuration of the graph. Then, a solution is found by
traveling from the start to the goal configuration along the edges of the roadmap while
considering a specific heuristic to decide which road to follow. This heuristic assigns a
cost to each configuration of the graph that usually corresponds to the distance to the
goal configuration.

Single-query algorithms, like the Rapidly Exploring Random Trees (RRT) Planner, search
for a collision-free path by growing trees in the configuration space. Here, the tree
growing procedure is repeated for each new query, for which reason these methods are
referred to as single-query methods. Approaches belonging to this kind of methods can
be additionally divided into unidirectional and bidirectional path search algorithm. In
unidirectional search, a single tree is grown from the start configuration until one of the
tree branches can be connected to the goal configuration. In bidirectional search, two
trees, rooted at the start and the goal configuration respectively, are maintained. When
performing a search both trees are grown in the configuration space until two branches
of trees are capable of joining each other. In order to accelerate the search, trees are of-
ten instructed to grow towards each other rather than exploring the configuration space
completely at random.

3.2.4 Path Smoothing

Paths generated by probabilistic motion planning algorithms can be quite ugly and
unnecessarily long [32]. Therefore, smoothing techniques are often applied to the raw
solution path as a post-processing step. Given a path P , i.e., the output of a probabilistic
planner, an improved result can be obtained by the following procedure.

Perform a certain number of iterations. At each iteration, pick two random configu-
rations q1 and q2 from P and try to connect them by using the local planner. If the new
path segment between q1 and q2 is valid, i.e., it does not violate any constraints and is
shorter than the original path segment in P , the original path segment is replaced by
the new one. By repeatedly performing this operation the raw solution path becomes
smoother and smoother. The smoothness of the final solution path obtained obviously
depends on the maximum number of iterations specified. Generally, path optimization
can be also carried out during the planning phase. In this way, the planner directly re-
turns a nice path. Doing so however, leads to an increase of the planning time. Fig. 3.9
shows an example of the smoothed path Pnew obtained from the raw solution path P
after performing a certain number of iterations.

29

CHAPTER 3. BACKGROUND

P

Pnew

Figure 3.9: Example of the smoothing operation applied to the raw solution path (dashed
line) obtained from the probabilistic planner.

Here, the original path P is illustrated as a dashed line. The course of the smoothed
path Pnew after a certain number of iterations is shown as a solid line. The grey surface
represents a configuration space obstacle.

3.2.5 Notion of Completeness

In motion planning, a planner is said to be complete if it is capable of producing a
solution within finite time or otherwise correctly reports that there is none. Often
the notion of completeness is defined with respect to some specific properties of the
motion planning algorithm. For grid-based search algorithms, like the Approximate Cell
Decomposition for example, the weaker notion of resolution completeness is used. This
notion indicates that the algorithm will find a solution to the motion planning problem,
given that the resolution of the underlying grid is chosen fine enough. In probabilistic
motion planning an even weaker notion, called probabilistic completeness is adopted.
By definition, this notion says that, given a problem that is solvable in the open free
configuration space, the probability that the planner solves the problem approaches 1 as
the running time of the algorithm goes to infinity [33]. According to these definitions.
one should keep in mind that it is not possible to conclude that there is no solution
to the problem, when probabilistic or resolution complete algorithms fail to find a path
within a preset time or resolution. On the other hand, complete algorithms are usually
considerably more expensive than probabilistic or resolution-complete methods, from a
computational point of view.

30

CHAPTER 3. BACKGROUND

3.3 Sampling-based Algorithms

Over the years, several probabilistic motion planning algorithms have been proposed in
the literature. For each of these algorithms, a variety of variants exist, that mainly differ
in the sampling and connection strategy adopted. Comparing the pros and cons of these
algorithms would certainly go beyond the scope of this work. For this reason we will
focus in the following on two algorithms, the Probabilistic Roadmap Planner and the
Rapidly Exploring Random Trees (RRT) Planner, as representatives of multi-query and
single-query planning algorithms.

3.3.1 Probabilistic Roadmap Planner

Creating a path in the configuration space using the Probabilistic Roadmap Planner is
considered as a two phase process: planning, and query [34]. In the planning phase the
planner keeps on sampling the configuration space until a certain number of collision-
free configurations has been generated. Each sampled configuration, or simply said
point in C, is connected to the neighbors lying within an area of predefined size. Here,
the connection between two points is established by a straight line path, that is only
maintained by the planner if it is found to be collision-free. The resulting network, called
a roadmap, stored by the planner is then used to solve all subsequent motion planning
queries. A summary of the steps required for the roadmap construction is presented by
Alg. 1 in pseudo-code, where S and R denote the set of configurations sampled from C
and the roadmap constructed, respectively [18].

Note that this operation needs to be performed only once, given that the planning
environment is static. An example of a roadmap build in C is illustrated in Fig. 3.10.

Algorithm 1: Roadmap Construction

1 S ← ∅ ;
2 R← ∅ ;
3 repeat
4 q ← random configuration from C ;
5 if q is collision-free then
6 begin
7 add q to S ;
8 choose subset Sq of S with candidate neighbors for q ;
9 forall q′ in Sq do

10 begin
11 if the local planner can connect q with q′ then
12 add connection (q, q′) to R ;
13 end

14 end

15 end

16 end

17 end

18 until maximum number of samples in S is reached;

31

CHAPTER 3. BACKGROUND

Figure 3.10: Probabilistic Roadmap Planner. Roadmap construction.

Figure 3.11: Probabilistic Roadmap Planner. Solution to a motion planning query (solid
path).

A motion planning query is specified by a start and goal configuration, qs and qg. In
order to solve a query, both configurations are connected in a first step to the respective
closest configuration of the roadmap. Then, starting from qs a solution path is found by
moving iteratively to the neighboring node providing the minimum distance to the goal
configuration. The distance metric used, usually corresponds to the Euclidean norm.
The solution for a given start and goal configuration is shown in Fig. 3.11 as a thick,
solid path.

Here, the roadmap shown in Fig. 3.11 consists of a single connected component. This
means, that one can travel from any point to any other point by following the roads of
the graph. Sometimes however, and especially when C contains narrow passages, the

32

CHAPTER 3. BACKGROUND

roadmap has disconnected components. Sampling the configuration space extensively
might solve this problem but would lead to a much higher computational expense. In
particular, this effort is exaggerated when only rather simple motion planning problems
are to be considered in the query phase. Moreover, in non-static planning environments,
the roadmap needs to be rebuilt every time the environment changes. In this case it is
often more efficient to refer to single-query motion planning methods.

3.3.2 Rapidly Exploring Random Trees Planner

A RRT Planner is a single-query probabilistic motion planning algorithm that searches
for a path by incrementally expanding trees T in the configuration space. From an
algorithmic point of view, trees are represented by a data structure, also referred to
as a Rapidly Exploring Random Tree. As opposed to the PRM planner, this kind of
algorithm only explores a subset of the configuration space, relevant for solving the
query in mind [14]. Furthermore, the tree growing procedure is repeated for each new
query, for which reason this approach is referred to as a single-query method. The
routine to be repeatedly applied for growing the trees in C proceeds as follows.

At the beginning of each iteration a random configuration qrand is sampled from C
according to a uniform probability distribution. Then, the closest configuration to qrand
in T , also called the nearest neighbor qnear , is found and the local planner generates
a new configuration qnew at a distance ε from qnear along the segment connecting qnear
and qrand . Afterwards, both qnew and the segment joining it to qnear are checked for
collisions. If they are found to be collision-free, the search tree T is expanded by the
new configuration and that segment. Note that no collision check needs to be performed
for qrand , since it is only used to indicate a direction for the tree expansion and is rejected
by the planner at the end of each iteration anyway.

qstart

qrand
qnew

qnear
ε

Figure 3.12: Example of a tree expansion step.

The simplest form of a RRT Planner grows a single tree rooted at the start configuration
qstart . Then, during the search the tree tries occasionally to connect to the goal configu-
ration by using it as qrand in the tree expansion procedure. Often however, a faster and

33

CHAPTER 3. BACKGROUND

more efficient variant, called the bidirectional RRT, is used instead. With this variant,
two trees, rooted at the start and goal configuration respectively, are grown. Here, the
latest configuration added to a tree Ta is used as qrand for the expansion of the other tree
Tb in order to minimize the effort required for the search.

A further, greedier version of the RRT Planner, is presented by the RRT-CONNECT
algorithm [7]. Note that this planner will serve as a foundation for the whole-body
motion planner developed in this thesis. Furthermore, the planner will be extended
towards manipulation of articulated objects. The pseudo-code of the generic RRT-
CONNECT algorithm is described in Alg. 2.

After initialization (Line 1), two search trees Ta and Tb are grown from qstart and qgoal.
At each iteration i the function RAND CONFIG returns a random configuration sam-
pled from C. Afterwards, the tree denoted by Ta is expanded by a new configuration qnew
and path segment, as depicted in Fig. 3.12. Here, the outcome of the EXTEND func-
tion (Line 4) can be of three different kinds: REACHED, ADVANCED or TRAPPED.
TRAPPED is returned, when either qnew is found to be in collision or the local planner
failed to generate a valid path segment between qnear and qnew . ADVANCED is the
return value obtained when qnew and the path segment are both valid. For obtaining
REACHED, the same conditions as with ADVANCED need to be satisfied. Addition-
ally REACHED indicates that qrand has been chosen as qnew , which is the case when the
distance between qnear and qrand is below ε. The greedy element of the algorithm is in-
troduced by the CONNECT function (Line 5 of Alg. 2), described in Alg. 3. As opposed
to the classical bidirectional RRT, the second tree Tb is expanded multiple times in the
direction of the latest configuration added to tree Ta. As indicated by Line 3 of Alg. 2,
the expansion of Tb proceeds until the configuration of Ta is reached or an invalid con-
figuration has been encountered. If CONNECT returns REACHED a solution has been
found and the resulting path is returned by the planner. Otherwise, the two trees are
swaped (Line 12 of Alg. 2), i.e the tree denoted by Ta becomes Tb and vice versa. These
steps are iteratively repeated until a solution has been found or a predefined maximum
number of iterations I has been reached, in which case the planner reports failure.

Algorithm 2: Generic RRT-Connect(qstart, qgoal)

1 Ta.init(qstart); Tb.init(qgoal) ;
2 for i = 1 to I do
3 qrand ← RAND CONFIG() ;
4 if not (EXTEND(Ta, qrand) = TRAPPED) then
5 if (CONNECT(Tb, qnew) = REACHED) then
6 return PATH(Ta, Tb);
7 end

8 end
9 SWAP(Ta, Tb) ;

10 end
11 return FAILURE

34

CHAPTER 3. BACKGROUND

Algorithm 3: CONNECT(T , q)

1 repeat
2 S ← EXTEND(T , q) ;
3 until not (S = ADVANCED) ;
4 return S ;

3.4 Motion Constraints

The goal of motion planning is to find a path, i.e., a sequence of configurations, that
drives a robot’s end-effector from a start to a goal pose in the workspace. So far, a
solution has been considered feasible if the waypoints and local paths between them
are collision-free. In practice however, several other constraints need to be taken into
account for planning. In the following, the basic constraints involved in motion planning
for humanoid robot platforms will be presented.

3.4.1 Actuator Limitations

Robots are mechanical systems consisting of serial and/or parallel kinematic chains,
whose links are actuated by a sequence of motors, also called joints. Motors or joints are
generally subject to geometric and differential constraints, typically specified in the robot
data sheet or a robot description file made available by the robotic platform provider.
Geometric constraints disclose a range of admissible values a joint can take. Accounting
for these kinds of constraints in motion planning is a relatively simple issue. Given a list
of joint limit pairs, probabilistic algorithms often randomly sample joint values within
the bounds according to a uniform distribution. Differential constraints, on the other
hand, specify the maximum velocities and accelerations the robot’s actuators are ca-
pable to execute. While motion planning can be performed considering only geometric
constraints, also referred to as geometric planning, differential constraints are essential
when it comes to motion execution. Geometric motion planners proceed by first search-
ing the configuration space for a collision-free path. Afterwards the geometric path is
transformed into a valid joint trajectory, taking into account the differential constraints.
Another class of planners use control laws to generate a sequence of collision-free con-
figurations in C. In this case differential constraints are already involved in the planning
phase.

35

CHAPTER 3. BACKGROUND

3.4.2 Collision Avoidance

Collision detection is a fundamental element of the sampling and validate scheme ap-
plied by probabilistic motion planning algorithms. From a theoretical point of view, the
problem of collision detection can be considered as a separate field of research. Due to
its complexity, the choice of the collision detection algorithm applied in motion plan-
ning significantly influences the overall performance of a planner. A first approach to
figure out whether a certain configuration is in collision, is presented by performing an
interference check between the robot and obstacle geometry. In practice, this is done by
finding the minimum distance between the geometries. If the distance is negative, the
current configuration is found to be in collision. Often however, robots are constituted
by complex geometries and finding the minimum distance becomes a computational ex-
pensive operation. Therefore, the robot geometry is usually approximated by simple
geometric shapes, such as cylinders and spheres, in order to speed up the computation.
Additionally these shapes are enlarged to obtain a so called safety margin. In Fig. 3.13,
the approximation of the HRP-2 robot model used for collision checking is illustrated.

Figure 3.13: Original model of the HRP-2 robot (left) and approximation model for collision
detection and distance computation (right), [35].

Another approach for collision detection is to consider the area or volume swept by the
robot by moving through a sequence of configurations. Here, as opposed to the previous
approach, an entire path can be checked for collisions at once. As before, an interference
check is performed, this time considering the robot and obstacle volumes. On the other
hand, the computation of these volumes can be very expensive. Note that with some
robotic platforms, especially those containing parallel kinematic chains, one needs to
check additionally for self-collisions, i.e., when different parts of the robot come into
contact. An example for the swept volume technique, applied to the DLR’s humanoid
robot Justin, is shown in Fig. 3.14.

36

CHAPTER 3. BACKGROUND

Figure 3.14: Right and left side view of swept volumes generated by a motion from one to
another configuration, [36].

In practical motion planning applications, the collision detection algorithm used is often
considered a black box. In the literature, several collision detection libraries, such as
FCL, PQP and ODE [37, 38, 39] are presented and provided to the motion planner
developer.

3.4.3 Closure Constraint

In the sampling schemes presented in Sec. 3.2.1, joint values were assumed to be inde-
pendent from each other. This assumption however is no longer valid when considering
kinematic structures whose links are arranged to form loops. In this case, some of the
joints angles must be chosen such that the loop remains closed. In the case of a humanoid
robot, for example, closed kinematic chains occur when an object is manipulated using
both hands or the legs of the robot are assumed to remain fixed on the ground during
a motion. A general representation of a closed kinematic chain is shown in Fig. 3.15,
where two fixed base manipulators with a common joint (red disc) form a closed loop
together with the ground plane.

Figure 3.15: Two fixed base manipulators with a common joint (red disc) build a closed
kinematic chain.

37

CHAPTER 3. BACKGROUND

Figure 3.16: Example of a link decomposition into active and passive vectors of joint variables,
[17].

In order to account for the closure constraint, the sampling procedure of motion planning
algorithms need to be adapted. A first approach is presented by the Active-Passive Link
Decomposition method [40]. With this approach, the configuration vector q is split into
a vector of active joint variables qa and a vector of so called passive joint variables qp.
A possible decomposition for a robot constituted by seven revolute joints is shown in
Fig. 3.16. With this choice, the kinematic structure has four degrees of freedom. Then,
the method proceeds by randomly sampling values for the active joint variables qa.
Afterwards the remaining passive joint variable qp are determined by solving the inverse
kinematics (IK) problem in order to satisfy the closure constraint. Note that while for
some choices of qa multiple IK solutions for qp exist, most of the sampled configurations
qa will not allow to find a solution to the IK problem.

Another method, called the Random Loop Generator [41], improves the constraint sat-
isfaction success rate by iteratively choosing values for the variables in qa that allow an
inverse kinematic solution for the passive variables in qp. A prerequisite for this approach
is that the chosen active joints appear sequentially along the kinematic chain, i.e., they
are not interrupted by a passive joint. In a first step an interval I1 of admissible values
for the first active joint qa1 is computed. According to some geometrical analysis, it is
known that for all values qa1 outside this interval, no IK solution for the passive chain
exists. In practice, this analysis can be performed by checking whether the passive chain
can reach the accessible workspace spanned by the active chain, given a value for qa1 .
Once a value for qa1 has been sampled from I1, an interval I2 of allowable joint values
for qa2 is computed. As before, a value of qa2 is sampled from I2 and an interval for the
subsequent active joint is determined. This procedure is repeated until a value has been
assigned to each active joint or the generator has detected that no admissible assignment
is left for one of the joints. If the set of admissible values Ii for an active joint qai is
found to be empty, all previous assignments are discarded and the whole procedure is
repeated. Otherwise, the vector qa is used to find values for the passive variables in qp

through inverse kinematics.

38

CHAPTER 3. BACKGROUND

3.4.4 Stability Constraint

When planning is performed for humanoid robots or mobile manipulators, it is impor-
tant to ensure that the motions generated do not cause the robot to fall over. From
a geometrical point of view, the stability constraint implies that the projection of the
Center of Mass (CoM) of the robotic structure is required to stay inside the support
polygon throughout the motion. This formulation of the constraint is also referred to as
static stability. An extension of this concept is presented by considering dynamic stabil-
ity, where the dynamics of a system are taken into account to maintain equilibrium [42].
Motion planning algorithms however, often aim at generating a statically stable path in
the configuration space. Afterwards, this path can be transformed into a dynamically
stable path in a post-processing step. Recalling the sampling procedures from Sec. 3.3,
we know that each new configuration needs to be checked for validity before adding it
to the data structure maintained by the planner. In order to determine validity of a
configuration concerning the stability constraint, the first task is to find the location of
the CoM. For simplicity, let us consider the serial chain with four links joined by revolute
joints, as depicted in Fig. 3.17.

For each link of the kinematic chain, the length li and the mass mi are assumed to be
given. Furthermore, it is supposed that the robot description provides the location of the
center of mass ci = [cix, ciy, ciz]

T for each link, expressed in the respective reference frame.
From the geometric description of the chain bodies, we can derive the homogeneous
transformation matrices Ti, defined as

Ti =

[
Ri di
0 1

]
, (3.6)

where Ri and di denotes the 3 × 3 rotation matrix and the translation vector of the
i-th link frame with respect to the preceding link frame, respectively. The total mass
of the system is simply obtained by summing up the individual masses of the links
M = m1 +m2 +m3 ++mi.

d1

d2
d3

d4
c1

c2

c3

c4

Figure 3.17: Parameters of a 4 link serial chain manipulator.

39

CHAPTER 3. BACKGROUND

The CoM location for the entire system in Fig. 3.17 is obtained by computing the sum
of each link’s CoM divided by the total mass M [43]:

CoM =

m1T1

{
c1
1

}
M

+

m2T1T2

{
c2
1

}
M

+

m3T1T2T3

{
c3
1

}
M

+

m4T1T2T3T4

{
c4
1

}
M

. (3.7)

A humanoid robot is composed of several such kinematic chains. In this case, the overall
CoM location can be obtained by computing the weighted average of the individual chain
CoMs, determined according to Eq. (3.7).

Once the CoM for the anthropomorphic structure is known, we need to check whether
its projection onto the support plane is within the boundaries of the so called support
polygon. The support polygon is defined as the convex hull established by the pressure
point of the structure on the ground. Therefore, the shape and size of this polygon
depends on whether the robot is currently in single leg (one foot on the ground) or
double (both feet on the ground) support mode. An example of the support polygon
(solid black line) for a double support configuration and the location of the projected
CoM (green dot) is shown in Fig. 3.18.

If the projection of the CoM is inside the support polygon, as depicted, the configura-
tion is said to be statically stable. Otherwise, if the point is found to be outside the
boundaries of the polygon the robot would fall over when adopting that pose. In motion
planning algorithms, this check is performed iteratively during the roadmap construc-
tion or tree expansion process. Based on the outcome of this operation, configurations
are rejected or further processed by the respective planner.

Figure 3.18: Support polygon (black line) and projected CoM (green dot).

40

CHAPTER 3. BACKGROUND

3.5 Manipulability of Kinematic Structures

Manipulability is defined as the ease of arbitrarily changing the position and orientation
of the end-effector located at the tip of a manipulator. This freedom of motion plays an
important role when an interaction between the robot and the environment is intended.
Since the ability to manipulate strongly depends on the configuration of the robot, it is
necessary to recall some general mathematical relationships. A task r is usually defined
by a vector of m variables and the relation between a configuration q, i.e a vector of n
joint values θ, and r is expressed as

r = f(q), (3.8)

also known as the forward kinematics equation. Then, the relation between the joint
velocities q̇ and the task velocity ṙ is given by the derivative of Eq. (3.8) as follows

ṙ = J(q)q̇, (3.9)

where J(q) denotes the Jacobian matrix of the manipulator in configuration q. Analyzing
the rank of J(q) reveals some important properties of the kinematic structure. When
the following condition is satisfied

max
q

rank J(q) = m, (3.10)

the manipulator is said to have a degree of redundancy of (n − m). Otherwise, if the
manipulator jacobian looses rank in a certain configuration q∗, i.e.,

rank J(q∗) < m (3.11)

the robot is said to be in a singular configuration. In this case, the task vector r specifying
the end-effector pose cannot move in a certain direction and thus the manipulability is
reduced. An explicit measure of the manipulability, represented by a scalar value w, has
been introduced by Yoshikawa in [44]:

w =
√

det J(q)JT (q). (3.12)

When considering non-redundant manipulators, i.e., when m = n, Eq. (3.12) can be
reduced to

w = | det J(q)|. (3.13)

There also exists a graphical representation of manipulability. When considering the set
of joint velocities of unit norm, defined according to

q̇T q̇ = 1, (3.14)

and substituting in the above equation q̇ with the expression obtained by rearranging
Eq. (3.9), one gets

ṙT (J(q)JT (q))−1ṙ = 1, (3.15)

41

CHAPTER 3. BACKGROUND

which is the equation of points on the surface of an ellipsoid in the end-effector velocity
space [14]. Here, the superscript T denotes the transpose of the matrix. The direction
and dimension of the principal axes of the ellipsoid, centered at the end-effector frame,
then follow by computing the singular value decomposition (SVD) of the matrix JJT .
Note that in the following, the argument q of the Jacobian is simply omitted for conve-
nience. The directions of the principal axes are given by the eigenvectors of the matrix
JJT while the dimensions are determined by the singular values σi of J , computed as

σi =
√
λi(JJT), (3.16)

where λi denotes the i-th eigenvalue of JJT . Examples of the velocity ellipsoid for an
2R planar manipulator in different configurations is shown in Fig. 3.19.

The shape of the ellipsoid indicates that large velocities can be applied in the direction
of the major principal axis while only small velocities are possible in the direction of the
minor axis. A similar representation for the manipulability is also available considering
forces instead of velocities. The principal axes of the force ellipsoid have the same
direction as the axes of the velocity ellipsoid. The dimensions of the axes however,
are interchanged with respect to the velocity ellipsoid. This fact indicates, that only
small forces can be applied in directions allowing large velocities and vice versa. For
further reading about velocity manipulability and a detailed explanation of the force
manipulability the reader is referred to the literature [44, 45, 14, 27].

Figure 3.19: Manipulability ellipsoid for a 2R planar manipulator in different configurations,
[14].

42

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

4 Motion Planning for Humanoids

Planning whole-body motions for a humanoid robot is a challenging task due to the
high dimensionality of the configuration space and the constraints involved. In this
work, a probabilistic approach has been chosen in order to realize whole-body motion and
manipulation planning, since the method is known to be of remarkable efficiency for these
kind of problems. In particular, when whole-body motions for manipulation actions have
to be planned, several constraints need to be considered during the search, e.g., stability
of the humanoid needs to be ensured, collisions need to be avoided and manipulation
constraints must be taken into account such that the robot’s hand remains attached to an
articulated object to be manipulated. To ensure contact with the articulated object, our
planner forces hand poses of generated configurations to follow the trajectory of an object
handle. Here, we consider the entire task of object manipulation as two motion planning
problems: reaching and manipulation. The sampling-based motion planner, developed
in this thesis, is capable to solve both of these problems efficiently. In the following, we
will first present the assumptions considered for planning whole-body motions. Then,
we will focus on the task of planning statically-stable collision-free whole-body motions
in the absence of manipulation constraints. Afterwards, the planner is extended towards
manipulation of articulated objects. At the end of the chapter, additional information
on the software and tools used for the implementation will be given.

4.1 Planning Assumptions

Currently, we consider the environment of the robot to be known, i.e., the robot does not
need to execute any sensor actions during planning. Thus, the joints of the head, which
contains sensors for perceiving the environment, remain unarticulated. Additionally the
hands are only required when grasping. Therefore, planning is performed considering
only a subset of the total DOF of the robot. Note that although both, the head and
hands are not actuated during planning, their contribution to the robot’s overall CoM
location is considered for checking static stability. Furthermore, both of them are taken
into account in the collision checking procedure.

Moreover, it is assumed that the robot remains in double support, i.e., with both feet
fixed on the ground, during the search for a whole-body motion. As we will see later,
this condition is essential to account for the stability constraint during the exploration
of the configuration space.

Another important issue in motion planning is collision avoidance. As mentioned earlier,
probabilistic motion planning algorithms do not require to compute an explicit represen-

43

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

tation of the free configuration space in advance. Instead, collision checks are iteratively
applied to the randomly sampled configurations using external algorithms. Detecting
collisions requires the knowledge of the geometry and location of the obstacles in the
workspace. In this work, we assume the information to be given. Furthermore, we sup-
pose that the shape and the location of obstacles do not change during planning, i.e.,
the environment is considered to be static.

Manipulating articulated objects requires to solve two motion planning problems. First,
starting from an initial statically-stable double support configuration, a whole-body
motion needs to be planned for reaching the object handle with the robot’s hand. For the
scope of this work, we assume that the handle is already within the reachable workspace
of the robot. Once the handle has been grasped, a second motion plan for manipulating
the object needs to be found, taking into account the manipulation constraints. For
the former motion planning problem, we assume that the pose of the object’s handle is
specified with respect to some fixed coordinate frame in advance. For the latter, it is
supposed that a model of the articulated object is provided. Within the scope of this
work, we will consider a door and a drawer as objects to be manipulated (see Sec. 4.3.1).
In this case, manipulation requires to ensure that the robot’s hand remains on a circular
arc or a straight line during the motion. Generally however, it is important to note
that the planner developed is also capable of dealing with any other type of articulated
objects.

4.2 Whole-Body Motion Planning

The planner developed in this thesis builds upon the RRT-CONNECT algorithm [7],
which has already demonstrated the ability to efficiently find solutions to planning prob-
lems in high-dimensional domains. The basic idea of RRT-CONNECT is to grow two
search trees, one from the start and one from the goal configuration. The search trees
are iteratively connected by randomly sampling configurations and extending the trees.
In the following, the variant of RRT-CONNECT for whole-body motion planning under
stability and collision avoidance constraints will be described.

4.2.1 RRT-CONNECT Planner for Humanoids

As described in Sec. 3.3.2, the generic version of the RRT-CONNECT planner explores
the configuration space by expanding two trees towards randomly sampled configura-
tions. With a humanoid robot however, most of these samples correspond to unstable
whole-body poses and moving towards these configurations would likely cause the robot
to lose its balance. Hence, our planner follows the idea of pre-computing a set of stati-
cally stable configurations [19] that are subsequently used to guide the search in the tree
expansion process (see Sec. 4.2.2). In the following, we will explain the basic functional-
ity of the RRT-CONNECT planner for a humanoid robot in the absence of manipulation
constraints.

44

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

Algorithm 4: Humanoid RRT-CONNECT (qstart, qgoal)

1 ns.q ← qstart
2 ng.q ← qgoal
3 Ta.init(ns); Tb.init(ng);
4 for i = 1 to max iter do
5 qrand ← RAND DS CONFIG(DS DATABASE)
6 if not (EXTEND(Ta, qrand) = TRAPPED) then
7 if (CONNECT(Tb, Ta.last.q) = REACHED) then
8 PATH(Ta, Tb) ← PATH SHORTCUTTER(Ta, Tb)
9 return PATH(Ta, Tb)

10 end

11 end
12 SWAP(Ta, Tb)
13 end
14 return FAILURE

Algorithm 5: EXTEND (T , qref)

1 nnear ← FIND NEAREST NEIGHBOR(T , qref)
2 nnew.q ← NEW CONFIG(qref, nnear.q)
3 if IS CONFIG VALID(nnew.q) then
4 T .add node(nnew)
5 T .add link(nnear, nnew)
6 if nnew.q = qref then return REACHED
7 else return ADVANCED

8 end
9 return TRAPPED

Algorithm 6: CONNECT(T , qref)

1 repeat
2 S ← EXTEND(T , qref) ;
3 until not (S = ADVANCED) ;
4 return S ;

In Alg. 4 the individual steps performed by our planning algorithm is shown in pseudo-
code. Each element of the search trees contains a whole-body configuration q and addi-
tional information, that will become particularly important when dealing with planning
under manipulation constraints. Therefore, we will refer to the elements of a tree as
nodes n rather than only configurations. As input, the planner takes two collision-free
statically stable double support configurations qstart and qgoal. While the start config-
uration usually corresponds to the current state of the robot, the goal configuration is
generally not known in advance but has to be generated from the task constraints as
described in Sec. 4.2.3.

After initialization (Line 3 of Alg. 4), two search trees Ta and Tb are grown from qstart and
qgoal until a solution has been found or a maximum number of iterations max iter has

45

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

been reached. At each iteration i the function RAND DS CONFIG returns a random
statically stable whole-body pose qrand from the precomputed database DS DATABASE.
Then, the tree Ta is expanded by a single step (see Fig. 3.12) calling the EXTEND proce-
dure, as described in Alg. 5. Here, the function FIND NEAREST NEIGHBOR (Line 1
of Alg. 5) finds the node nnear containing the configuration qnear , i.e., the nearest con-
figuration to qrand in Ta, by evaluating the Euclidian norm of the configuration space
distances as follows

qnear = arg min
qi∈Ta

‖qrand − qi‖. (4.1)

Once qnear has been found, the function NEW CONFIG (Line 2 of Alg. 5) first computes
the unit direction vector qdir for the tree expansion, defined as

qdir =
qrand − qnear
‖qrand − qnear‖

, (4.2)

and tries to extend Ta by a new configuration qnew generated at a distance ε from qnear
in the direction qdir :

qnew = qnear + ε · qdir , (4.3)

with ε ∈ [0, 1] being a global step parameter, specified in the planner setup. The choice
of the ε parameter plays an important role regarding the performance of the planner.
While large values for ε are advantageous to obtain a fast tree growth in largely free
configuration spaces, small values are more appropriate to safely explore highly cluttered
environments. Note, that if the distance between qnear and qrand is found to be below ε,
qrand is chosen as the new configuration qnew instead.

With the IS CONFIG VALID function (Line 3 of Alg. 5) the algorithm then checks
whether qnew and the path joining it to qnear satisfy all constraints involved. Checking
for validity in the absence of manipulation constraints means to determine whether qnew
and the sequence of configurations joining it to qnear are statically-stable and collision-
free. Since collision checking is far more computationally expensive than determining
static stability, it is natural to perform the stability check first. While for geometric
planning it might be sufficient to check whether the projection of the CoM is inside the
support polygon for a given configuration, the system dynamics may cause the CoM to
leave the support polygon when executing the whole-body motion trajectory. Therefore,
the stability check is performed using a scaled version of the original support polygon
and thus the planning algorithm is capable to approximate the system dynamics to a
certain extent. As the ε parameter, the scaling factor is specified in the planner setup and
should be chosen according to the desired path execution speed. Using a scaled double
support polygon for the stability check, as shown in Fig. 4.1, has shown to produce safe
whole-body motions while maintaining a sufficient freedom of motion for the robot.

46

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

Original Support Polygon

Scaled Support Polygon

Safety Margin

Left Foot

Right Foot

Figure 4.1: Original and scaled support polygon used for checking static stability.

If the new configuration qnew and the path segment have passed the stability check,
the IS CONFIG VALID function proceeds with the collision check. As described in
Sec. 3.4.2, the computational effort for this operation can be reduced by using an ap-
proximation of the original robot model geometries. In this work, an approximation
has been obtained by generating a low-vertex version of the original robot mesh model.
Since a humanoid robot is composed of parallel kinematic chains one should note that
configurations need to be checked for self-collisions in addition to collisions with obsta-
cles.

If qnew or the path segment has been found to be unstable or in collision, both of
them are rejected and EXTEND returns TRAPPED . In this case, the two trees are
swapped (Line 12 of Alg. 4), i.e., the tree denoted by Ta becomes Tb and vice versa and
the algorithm proceeds with a new iteration i+ 1. Otherwise, if the new configurations
qnew and the path segment joining it to qnear have been determined to be valid, a new
node nnew containing the new configurations and the path segment are added to the tree
Ta. Then, the EXTEND function returns either REACHED or ADVANCED , depending
on whether qnew corresponds to the random configuration qrand or not.

Provided that the return value is not TRAPPED , the algorithm proceeds with the
extension of the tree Tb towards the configuration qnew (which is now denoted as Ta.last.q
in Alg. 4) just added to Ta. Here, the CONNECT function (Line 7 of Alg. 4), described
in Alg. 6, extends the tree Tb multiple times by iteratively calling the EXTEND function.
The search for the nearest neighbor to Ta.last.q in Tb, as defined by Eq. (4.1), actually
needs to be performed only at the first EXTEND iteration. For all subsequent EXTEND
operations, the nearest configuration simply corresponds to the configuration of the last
node added to Tb. As indicated in Line 3 of Alg. 6, this extension continues until either
Ta.last.q has been reached by Tb or an invalid configuration has been encountered. An
example of the extension procedure applied by the CONNECT function is shown in
Fig. 4.2.

47

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

qstart

qgoal

qnew ε
ε

ε

Figure 4.2: Example of the tree expansion with CONNECT.

When an invalid configuration has been encountered during the expansion of Tb, the
CONNECT function returns TRAPPED , the two trees are swapped and Ta is expanded
towards another randomly chosen configuration from the database DS DATABASE in
the next iteration. Otherwise, if Ta.last.q is reached from Tb, the two trees are con-
nected and thus a valid path has been found. Often, and especially when planning is
performed in cluttered environments, the resulting path contains a high number of ex-
traneous nodes. Therefore, the planner finally calls the PATH SHORTCUTTER (Line 8
of Alg. 4), that tries to remove unnecessary nodes from the solution path while main-
taining the validity of the solution (see Sec. 4.2.4). Note that creating shortcuts between
configuration of the path is only admissible for motion plans regarding posture changes.
The application of this procedure to a manipulation motion plan could cause a violation
of the manipulation constraints defined by the articulated object in Cartesian space.
After planning, the geometric path obtained is transformed into a smooth whole-body
motion trajectory using an approach similar to the one described in [46] (see Sec. 4.2.5).

4.2.2 Precomputing Stable Configurations

Inspired by the idea of Kuffner et al. [19], a pre-computed set of stable whole-body
configurations is used for tree expansion to speed up the search for valid states. This
set is built by iteratively sampling whole-body configurations respecting the joint limits.
In the sampled configurations, the leg joint angles are adjusted so that the robot is
in double support mode. To do so, we follow the Active-Passive Link Decomposition
method introduced in Sec. 3.4.3. In this work, we have chosen the frame of the right
foot Frfoot as the root of the kinematic model (see Fig. 4.3) and adapt the left leg
configuration to reach the desired pose of the left foot. Generally, one should note that
the choice of the active chain is arbitrary in double support mode.

For each sample generated, the 6D rigid body transform of the hip frame T rfoot
hip , expressed

in Frfoot , is obtained from the forward kinematics of the right leg chain (i.e., the active

48

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

x y

z

x y

z

x

y
z

Figure 4.3: Frames of the kinematic model.

chain). From the fixed transformation T rfoot
lfoot , which denotes the desired pose of the left

foot relative to the right, T hip
lfoot expressed in the hip frame Fhip can be computed as

follows

T hip
lfoot = (T rfoot

hip)−1 · T rfoot
lfoot

= T hip
rfoot · T

rfoot
lfoot ,

(4.4)

where (·)−1 denotes the inverse of a transformation matrix T . Considering the hip frame
as the root of the left leg chain (i.e., the passive chain), the inverse kinematics (IK)
problem for the desired left foot pose is solved numerically using the recursive Newton-
Raphson algorithm [47]. Here, the right leg configuration of the sample is used as an
initial guess for the joint values of the left leg chain. Then, velocities for the left leg joints
are computed in order to incrementally reduce the error between the current and the
desired left foot pose. Finally, the IK recursion stops when the error between the current
and desired pose goes below a preset threshold. If an IK solution exists, the modified
whole-body configuration is added to the database DS DATABASE if it is free of self-
collisions and statically stable. Moreover, it is important to note that these configuration
only serve to specify a direction for the tree expansion process and thus stability can be
checked using the original support polygon, as shown in Fig. 4.1. Generally, building
this database of statically stable configurations needs to be performed only once since
it is independent of the planning scenario or environment. Sets for single support mode
(left or right) can be constructed in a similar fashion, without the second leg adjustment
step. Examples of statically stable double support configurations from the generated
database are shown in Fig. 4.4.

49

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

Figure 4.4: Examples of statically stable double support configurations from the database
DS DATABASE for the NAO robot.

4.2.3 Goal Pose Generation

When planning whole-body motions for manipulation, the goal configuration has to fulfill
several requirements. For manipulation actions, the hand pose of the goal configuration
used within RRT-Connect depends on the object to be manipulated. In order to obtain
a valid goal configuration with a specific hand pose, our approach first generates double
support configurations according to the method presented in Sec. 4.2.2 and then adapts
the arm configuration as explained in the following.

In this work, we assume that the 5D grasping goal as desired 3D world coordinate
and z-axis direction of the grasp frame Fgrasp (see Fig. 4.3), located at the tip of the
hand, is given according to the object to be manipulated. Accordingly the roll and
pitch angles (i.e. x, y-axis rotations) of the grasp frame are fixed. From this data, the
desired hand pose can be expressed w.r.t. the chosen root frame Frfoot by a homogeneous
transformation matrix T rfoot

grasp . Then, for each double support configuration generated,

the transformation T rfoot
torso is obtained by computing the forward kinematics for the serial

kinematic chain rooted at the right foot and considering Ftorso as the end-effector frame.

50

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

Afterwards, the grasp frame Fgrasp can be expressed w.r.t the torso frame Ftorso by means
of basic kinematics computations:

T torso
grasp = (T rfoot

torso)−1 · T rfoot
grasp

= T torso
rfoot · T rfoot

grasp .
(4.5)

Now, considering the serial chain composed by the joints between Ftorso and Fgrasp , the
goal configuration generator tries to solve the 5D inverse kinematics problem for the
desired hand pose in closed form. In general, it is also possible to solve the IK for a full
6D hand pose. In this application however, we want to leave the the yaw angle (z-axis
rotation) of Fgrasp unconstrained to allow for a larger set of possible grasp poses. If no
solution has been found to the inverse kinematics problem, the whole-body configuration
is rejected and a new double support configuration is generated. Otherwise, if the desired
hand pose is within the reachable workspace of the robot in the current configuration,
often multiple IK solutions for the arm chain exist. In this case, the IK solutions found
are evaluated considering the manipulability measure introduced in equation Eq. (3.13).
Recalling that in this work, object manipulation is considered as the solution to two
motion planning problems, one for reaching and another one for manipulation, two
goal configurations need to be generated. A common desired property of these goal
configurations is that they allow a high freedom of motion for the arm chain. High
flexibility of the final grasp configuration is important for the subsequent manipulation
task. On the other hand, the final configuration of the manipulation plan should allow
the robot to easily release the object’s handle and to move to an arbitrary other whole-
body configuration without colliding with the object. The overall quality of an IK
solution is then evaluated according to

eval(qarm) = qarm [0] · | det (J(qarm))|. (4.6)

Here, det (J(qarm)) is the determinant of the Jacobian associated with the right arm con-
figuration qarm and denotes a measure of manipulability [44]. Additionally, this measure
is combined with the shoulder pitch angle qarm [0] to prefer elbow-down configurations
which are considered to be more natural than elbow-up configurations. The best IK so-
lution maximizing Eq. (4.6) is assigned to the arm joints of the initially sampled double
support configuration. Then, the resulting whole-body configuration is stored together
with the corresponding value obtained from Eq. (4.6) in a goal configuration database.
Note that not all double support configurations providing an IK solution for the arm
chain are actually what one would consider a natural whole-body pose for an human-
like structure. Therefore, the entire procedure is repeated until a predefined number of
goal configurations has been generated to increase the probability to get a more natural
whole-body pose.

Fig. 4.5 shows a set of example goal configurations generated for a desired grasp frame
position and z-axis direction. Currently, the planner developed uses only the overall
best whole-body configuration, i.e., the one with the highest value for Eq. (4.6) in the

51

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

Figure 4.5: Examples of valid goal configurations for a given pose of the robot’s right hand.
The feet of the robot remain fixed, and the 5D goal pose for the hand is identical in all
configurations. In this case, the left arm was set to a safe configuration adjacent to the robot’s
body.

generated database, as the goal pose. Generally, one can also think of rooting multiple
trees at the generated goal configurations and initializing different RRT searches from
which the best solution is chosen afterwards.

4.2.4 Path Shortcutter

From the literature, it is well known that probabilistic motion planning algorithms typ-
ically produce configuration space paths of unnecessary length. As opposed to roadmap
techniques or the basic RRT algorithm using single step tree expansions, the greedy
component of the RRT-CONNECT algorithm already tries to keep the number of nodes
generated as low as possible. Though, if motion planning is performed in environments
with many obstacles, also paths generated by RRT-CONNECT may still contain a high
number of extraneous nodes and thus extensive whole-body motions occur. Therefore,
the raw solution path P generated by the planner is iteratively shortened by additionally
calling the PATH SHORTCUTTER function (Line 8 of Alg. 4), which will be explained
in detail in the following.

As input this function takes the original solution path, which is composed of a sequence
of nodes from Ta and Tb (see black dashed line in Fig. 4.6). Initially, the procedure starts
by creating a shortcut between the start and goal configuration through a straight line
path. Then, the shortcut is examined for validity by performing stability and collision
checks along the new path segment. If the shortcut is determined to be valid, the entire

52

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

P
Pnew

qstartqgoal

qi

Figure 4.6: Original (black dashed line) and shortened solution path (red solid line).

original path between the two configurations is replaced by the new path Pnew (see
red solid line in Fig. 4.6). Here, the attempt of directly connecting the start and the
goal configuration is very optimistic and usually fails in the presence of obstacles. In
this case, the function proceeds by iteratively selecting nodes from the original path,
going backwards from the goal configuration, and tries to connect them to qstart by a
shortcut. Once a valid shortcut to a configuration qi has been found, the original path
segment between qi and qstart is replaced by the new path segment. Then, in the next
iteration the function further tries to shorten the original path by creating a straight
line connection between qi and qgoal and repeats the procedure describe above in the
case of failure. Finally, the entire procedure stops when a path waypoint qi has been
successfully connected to qgoal by a shortcut. For completeness we want to remind the
reader at this point, that path shortcuts are only admissible for motion plans regarding
posture changes. For manipulation plans, all configurations along the original path
need to be considered because shortcuts would cause a violation of the manipulation
constraints.

4.2.5 Motion Trajectory

So far, we focused on the problem of planning a geometric path through the configuration
space, which neither collides with obstacles nor violates any other constraints. Thus,
the path returned by our planner consists of a sequence of configurations and straight
line segments between them. In order to execute the planned motion afterwards, this
path needs to be converted into a time-parameterized trajectory that follows the path
within the capabilities of the robot. These capabilities usually refer to a limitation of the
dynamic properties of the motors (or joints), actuating the links of the mechanical struc-
ture. In this work we are considering the maximum joint velocities and accelerations, as
they are specified in the robot datasheet. Alternatively, one could also use the maximum
torques applicable by the joints, if made available by the robot platform provider. In
our application a trajectory is obtained using the Iterative Parabolic Smoother method,
already implemented in the MoveIt! planning framework (see Sec. 4.4). Although there
is no detailed description of the method provided, the authors stated that their approach
is very similar to the work in [46].

53

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

qstartqgoal

Figure 4.7: Geometric path returned by the planner (dashed line) and time-parameterized
motion trajectory (solid line).

With this method a time-optimal trajectory that follows a given differentiable joint
space path within given bounds on joint velocities and accelerations can be generated.
Since the geometric path returned by the planner is clearly non-differentiable, it is made
differentiable in a pre-processing step by adding circular blends between waypoints (see
Fig. 4.7). Here, the circles positioned tangential to two linear path segments respectively
are defined by the position of their center and radius. Within the pre-processing proce-
dure, these parameters are chosen such that the new circular segments do not replace
more than half of the adjacent straight line segments of the original path. Moreover,
the procedure takes care that the overall deviation from the original path remains below
a certain threshold. Since the circles are quite large, they are not shown in Fig. 4.7
for convenience. In a second step, the new path is parameterized by time taking into
account the bounds on joint velocities and accelerations specified before. A detailed de-
scription of this procedure would certainly go beyond the scope of this work. Therefore,
we want to refer the reader at this point to the paper in [46].

4.3 Whole-Body Manipulation Planning

After planning and executing a collision-free reaching motion, the palm of the robot’s
hand encloses the object’s handle. Then, once the hand has been closed, another mo-
tion needs to be planned for manipulating the articulated object. In addition to closure,
stability and collision avoidance also the constraints imposed by the object to be ma-
nipulated now need to be taken into account during the tree expansion process. In
practice, the manipulation constraint implies that the robot’s hand must follow a tra-
jectory, defined by the articulated object in Cartesian space. In the following, we will
first give a definition of articulated objects. Afterwards, we describe how to consider mo-
tion constraints for manipulating articulated objects once the handle has been grasped.
In particular, we will focus on the extensions for manipulation planning, made to the
Humanoid RRT-CONNECT algorithm, described in Alg. 4 of the previous section.

54

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

4.3.1 Articulated Objects

Articulated objects are represented by a volumetric model, a joint with the correspond-
ing position, and a handle position. From this, a generative model can predict the
trajectory of the articulated parts and the handle while the object is being manipulated.
Articulation models can be learned from previous experience while carefully manipulat-
ing the environment [48]. For the scope of this work, we assume the model to be given.
Here, we are particularly interested in prismatic (e.g., drawers) and revolute models
(e.g., doors), as illustrated in Fig. 4.8. A prismatic model has one degree of freedom as
a translation along a fixed axis. The handle trajectory is constrained on a 3D vector
denoting the opening direction. A revolute model has one degree of freedom around a
specified 3D axis of rotation. The handle trajectory is constrained on the circular arc
described by the axis of rotation and the radius of the handle position. When planning
for manipulation of articulated objects, the respective handle trajectory and the robot’s
grasp frame need to be expressed w.r.t the same reference coordinate system.

Figure 4.8: Two examples of articulated objects: A drawer and a door.

4.3.2 Extended RRT-CONNECT Planner

In order to realize whole-body manipulation planning the algorithm Alg. 4, described
in Sec. 4.2.1, has been extended by several functions. As before, the planner requires a
start and a goal configuration to be given in advance. Here, the start configuration
used for manipulation planning simply corresponds to the final whole-body pose of
the robot after performing the grasping motion. Then, given the initial hand pose
of the start configuration and a model of the articulated object, one can compute the
desired final hand pose along the trajectory of the object handle. For the final 5D hand
pose obtained, a whole-body goal configuration for planning is generated following the
procedure described in Sec. 4.2.3. An example of a start and goal configuration used for
manipulating a drawer and a door are shown in Fig. 4.9.

The overall RRT-CONNECT algorithm used for planning both, reaching and manipula-
tion motions is described as pseudo-code in Alg. 7. With the robot having grasped the

55

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

Figure 4.9: Start and goal configuration for manipulating a drawer (left) and a door (right).

object’s handle (see Line 3), the extended RRT-CONNECT planner now takes addition-
ally to a start and goal configuration a list of object parameters object params as input.
Before entering the main loop of the algorithm (see Line 9), the root nodes of the two
trees are initialized based on the list of object parameters. Furthermore, the EXTEND
function, described in Alg. 8, now performs additional operations to ensure that the
robot’s hand remains on the trajectory of the articulated object handle throughout the
whole-body motion. In the following sections, the tree initialization and the expansion
of the trees under manipulation constraints will be described in detail.

Algorithm 7: Extended Humanoid RRT-CONNECT (qstart, qgoal, object params)

1 ns.q ← qstart
2 ng.q ← qgoal
3 if object grasped = true then
4 〈h0, . . . , hk〉 ← GEN HAND TRAJ(qstart, object params)
5 ns.h← 0
6 ng.h← k

7 end
8 Ta.init(ns); Tb.init(ng);
9 for i = 1 to max iter do

10 qrand ← RAND DS CONFIG(DS DATABASE)
11 if not (EXTEND(Ta, qrand) = TRAPPED) then
12 if (CONNECT(Tb, Ta.last.q) = REACHED) then
13 if object grasped = false then
14 PATH(Ta, Tb) ← PATH SHORTCUTTER(Ta, Tb)
15 end
16 return PATH(Ta, Tb)
17 end

18 end
19 SWAP(Ta, Tb)
20 end
21 return FAILURE

56

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

Algorithm 8: EXTEND (T , qref)

1 nnear ← FIND NEAREST NEIGHBOR(T , qref)
2 nnew.q ← NEW CONFIG(qref, nnear.q)
3 if object grasped = true then
4 nnew ← ENFORCE MANIP CONSTRAINT(nnew, nnear)
5 end
6 if IS CONFIG VALID(nnew.q) then
7 T .add node(nnew)
8 T .add link(nnear, nnew)
9 if nnew.q = qref then return REACHED

10 else return ADVANCED

11 end
12 return TRAPPED

4.3.3 Tree Initialization Considering Manipulation Constraints

Given a start configuration qstart with a hand attached to the object handle and the object
parameters object params, our approach computes a sequence of hand poses 〈h0, . . . , hk〉
for T rfoot

grasp along the handle trajectory (GEN HAND TRAJ in Line 4, Alg. 7). With the
objects considered in this work, all these hand poses have the same direction for the z-
axis of Fgrasp , pointing through the closed palm of the robot’s hand. For the initialization
of the search trees, the nodes ns and ng that contain qstart and qgoal are assigned the hand
pose indices 0 and k, respectively (Lines 5 and 6 in Alg. 7). In the subsequent planning
loop, the trees rooted at ns and ng are intended to be expanded iteratively by new
configurations with hand pose indices higher than 0 or lower than k. Fig. 4.10 illustrates
examples for linear and circular object trajectories with the generated hand poses (red
dots).

Figure 4.10: Example end-effector trajectories, i.e., desired hand poses for opening a drawer
(left, side view) and a door (right, top view).

57

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

4.3.4 Tree expansion under Manipulation Constraints

During planning it is required that the robot’s hand remains on the object trajectory
for each new configuration added to one of the trees by the EXTEND function. Given
a configuration qnew generated by NEW CONFIG by stepping from qnear towards qrand,
the manipulating hand needs to move along the handle trajectory. This requirement
is satisfied by ENFORCE MANIP CONSTRAINT (Line 4 in Alg. 8). In practice, this
means that the hand needs to move from the hand pose with index nnear.h to the hand
pose with index r = nnear.h+1 or r = nnear.h−1, depending on the tree to be expanded.
Thus, the first expansion of the start tree should result in a new configuration with the
hand at the pose with index 1. Similarly, the first configuration added to the goal tree
will have its hand at the pose with index k − 1. Following this rule, it is guaranteed
that the branches of the start tree correspond to continuous forward motions of the
hand along the object’s handle trajectory. On the other hand, branches of the goal tree
correspond to backward motions of the hand, which are reversed once the two trees are
connected. To obtain the desired hand pose in the tree expansion step, our approach
again solves the IK for the arm chain in closed form, as already described in Sec. 4.2.3.
If no solution has been found, qnew is rejected by the subsequent IS CONFIG VALID
function (Line 6 in Alg. 8) and the algorithm proceeds with the expansion of the other
tree. Otherwise, the planner continues with an evaluation of the solutions found. From
the set IKsol of IK solutions for the desired hand pose, the planner selects qarmc , i.e.,
the solution that minimizes the configuration space distance to the arm configuration
of qnear

qarmc = arg min
qarmi ∈IKsol

‖qarmi − qarmnear‖, (4.7)

and sets qarmnew to qarmc and nnew.h = r before performing the validity check. If the new
configuration is also found to be valid a new node is added to the corresponding tree,
otherwise the configuration is rejected.

At this point, it remains to describe how a connection between the two trees is detected.
At each iteration, the function ENFORCE MANIP CONSTRAINT first computes the
forward kinematics (FK) for the kinematic chain from Frfoot to Fgrasp in configuration
qnew, previously generated by NEW CONFIG. From the transformation T rfoot

grasp thus ob-
tained, the planner checks whether or not the hand is already at the desired pose with
index nnear.h+ 1 or nnear.h− 1. If this is not the case, the arm configuration is adapted
by applying the procedure as described above. Otherwise, when the FK determines
the hand to be already in the correct pose, a path has been found. Observing the tree
expansion process, depicted in Fig. 4.11, it reveals that this case occurs exactly once,
namely when Tb is expanded by the CONNECT function (Line 12 in Alg. 7), Ta.last .q
has been reached from the last node added to Tb, i.e., Ta.last .q = qnew, and the respective
hand pose indices of qnear and qnew are already adjacent to each other. When a path has
been found, the value of the variable object grasped is queried once again (Line 13 in
Alg. 7), in order to prevent the planner from building shortcuts on manipulation paths
and thereby violating the manipulation constraints.

58

CHAPTER 4. MOTION PLANNING FOR HUMANOIDS

qstart

qgoal
k=10

98

7
7

6
43

4
5

3

21
0

6

d<ε

qnew qnear
4

6

Figure 4.11: Nodes of the start tree growing from the left and the goal tree growing from the
right, with their respective hand pose indices (red numbers) when manipulating an articulated
object. A connection between the two trees can be established when two nodes with adjacent
hand pose indices can be connected.

4.4 Implementation Details

The planner developed in this thesis is implemented in the MoveIt! framework, which
is a part of the Robotic Operating System (ROS) [49]. This framework provides several
tools for developing planning algorithms. Given a description file of a robot, for example,
one can define arbitrary groups, such as legs or arms, for planning. Moreover, MoveIt!
contains the FCL library [37] used for collision checks in this work. When the planner
checks a configuration for validity, the collision mesh model of each robot link is tested
for self-collisions and collisions with the environment. For the stability constraint, the
Zero Moment Point generally indicates a humanoid’s dynamic stability [42]. In this
work, we use the simplification of static stability which is a valid approximation for slow
motions. To analytically solve IK, we use IKfast [50]. In our case, this results in 5D goal
poses with a 5 DOF arm. Within the procedure of generating statically-stable double
support configurations, the leg closure is achieved by solving the IK for the left leg chain
numerically using the iterative Newton-Raphson algorithm, implemented in KDL [47].

59

CHAPTER 5. EXPERIMENTS

5 Experiments

In this chapter the experimental results for planning and executing whole-body mo-
tions are presented. After introducing the robot platform used, the trajectory execution
method applied and the planning setup chosen, the performance of our planner is eval-
uated on several motion planning problems, such as collision-free body repositioning,
reaching as well as manipulation of different objects.

5.1 Humanoid Robot Platform

For the experimental evaluation of our approach, we use a V4 Nao humanoid by Alde-
baran Robotics (see Fig. 5.1). The robot is 58 cm tall and has 25 DOF: 2 in the neck, 6
in each arm (including one to open and close the hand), and 5 in each leg. In addition,
the legs share a common (linked) hip joint that cannot be controlled independently. To
perceive its own state and the environment, the robot is equipped with a large network
of proprioceptive and exteroceptive sensors, including 2 cameras located in the head,
4 microphones, a sonar rangefinder, 2 infrared transmitters and receivers, an inertial
board, 9 tactile and 8 pressure sensors. The head of the robot contains an Intel ATOM
1,6GHz CPU, that runs a Linux kernel and supports Aldebaran’s NAOqi software, used
to communicate with the robot and controlling it.

HeadPitch

HeadYaw

ShoulderPitch
ShoulderRoll

ElbowYaw
ElbowRoll

HipYawPitch

WristYaw

Hand

HipRoll

HipPitch

KneePitch

AnklePitch

AnkleRoll

Figure 5.1: Kinematic model of the NAO robot (version H25), [3] .

60

CHAPTER 5. EXPERIMENTS

Since planning is performed off-line, the planner developed in this work does not rely
on sensor feedback. Therefore, the head of the robot containing the cameras remains
unarticulated. Furthermore, the hands are only required when grasping. Hence, our
planner operates on a total number of 20 DOFs. In the context of motion planning a
configuration is then defined by the following vector of joint angles:

q = [qRLeg , qLLeg , qRArm , qLArm] (5.1)

with

qR/LLeg = [qAnkleRoll , qAnklePitch , qKneePitch , qHipPitch , qHipRoll] (5.2)

qR/LArm = [qShoulderPitch , qShoulderRoll , qElbowYaw , qElbowRoll , qWristYaw] (5.3)

Actuating the HipYawPitch joint (see Fig. 5.1) would require to lift off one foot or to
allow the feet to slip on the ground while remaining in double support. In this work
however, we consider slippage as invalid and therefore this joint value is rigidly set to
zero. To correct for backlash of the gears while executing joint angle trajectories, Nao
can measure each angle with Hall effect magnetic rotary encoders at a precision of 0.1◦.
Inertia, mass, and CoM of each link are known from CAD models. For efficient collision
checks, we created a low-vertex collision mesh model for each of the robot’s links from
the CAD models (see Fig. 5.2). Very subtle geometries of the original robot mesh, like
the hands, have been entirely replaced by simple geometric primitives.

Figure 5.2: Original model of the NAO robot (left) and approximation used for collision
checking (right).

61

CHAPTER 5. EXPERIMENTS

5.2 Trajectory Execution for the NAO Robot

The whole-body motion trajectory finally obtained from the planner can be executed
in various ways. A first simple possibility to visualize the trajectory generated is to
use the tools provided by the MoveIt! framework of ROS (see Sec. 4.4). In this case,
the sequence of configurations of the robot along the trajectory are shown in the RViz
visualizer of ROS. Although the configurations of the trajectory are not interpolated with
this tool and thus the path is not shown as a fluent transition between the configuration
waypoints, this option allows a quick evaluation of the planning results. Alternatively,
the trajectory can be directly send to the angleInterpolation function of NAOqi , which
is the main software running on the robot and controlling it [3]. As input the function
takes the names of the joints to be moved, a list of configurations and a list of associated
timestamps. For security reasons, the NAOqi software can be also run locally on a
computer in order to observe the motion on a simulated robot model. Then, when the
whole-body motion has been determined to be safe, the same trajectory can be executed
on the real robot platform by sending the angleInterpolation command to NAOqi running
on the on-board computer of the robot.

5.3 Planning Setup

For planning whole-body motions we used a database of 463 statically stable double sup-
port configurations, generated within 10 000 iterations. The success rate of only 4.63%
demonstrates the low probability of generating valid configurations, when the configu-
rations space is sampled completely at random during the search. For generating goal
poses, we allow a maximum number of 3 000 iterations. For efficiency, we stop search-
ing when more than 5 goal poses have been found and choose the best one according
to Eq. (4.6). The maximum number of iterations max iter in Alg. 7 was set to 3 000.
The ε parameter used in the EXTEND function to generate new configurations from
qnear along the path segment joining it to qrand (see Eq. (4.3)), is set to 0.1. The sta-
bility check for configurations generated during planning is performed on a by factor
0.8 scaled original support polygon. With this choice, the planned motions have shown
to be safely executable while maintaining a sufficient freedom of motion for the robot
within the planning phase.

Planning was performed off-board on a single core of a standard desktop CPU (Intel
Core2 Duo, 3 GHz).

5.4 Evaluation of Whole-Body Motion Planning

In the first experiment, we evaluate the performance of the planner with goal pose
generation. Thus, the robot had to perform stable whole-body motions to reach a 5D
manipulation goal with the right arm (similar as in Fig. 4.5). The z-axis of the grasp
frame Fgrasp is horizontal and perpendicular to the robot’s orientation, e.g., to grasp
the handle of a drawer, at a height of z = 0.2 m. The x and y coordinates of the goal

62

CHAPTER 5. EXPERIMENTS

10 0 -10 -20 -30

0

10

20

30

y [cm]

x
[c

m
]

Support
polygon

Figure 5.3: Reachability map of the right hand as 2D projection relative to the right stance leg
(left) and shown relative to the robot model (right). Blue squares denote successful planning
results to the 5D end-effector pose at height z=0.2 m.

are varied in intervals of 1 cm in a 40 cm × 40 cm area. Fig. 5.3 shows the resulting
reachability map, in which squares denote successful results. In the other locations, the
goal pose generation failed, i.e., they are not reachable. It is obvious that whole-body
motion planning extends the manipulation range around the robot. When using solely
its 5 DOF arm for planning, Nao reaches only a subset of these poses.

For the reachable locations, it takes 6.62 s ± 6.33 s to generate the first goal pose, and
0.18 s ± 0.19 s for planning with RRT-CONNECT expanding 49.79 ± 29.15 nodes on
average.

5.5 Planning Collision-Free Motions

In a second experiment, we evaluate the performance of the planner in the presence
of obstacles seriously constraining the possible motions. Here, two motion planning
problems have been solved subsequently. In a first step, a motion for the robot has been
planned to reach a desired 5D goal pose for its hand, located inside the upper shelf of a
cabinet. In a second motion plan the robot then had to escape from the shelf and move
its hand inside another shelf without colliding.

The entire whole-body motion plan to solve these tasks was successfully generated
within 12.64 s, and executed collision-free and statically stable (see 5.4). A goal con-
figurations for the upper and lower shelf were generated within 19.43 s. Note that this
scenario is usually problematic for Jacobian-based optimization techniques due to the
local minima of the cavities.

63

CHAPTER 5. EXPERIMENTS

Figure 5.4: Execution of a whole-body plan to reach into different shelfs of a cabinet. The
sequence of pictures shown are snapshots taken from a video (left to right, top to bottom).

5.6 Manipulating Articulated Objects

We now evaluate the manipulation of articulated objects with a Nao humanoid. From its
initial configuration, the robot first has to plan for reaching the known handle location,
grasp it, and then plan an end-effector trajectory given by the parametrization of the
articulated object. Fig. 5.5 and 5.6 show snapshots from videos in which the robot
executes the whole-body motion plans. It successfully grasped the handle and opened
the drawer and door while keeping its balance. Fig. 5.7 shows the trajectories of the
robot’s right hand and CoM, as measured by the joint angle sensors during execution.
The hand trajectory closely follows the given model, while the CoM remains safely within
the support polygon.

To quantitatively evaluate the reliability of our randomized planning approach both sce-
narios, reaching and opening a drawer and a door, were planned 100 times. To plan
for reaching the drawer’s and door’s handle it took 0.08 s ± 0.04 s and 0.09 s ± 0.05 s,
expanding 32.81 ± 8.41 and 32.16 ± 9.43 nodes on average, respectively. A goal pose
for the object’s handle location was generated within 5.42 s ± 5.17 s and 8.59 s ± 7.54 s.
For manipulation of the object, planning took 0.11 s ± 0.07 s and 0.15 s ± 0.08 s, ex-
panding 30.36 ± 12.69 and 35.17 ± 14.51 nodes on average, respectively. A goal pose
for the final drawer and door handle location was generated within 4.14 s ± 3.94 s and
2.63 s ± 2.47 s.

64

CHAPTER 5. EXPERIMENTS

Figure 5.5: Execution of a whole-body manipulation plan for a drawer. First, a motion
for reaching the drawer handle is planned and executed. Then, planning is performed for
manipulation of the object once the handle has been grasped. Pictures are snapshots taken
from a video (left to right, top to bottom).

Figure 5.6: Execution of a whole-body manipulation plan for a door. First, a motion for
reaching the door handle is planned and executed. Then, planning is performed for manipu-
lation of the object once the handle has been grasped. Pictures are snapshots taken from a
video (left to right, top to bottom).

65

CHAPTER 5. EXPERIMENTS

With the chosen parameters of our algorithm, the task of reaching and manipulating
a drawer succeeded in 89% of all attempts. For the door, planning succeeded in 78%
percent of the runs. These rates certainly increase as more planning time is allowed.
Note that the execution of planned motions on the real robot platform succeeded to
100% without losing balance.

20 10 0 -10
−10

0

10

20

y [cm]

x
[c

m
]

CoM trajectory Grasp trajectory

Support polygon

20 10 0 -10
−10

0

10

20

y [cm]

x
[c

m
]

Figure 5.7: Trajectory for the right hand and center of mass over the support polygon while
opening a drawer (left) and a door (right)

5.7 Collision-Free Object Manipulation

In this experiment we evaluate the capability of our algorithm to plan a reaching and
manipulation motion for the robot in the presence of an additional obstacle. Starting
from an initial configuration the robot first needs to perform a motion to reach the
drawer’s handle without colliding with the obstacle lying between the initial and desired
final right hand location (see Fig. 5.8). Then, once the handle has been grasped by
the robot, a second planned motion is executed on the Nao robot to open the drawer
without hitting the obstacle with any part of the body.

Also here, we evaluated the reliability of the planner by repeating the experiment 50
times. To plan for reaching the drawer’s handle it took 7.71 s ± 3.0 s, expanding 1067.93
± 333.54 nodes on average. A goal pose for the drawer’s handle location was generated
within 16.24 s ± 12.64 s. For manipulation of the object, planning took 0.2 s ± 0.19 s,
expanding 32.16 ± 21.09 nodes on average. A goal pose for the final drawer handle
location was generated within 8.53 s ± 7.21 s. The entire task of planning the reaching
and manipulation motion for the robot succeeded in 86% of the runs. All of the planned
motions were executed on the real robot platform collision-free and statically stable.

66

CHAPTER 5. EXPERIMENTS

Figure 5.8: Execution of a whole-body manipulation plan for a drawer with collision avoid-
ance. First, a collision-free motion for reaching the drawer handle is planned and executed.
Then, planning is performed for manipulation of the object once the handle has been grasped.
Pictures are snapshots taken from a video (left to right, top to bottom).

5.8 Pick and Place an Object

In the last experiment the robot is asked to pick up an object with its hand and to move
it to another location. As before, we consider the entire task as two consecutive motion
planning problems. First, planning is performed to find a valid whole-body motion for
reaching the object with the hand. Once the object has been grasped, a second motion
for manipulation is generated. As an example object for the pick and place task, we
have chosen a small box located on top of a bigger box (see Fig. 5.9). After grasping
the box the robot is expected to transfer it to an adjacent basket without colliding with
the other objects contained in the environment.

The major difference with respect to the previous experiments presented so far is that for
the second motion planning problem collisions additionally need to be checked between
the carried object and the static obstacles. In this work, this is achieved by increasing
the collision mesh model of the right hand such that the object becomes part of the
robot geometry. Another critical issue for this kind of tasks is the abrupt shift of the
CoM location, when lifting the object. In this experiment however, the shift of the CoM
caused by the object with a weight of 25g can be considered rather small and easily
compensable by the support polygon’s safety margin (see Fig. 4.1). A problem often
encountered in the execution of the planned motion on the real robot platform is that

67

CHAPTER 5. EXPERIMENTS

Figure 5.9: Execution of a whole-body manipulation plan for a small box. First, a collision-
free motion for reaching the box is planned and executed. Once it has been grasped, planning
is performed for manipulation of the box. Pictures are snapshots taken from a video (left to
right, top to bottom).

the robot does not grasp the object tight enough to compensate for the initial sliding
motion of the object on the lower box in the liftoff phase. Therefore, we decided to
perform a predefined liftoff motion after the grasping motion to safely detach the object
from the lower box before planning the manipulation task.

For planning the reaching motion our algorithm required 0.37 s, expanding 62 nodes.
The generation of a goal pose took 3.28 s for the first motion planning problem. For the
manipulation task planning took 0.18 s, expanding 38 nodes. A goal pose for the second
motion planning problem was generated within 9.16 s.

5.9 Discussion of the Results

In the experiments we have evaluated the performance of our planner concerning the
reachability of different hand poses, the capability of generating collision-free statically
stable whole-body motions for body repositioning, manipulation of articulated objects as
well as pick and place tasks. For all these scenarios whole-body motions were successfully
planned and safely executed on the real robot platform. In the absence of obstacles
seriously constraining the robot’s motion, planning took less than 1 second to solve the
respective query. As expected, the time required and number of nodes generated by our

68

CHAPTER 5. EXPERIMENTS

algorithm significantly increased when planning is performed in environments cluttered
by obstacles. Considering the complexity of these tasks however, a planning time around
7-12 seconds can still be considered satisfactory.

The sampling-based goal configuration generation takes up the major part of the overall
time required to answer a motion planning query. Furthermore, the procedure is cur-
rently repeated for each new call to the planner. In order to avoid the future efforts
for this operation one could think of storing the goal configurations already generated
for previous motion plans in a database and reusing them as goal configurations for
subsequent motion planning queries with the same desired final hand pose. Alterna-
tively, one could speed up the goal configurations generation by using the generalized
inverse kinematics for the whole-body kinematic structure. Another weakness of the
current approach is that the probability of getting whole-body goal configurations for
hand poses, reachable only from a specific double support configuration, is very low.
This is especially the case for hand poses close to the floor.

Currently, planning is performed off-line in a virtual representation of the real world.
Afterwards, the planned motion is executed in open-loop, i.e., without sensor feedback,
on the real robot platform. Therefore, it is important that the relative position between
the robot and the object(s) to be manipulated or avoided coincides in both worlds.
Otherwise the robot may fail to successfully accomplish the assigned task in the real
world, i.e., either collides with an obstacle or fails to reach the object or object’s handle,
although planning has previously been performed successfully.

For manipulation of articulated objects the robot first needs to reach the object’s handle
with its hand. Since it is intended to obtain a contact between the robot’s palm of the
hand and the handle after the reaching motion, the handle itself is not modeled as a
collision object in the virtual representation of the world. This fact however implies that
the initial pose of the robot’s hand and thus the approach direction of the hand towards
the handle has a strong impact on the success of the task execution. For now, the
initial configurations for reaching and manipulating objects has been chosen such that
the robot does not need to move its hand around the object’s handle before approaching
the final hand pose.

69

CHAPTER 6. CONCLUSION

6 Conclusion

6.1 Summary

Planning whole-body motions for a humanoid robot is a challenging task due to the high
number of degrees of freedom of the mechanical system and the variety of constraints
involved. Independent from the planning scenario the robot needs to maintain stability,
i.e., keep its CoM inside the support polygon, avoid self-collisions and collisions with
obstacles and must respect its geometric and differential capabilities, such as limitations
on the joint range and maximum actuator velocities. Due to the high-dimensional con-
figuration space, a probabilistic approach has been chosen in this work to realize efficient
whole-body motion and manipulation planning.

As the basis for our planner we used the generic RRT-CONNECT algorithm, which
has already proven to be an efficient and fast algorithm to generate solutions for high-
dimensional planning problems. With RRT-CONNECT two trees are initially rooted at a
start and goal configuration and grown in the configuration space until they are capable
of connecting to each other. As opposed to the basic RRT version, the CONNECT
function makes the two trees to grow towards each other rather than solely exploring
the configuration space at random.

For the expansion of the trees our planner relies on a pre-computed set of statically
stable double support configurations. Guiding the expansion in this way accounts for
the low probability of generating stable configurations when expanding a tree towards
random samples from the configuration space.

To determine whether new configurations are valid, our planner performs a stability
and collision check. The former procedure takes the masses of the robot links from a
CAD model and evaluates whether the projection of the CoM is inside the boundaries
of the scaled support polygon in the given configuration. The latter is based on an
external collision checking library, called FCL, and relies on a specially designed low-
vertex version of the original robot model mesh.

For planning with RRT-CONNECT a start and goal configuration is expected to be
given in advance. Whereas the start configuration simply corresponds to the current
configuration of the robot, the goal configuration is typically not known beforehand.
Since we are considering manipulation actions in this work, we generate whole-body
goal configurations with the robot’s hand at a desired pose. For doing so, a sampling-

70

CHAPTER 6. CONCLUSION

based procedure is applied. As can be see from the experiments, this operation takes up
the major part of the overall time required to answer a motion planning query.

For manipulation planning we generate a discrete set of intermediate hand pose along the
object trajectory. These hand poses are then used within the tree expansion procedure
to obtain new whole-body poses satisfying the manipulation constraints.

In the experiments we have shown that our planner is capable to solve a variety of motion
planning queries. Initially, we have illustrated that the range of reachable hand poses
can be significantly enlarged by planning motions considering the whole-body kinematic
structure. Moreover, we have proven that the planner is capable of generating collision-
free statically stable whole-body motions in environments cluttered by obstacles. For the
task of reaching and manipulating articulated objects, our planner has shown to reliably
produce motion plans within a short amount of time. The same task was also successfully
planned in the presence of an additional obstacle. Furthermore, we have presented that
our algorithm enables the robot to perform successfully pick and place tasks, at least
for objects of limited weight and dimension. All the motions plans generated by our
planner were executed reliably on a real humanoid robot.

6.2 Future Work

In our current planning framework goal configurations are obtained by generating double
support configurations from sampled whole-body poses and adapting the arm configu-
ration according to the desired 5D hand pose. Afterwards, the configurations found are
evaluated considering the manipulability measure for the arm chain and only the best
among them is subsequently used for planning. As we have seen in the experiments,
this procedure is very time consuming in comparison with the expenditure required for
planning and is currently repeated for each new call to the planner. A possible exten-
sion to our approach to avoid unnecessary re-computation of goal configurations for 5D
hand poses already encountered in previous motion planning problems would be to store
all goal configurations generated in a database, so that they can be reused to solve fu-
ture motion planning queries with the same desired final hand pose. Alternatively, one
could think of entirely replacing the sampling-based goal configuration strategy with
a procedure that solves the whole-body inverse kinematics problem for a given hand
pose numerically through iterative convergence computation or analytically through a
decomposition of the robot’s kinematic chains [35].

At this stage, our planner uses only the best configuration from the set of goal config-
urations for planning. The remaining configurations are not used and discarded once
a path has been successfully generated. Another approach, proposed by Ichnowski et
al. in [51], is to keep all goal configurations generated and to root multiple goal trees
at these configurations. Afterwards, a parallel search can be run using different threads
of a multi-core computer. Following this idea, the time required for planning could be

71

CHAPTER 6. CONCLUSION

further reduced. Moreover, the planner may generate multiple solution paths among
which the best path can be selected according to some optimal criteria, e.g., considering
the length of the paths.

For the expansion of the trees during the search for a path our planner relies on a pre-
computed set of statically stable double support configurations. Thus, new candidate
configurations are generated along the straight line configuration space path segment
connecting a random configuration from the set with the nearest neighbor contained
in the respective tree to be expanded. For manipulation of articulated objects, these
configurations additionally need to be projected onto the constrained manifold in order
to satisfy the manipulation constraints imposed by the object. With this approach, all
constraints are satisfied at the waypoints of the solution path, but not necessarily in
between them. In this work, this effect is compensated by using a small step size in
the tree expansion procedure. Obtaining a continuous constraint satisfaction along the
path can be realized by formulating the task specific constraints in the form of a control
law [23]. In this way, the local planner could move a point directly on the constraint
manifold without the need of applying projection techniques. Another approach was
recently proposed by Sucan et al. in [52], where an approximation of the constraint
manifold, referred to as the Approximation Graph, for a given set of geometric task
constraints is computed off-line. Afterwards the vertices and edges of the graph are used
to directly plan on the constraint manifold instead of planning in the full configuration
space. Using the data structures computed off-line, it is said that the constraint manifold
can be sampled very quickly and thus the planning time can be significantly reduced.

For the manipulation of articulated objects the position and orientation of the handle
was expected to be given in advance in this work. In order to leverage the level of
autonomy of the robot in the future we will determine the handle pose by using a depth
sensor installed at the head of the NAO robot. Once the handle has been detected, the
new vision module will trigger the planner for generating an appropriate whole-body
reaching motion. Using the data of this sensor would also allow to perceive changes in
the environment. With this information, one could early detect when a motion plan
becomes unfeasible due to changes of the position of an object to grasp or obstacles
to avoided. Thus, the motion execution could be stopped and re-planning could be
performed from the current robot configuration.

A really challenging extension to probabilistic approaches is to include the possibility
of the robot to change its support mode (single to double support or vice versa) during
planning. This functionality is in particular required when the robot needs to perform
footsteps to successfully accomplish a task. Additionally one needs to ensure in such
cases that other constraints, e.g., arising from the contact of the robot’s hand with an
object, remain satisfied while performing the stepping motion. Methods addressing this
problem, gathered in the literature so far, rather generate whole-body motions in an
on-line fashion with task constraints being formulated within a control framework than
relying on probabilistic planning methods [9, 11, 12, 13, 53].

72

Bibliography

Bibliography

[1] American Honda Motor Co. Inc. Asimo robot. http://asimo.honda.com/asimo-
specs/, 2012.

[2] Kawada Industries Inc. HRP-2 robot. http://global.kawada.jp/mechatronics/,
2012.

[3] Aldebaran Robotics. Nao H25 Datasheet. http://www.aldebaran-robotics.com,
October 2012.

[4] Korea Advanced Institute of Science and Technology. Hubo robot.
http://www.kaist.edu/edu.html, 2012.

[5] Johannes Garimort, Armin Hornung, and Maren Bennewitz. Humanoid navigation
with dynamic footstep plans. In ICRA, pages 3982–3987, 2011.

[6] American Honda Motor Co. Inc. Asimo opens a water bottle.
http://asimo.honda.com/, November 2011.

[7] James J. Kuffner Jr. and Steven M. Lavalle. RRT-Connect: An efficient approach
to single-query path planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 995–1001, 2000.

[8] Oussama Kanoun, Florent Lamiraux, Pierre-Brice Wieber, Fumio Kanehiro, Eiichi
Yoshida, and Jean-Paul Laumond. Prioritizing linear equality and inequality sys-
tems: application to local motion planning for redundant robots. In Proceedings
of the 2009 IEEE international conference on Robotics and Automation, ICRA’09,
pages 724–729, Piscataway, NJ, USA, 2009. IEEE Press.

[9] Oussama Kanoun, Jean-Paul Laumond, and Eiichi Yoshida. Planning foot place-
ments for a humanoid robot: A problem of inverse kinematics. Int. J. Rob. Res.,
30(4):476–485, April 2011.

[10] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kazuhito Yokoi,
and Hirohisa Hirukawa. A realtime pattern generator for biped walking. pages
31–37, 2002.

[11] Duong Dang, Florent Lamiraux, and Jean-Paul Laumond. A framework for ma-
nipulation and locomotion with realtime footstep replanning. In Humanoids, pages
676–681. IEEE, 2011.

73

Bibliography

[12] E. Yoshida, O. Kanoun, C. Esteves, and J-P. Laumond. Task-driven support poly-
gon reshaping for humanoids.

[13] Nicolas Mansard, Olivier Stasse, François Chaumette, and Kazuhito Yokoi.
Visually-guided grasping while walking on a humanoid robot. In ICRA, pages
3041–3047, 2007.

[14] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics:
Modelling, Planning and Control. Springer Publishing Company, Incorporated, 1st
edition, 2008.

[15] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A Kantor, Wolfram Bur-
gard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, June 2005.

[16] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, Nor-
well, MA, USA, 1991.

[17] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K.,
2006. Available at http://planning.cs.uiuc.edu/.

[18] Lydia Kavraki, Petr Svestka, Jean claude Latombe, and Mark Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces. In
IEEE Int. Conf. Robot. Autom. (ICRA), pages 566–580, 1996.

[19] James Kuffner, Jr., Satoshi Kagami, Masayuki Inaba, and Hirochika Inoue.
Dynamically-stable motion planning for humanoid robots, 2000.

[20] Michael Stilman. Task constrained motion planning in robot joint space. Technical
Report CMU-RI-TR-06-43, Robotics Institute, Pittsburgh, PA, September 2006.

[21] Dmitry Berenson, Joel Chestnutt, Siddhartha Srinivasa, James Kuffner, and Satoshi
Kagami. Pose-constrained whole-body planning using task space region chains. In
IEEE-RAS International Conference on Humanoid Robots (Humanoids09), Decem-
ber 2009.

[22] Niko Vahrenkamp, Christian Scheurer, Tamim Asfour, James J. Kuffner, and
Rüdiger Dillmann. Adaptive motion planning for humanoid robots. In IROS’08,
pages 2127–2132, 2008.

[23] Giuseppe Oriolo and Marilena Vendittelli. A control-based approach to task-
constrained motion planning. In Proceedings of the 2009 IEEE/RSJ international
conference on Intelligent robots and systems, IROS’09, pages 297–302, Piscataway,
NJ, USA, 2009. IEEE Press.

[24] Sebastien Dalibard, Alireza Nakhaei, Florent Lamiraux, and Jean-Paul Laumond.
Whole-body task planning for a humanoid robot: a way to integrate collision avoid-
ance. 2009 9th IEEERAS International Conference on Humanoid Robots, pages
355–360, 2009.

74

Bibliography

[25] J.T Schwartz and M. Sharir. On the piano movers problem: II. General techniques
for computing topological properties of real algebraic manifolds. In Advances in
Applied Mathematics, volume 4, pages 298–351, 2083.

[26] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 2012. To appear.

[27] Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics.
Springer, Berlin, Heidelberg, 2008.

[28] C. O’Dunlaing and C. K. Yap. A retraction method for planning the motion of a
disc. Journal of Algorithms, 6:104–111, 1982.

[29] Nancy M. Amato, O. Burchan Bayazit, and Lucia K. Dale. OBPRM: An obstacle-
based PRM for 3D workspaces, 1998.

[30] Mark H. Overmars. The gaussian sampling strategy for probabilistic roadmap plan-
ners. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 1018–1023, 1999.

[31] T. Siméon, J.P. Laumond, and C. Nissoux. Visibility based probabilistic roadmaps
for motion planning. Advanced Robotics Journal, 14(6), December 2000.

[32] J.-P. Laumond. Robot Motion Planning and Control. Springer-Verlag, Berlin, 1998.
Available online at http://www.laas.fr/∼jpl/book.html.

[33] Petr Svestka. On probabilistic completeness and expected complexity of probabilis-
tic path planning, 1996.

[34] Peter Corke. Robotics, Vision and Control - Fundamental Algorithms in
MATLAB R©, volume 73 of Springer Tracts in Advanced Robotics. Springer, 2011.

[35] Fumio Kanehiro, Eiichi Yoshida, and Kazuhito Yokoi. Efficient reaching motion
planning and execution for exploration by humanoid robots. In IEEE International
Conference on Intelligent Robots and Systems, 2012.

[36] Holger Täubig, Berthold Bäuml, and Udo Frese. Real-time swept volume and
distance computation for self collision detection. In IROS, pages 1585–1592, 2011.

[37] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL: A general purpose library for
collision and proximity queries. 2012.

[38] University of North Carolina. PQP: A proximity query package. GAMMA Research
Group, Available from http://www.cs.unc.edu/∼geom/SSV/, 2005.

[39] Russell Smith. Open dynamics engine, 2008. http://www.ode.org/.

[40] L. Han and N. M. Amato. A kinematics-based probabilistic roadmap method for
closed chain systems. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algo-
rithmic and Computational Robotics: New Directions, pages 233–246. A.K. Peters,
Wellesley, MA, 2001.

75

Bibliography

[41] J. Cortés. Motion Planning Algorithms for General Closed-Chain Mechanisms. PhD
thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2003.

[42] M. Vukobratovic and B. Borovac. Zero-moment point – thirty five years of its life.
Int. Journal of Humanoid Robots, 1, 2004.

[43] Sébastien Cotton, Andrew Murray, and Philippe Fraisse. Statically equivalent serial
chains for modeling the center of mass of humanoid robots. In Humanoids, pages
138–144, 2008.

[44] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The International Jour-
nal of Robotics Research, 4(2):3–9, 1985.

[45] Stephen L. Chiu. Task compatibility of manipulator postures. Int. J. Rob. Res.,
7(5):13–21, October 1988.

[46] Tobias Kunz and Mike Stilman. Time-optimal trajectory generation for path fol-
lowing with bounded acceleration and velocity. In Proceedings of Robotics: Science
and Systems, Sydney, Australia, July 2012.

[47] R. Smits. KDL: Kinematics and Dynamics Library. http://www.orocos.org/kdl.

[48] J. Sturm, C. Stachniss, and W. Burgard. A probabilistic framework for learning
kinematic models of articulated objects. Journal on Artificial Intelligence Research
(JAIR), 41:477–626, August 2011.

[49] S. Chitta, I. Sucan, and S. Cousins. MoveIt! [ROS topics]. Robotics Automation
Magazine, IEEE, 19(1):18 –19, 2012.

[50] Rosen Diankov. Automated Construction of Robotic Manipulation Programs. PhD
thesis, Carnegie Mellon University, Robotics Institute, August 2010.

[51] Jeffrey Ichnowski and Ron Alterovitz. Parallel sampling-based motion planning
with superlinear speedup. In IEEE International Conference on Intelligent Robots
and Systems, Vilamoura, Algarve, Portugal, October 2012.

[52] Ioan A. Sucan and Sachin Chitta. Motion planning with constraints using con-
figuration space approximations. In IEEE International Conference on Intelligent
Robots and Systems, Vilamoura, Algarve, Portugal, October 2012.

[53] M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal. Inverse kinematics with floating
base and constraints for full body humanoid robot control. In Humanoid Robots,
2008. Humanoids 2008. 8th IEEE-RAS International Conference on, pages 22 –27,
dec. 2008.

76

	Contents
	List of Figures
	Introduction
	Contribution
	Structure of the Thesis

	Related Work
	Jacobian-based approaches
	Sampling-based approaches

	Background
	The Concept of Motion Planning
	Problem Definition
	The Configuration Space
	Distance Metric
	C-Space Obstacles

	Probabilistic Motion Planning
	Sampling Strategies
	Local Planner
	Path Search
	Path Smoothing
	Notion of Completeness

	Sampling-based Algorithms
	Probabilistic Roadmap Planner
	Rapidly Exploring Random Trees Planner

	Motion Constraints
	Actuator Limitations
	Collision Avoidance
	Closure Constraint
	Stability Constraint

	Manipulability of Kinematic Structures

	Motion Planning for Humanoids
	Planning Assumptions
	Whole-Body Motion Planning
	RRT-CONNECT Planner for Humanoids
	Precomputing Stable Configurations
	Goal Pose Generation
	Path Shortcutter
	Motion Trajectory

	Whole-Body Manipulation Planning
	Articulated Objects
	Extended RRT-CONNECT Planner
	Tree Initialization Considering Manipulation Constraints
	Tree expansion under Manipulation Constraints

	Implementation Details

	Experiments
	Humanoid Robot Platform
	Trajectory Execution for the NAO Robot
	Planning Setup
	Evaluation of Whole-Body Motion Planning
	Planning Collision-Free Motions
	Manipulating Articulated Objects
	Collision-Free Object Manipulation
	Pick and Place an Object
	Discussion of the Results

	Conclusion
	Summary
	Future Work

	Bibliography

