
Reinforcement Learning 1

Reinforcement Learning

Mainly based on
“Reinforcement Learning –
An Introduction” by Richard
Sutton and Andrew Barto

Slides are mainly based on
the course material provided
by the same authors

http://www.cs.ualberta.ca/~sutton/book/the-book.html

Reinforcement Learning 2

Learning from Experience Plays a Role in …

Psychology

Artificial Intelligence

Control Theory and
Operations Research

Artificial Neural Networks

Reinforcement
Learning (RL)

Neuroscience

Reinforcement Learning 3

What is Reinforcement Learning?

Learning from interaction
Goal-oriented learning
Learning about, from, and while interacting with an
external environment
Learning what to do—how to map situations to
actions—so as to maximize a numerical reward signal

Reinforcement Learning 4

Supervised Learning

Supervised Learning
SystemInputs Outputs

Training Info = desired (target) outputs

Error = (target output – actual output)

Reinforcement Learning 5

Reinforcement Learning

RL
SystemInputs Outputs (“actions”)

Training Info = evaluations (“rewards” / “penalties”)

Objective: get as much reward as possible

Reinforcement Learning 6

Key Features of RL

Learner is not told which actions to take
Trial-and-Error search
Possibility of delayed reward (sacrifice short-term
gains for greater long-term gains)
The need to explore and exploit
Considers the whole problem of a goal-directed
agent interacting with an uncertain environment

Reinforcement Learning 7

Complete Agent

Temporally situated
Continual learning and planning
Object is to affect the environment
Environment is stochastic and uncertain

Environment

actionstate

reward
Agent

Reinforcement Learning 8

Elements of RL

Policy: what to do
Reward: what is good
Value: what is good because it predicts reward
Model: what follows what

Policy

Reward

Value
Model of

environment

Reinforcement Learning 9

An Extended Example: Tic-Tac-Toe

X XXO O

X

XO

X

O

XO

X

O

X

XO

X

O

X O

XO

X

O

X O

X

} x’s move

} x’s move

} o’s move

} x’s move

} o’s move

...

...... ...

...

x x

x

x o

x

o

xo

x

x
x

o

o

Assume an imperfect opponent:
he/she sometimes makes mistakes

Reinforcement Learning 10

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

2. Now play lots of games. To
pick our moves, look ahead
one step:

State V(s) – estimated probability of winning
.5 ?
.5 ?. . .

. . .

. . .
. . .

1 win

0 loss

. . .
. . .

0 draw

x

xxx

o
o

o
o

o
x

x

oo

o o
x

x
x

x
o

current state

various possible
next states*

Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.

Reinforcement Learning 11

RL Learning Rule for Tic-Tac-Toe

“ Exploratory” move

movegreedy our after statethe– s

movegreedy our before statethe– s

′

[])s(V)s(V)s(V)s(V

: a–)s(V toward)s(V each increment We

−′α+←
′ backup

parametersize -step the

. e.g., fraction, positive smalla 1=α

Reinforcement Learning 12

How can we improve this T.T.T. player?

Take advantage of symmetries
representation/generalization
How might this backfire?

Do we need “random” moves? Why?
Do we always need a full 10%?

Can we learn from “random” moves?
Can we learn offline?

Pre-training from self play?
Using learned models of opponent?

. . .

Reinforcement Learning 13

e.g. Generalization

Table Generalizing Function Approximator

State VState V

s
s
s
.
.
.

s

1

2

3

N

Train
here

Reinforcement Learning 14

How is Tic-Tac-Toe Too Easy?

Finite, small number of states
One-step look-ahead is always possible
State completely observable
…

Reinforcement Learning 15

Some Notable RL Applications

TD-Gammon: Tesauro
world’s best backgammon program

Elevator Control: Crites & Barto
high performance down-peak elevator controller

Dynamic Channel Assignment: Singh & Bertsekas, Nie &
Haykin

high performance assignment of radio channels to
mobile telephone calls

…

Reinforcement Learning 16

TD-Gammon

Start with a random network

Play very many games against self

Learn a value function from this simulated experience

This produces arguably the best player in the world

Action selection
by 2–3 ply search

Value

TD error
Vt+1−Vt

Tesauro, 1992–1995

Effective branching factor 400

Reinforcement Learning 17

Elevator Dispatching

10 floors, 4 elevator cars

STATES: button states; positions,
directions, and motion states of
cars; passengers in cars & in
halls

ACTIONS: stop at, or go by, next
floor

REWARDS: roughly, –1 per time
step for each person waiting

Conservatively about 10 states
22

Crites and Barto, 1996

Reinforcement Learning 18

Performance Comparison

Reinforcement Learning 19

Evaluative Feedback

Evaluating actions vs. instructing by giving correct actions

Pure evaluative feedback depends totally on the action taken.
Pure instructive feedback depends not at all on the action taken.

Supervised learning is instructive; optimization is evaluative

Associative vs. Nonassociative:

Associative: inputs mapped to outputs; learn the best
output for each input

Nonassociative: “learn” (find) one best output

n-armed bandit (at least how we treat it) is:

Nonassociative

Evaluative feedback

Reinforcement Learning 20

The n-Armed Bandit Problem

Choose repeatedly from one of n actions; each
choice is called a play
After each play , you get a reward , where

)a(Qa|rE t
*

tt =
ta tr

These are unknown action values
Distribution of depends only on rt at

Objective is to maximize the reward in the long term,
e.g., over 1000 plays

To solve the n-armed bandit problem,
you must explore a variety of actions

and then exploit the best of them.

Reinforcement Learning 21

The Exploration/Exploitation Dilemma

Suppose you form estimates

The greedy action at t is

You can’t exploit all the time; you can’t explore all the
time
You can never stop exploring; but you should always
reduce exploring

Qt(a) ≈ Q* (a) action value estimates

at
* = argmax

a
Qt(a)

at = at
* � exploitation

at ≠ at
* � exploration

Reinforcement Learning 22

Action-Value Methods

Methods that adapt action-value estimates and
nothing else, e.g.: suppose by the t-th play, action
had been chosen times, producing rewards
then

a

k
t k

rrr
)a(Q a

+++
=

�21

ka ,r,,r,r
ak�21

“sample average”

)a(Q)a(Qlim *
t

ka

=
∞→

a

Reinforcement Learning 23

εεεε-Greedy Action Selection

Greedy action selection:

ε-Greedy:

)a(Qmaxargaa t
a

*
tt ==

at
* with probability 1− ε

random action with probability ε{at =

... the simplest way to try to balance exploration and
exploitation

Reinforcement Learning 24

10-Armed Testbed

n = 10 possible actions
Each is chosen randomly from a normal
distribution:
each is also normal:
1000 plays
repeat the whole thing 2000 times and average the results
Evaluative versus instructive feedback

)),a(Q(N t
* 1

),(N 10
rt

)a(Q*

Reinforcement Learning 25

εεεε-Greedy Methods on the 10-Armed Testbed

 = 0 (greedy)

 = 0.01

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Plays

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

 = 0.1

Plays

 = 0.01

 = 0.1

Reinforcement Learning 26

Softmax Action Selection

Softmax action selection methods grade action probs.
by estimated values.
The most common softmax uses a Gibbs, or
Boltzmann, distribution:

Choose action a on play t with probability

where τ is the “computational temperature”

,
e

e

n

b

)b(Q

)a(Q

t

t

� =1

τ

τ

Reinforcement Learning 27

Evaluation Versus Instruction

Suppose there are K possible actions and you select
action number k.
Evaluative feedback would give you a single score f,
say 7.2.
Instructive information, on the other hand, would say
that action k’ , which is eventually different from
action k, have actually been correct.

Obviously, instructive feedback is much more
informative, (even if it is noisy).

Reinforcement Learning 28

Binary Bandit Tasks

at = 1 or at = 2

rt = success or rt = failure

Suppose you have just two actions:

and just two rewards:

Then you might infer a target or desired action:

at if success

the other action if failure{dt =

and then always play the action that was most often
the target

Call this the supervised algorithm.
It works fine on deterministic tasks but is
suboptimal if the rewards are stochastic.

Reinforcement Learning 29

Contingency Space

The space of all possible binary bandit tasks:

Reinforcement Learning 30

Linear Learning Automata

Let π t(a) = Pr at = a{ } be the only adapted parameter

L R –I (Linear, reward - inaction)

 On success : π t +1(at) = π t (at) + α (1 − π t (at)) 0 < α < 1

 (the other action probs. are adjusted to still sum to 1)

 On failure : no change

L R -P (Linear, reward - penalty)

 On success : π t +1(at) = π t (at) + α (1 − π t(at)) 0 < α < 1

 (the other action probs. are adjusted to still sum to 1)

 On failure : π t +1(at) = π t(at) + α (0 − π t(at)) 0 < α < 1

For two actions, a stochastic, incremental version of the supervised
algorithm

Reinforcement Learning 31

Performance on Binary Bandit Tasks A and B

Reinforcement Learning 32

Incremental Implementation

��

Qk =
r1 + r2 +�rk

k

Recall the sample average estimation method:

Can we do this incrementally (without storing all the
rewards)?
We could keep a running sum and count, or, equivalently:

[]kkkk Qr
k

QQ −
+

+= ++ 11 1

1

The average of the first k rewards is
(dropping the dependence on):

This is a common form for update rules:

NewEstimate = OldEstimate + StepSize[Target – OldEstimate]

a

Reinforcement Learning 33

Computation

()

[]

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1
Stepsize constant or changing with time

k

k i
i

k

k i
i

k k k k

k k k

Q r
k

r r
k

r kQ Q Q
k

Q r Q
k

+

+
=

+
=

+

+

=
+

� �= +� �+ � �

= + + −
+

= + −
+

�

�

Reinforcement Learning 34

Tracking a Non-stationary Problem

Choosing to be a sample average is
appropriate in a stationary problem, i.e., when
none of the change over time,

But not in a non-stationary problem.

kQ

Q* (a)

Better in the non-stationary case is:

Qk+1 = Qk +α rk+1 − Qk[]
for constant α, 0 < α ≤ 1

 = (1− α)kQ0 + α (1−α
i =1

k

�)k −i ri

exponential, recency-weighted average

Reinforcement Learning 35

Computation

1 1

1 1

1

2
1 2

0
1

2

1 1

Use

[]

Then

[]

(1)

(1) (1)

(1) (1)

In general : convergence if

() and ()

1
satisfied for but not for fi

k k k k

k k k k

k k

k k k

k
k k i

i
i

k k
k k

k

Q Q r Q

Q Q r Q

r Q

r r Q

Q r

a a

k

α

α
α α
α α α α

α α α

α α

α

+ +

− −

−

− −

−

=

∞ ∞

= =

= + −

= + −
= + −

= + − + −

= − + −

= ∞ < ∞

=

�

� �

xed α

11
1

=−�
=

−
k

i

ik)(αα

Notes:

1.

2. Step size
parameter
after the k-th
application of
action a

Reinforcement Learning 36

Optimistic Initial Values

All methods so far depend on , i.e., they are
biased.
Suppose instead we initialize the action values
optimistically, i.e., on the 10-armed testbed, use

for all a.

)a(Q0

)a(Q 50 =

Optimistic initialization can force exploration behavior!

Reinforcement Learning 37

The Agent-Environment Interface

1

1

210

+

+ ℜ∈
∈

∈
=

t

t

tt

t

s : statenext resulting and

r :reward resulting gets

)s(Aa :t stepat action produces

Ss :t stepat stateobserves Agent

,,,t : stepstime discrete at interact tenvironmen and Agent �

t

. . . st a
rt +1 st +1

t +1a
rt +2 st +2

t +2a
rt +3 st +3

. . .
t +3a

Reinforcement Learning 38

ss whenaa thaty probabilit)a,s(

iesprobabilit action to statesfrom mapping a

:,t step

ttt

t

===π

πat Policy

The Agent Learns a Policy

Reinforcement learning methods specify how the
agent changes its policy as a result of experience.
Roughly, the agent’s goal is to get as much reward
as it can over the long run.

Reinforcement Learning 39

Getting the Degree of Abstraction Right

Time steps need not refer to fixed intervals of real time.
Actions can be low level (e.g., voltages to motors), or
high level (e.g., accept a job offer), “mental” (e.g., shift in
focus of attention), etc.
States can low-level “sensations”, or they can be
abstract, symbolic, based on memory, or subjective (e.g.,
the state of being “surprised” or “lost”).
An RL agent is not like a whole animal or robot, which
consist of many RL agents as well as other components.
The environment is not necessarily unknown to the
agent, only incompletely controllable.
Reward computation is in the agent’s environment
because the agent cannot change it arbitrarily.

Reinforcement Learning 40

Goals and Rewards

Is a scalar reward signal an adequate notion of a
goal?—maybe not, but it is surprisingly flexible.
A goal should specify what we want to achieve, not
how we want to achieve it.
A goal must be outside the agent’s direct control—
thus outside the agent.
The agent must be able to measure success:

explicitly;
frequently during its lifespan.

Reinforcement Learning 41

Returns

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a
maze.

��
Rt = rt +1 + rt +2 +�+ rT ,

where T is a final time step at which a terminal state is
reached, ending an episode.

Suppose the sequence of rewards after step t is:
rt+1, rt+2, rt+3, …

What do we want to maximize?

In general, we want to maximize the expeted return
E{Rt}, for each step t.

Reinforcement Learning 42

Returns for Continuing Tasks

Continuing tasks: interaction does not have
natural episodes.

Discounted return:

��

 Rt = rt +1 +γ rt+ 2 + γ 2rt +3 +�= γ krt + k+1,
k =0

∞

�

where γ , 0 ≤ γ ≤ 1, is the discount rate.

shortsighted 0← γ → 1 farsighted

Reinforcement Learning 43

An Example

Avoid failure: the pole falling
beyond a critical angle or the cart
hitting end of track.

reward = +1 for each step before failure

� return = number of steps before failure

As an episodic task where episode ends upon failure:

As a continuing task with discounted return:
reward = −1 upon failure; 0 otherwise

� return = −γ k , for k steps before failure

In either case, return is maximized by
avoiding failure for as long as possible.

Reinforcement Learning 44

In episodic tasks, we number the time steps of each
episode starting from zero.
We usually do not have distinguish between episodes, so
we write instead of for the state at step t of
episode j.

Think of each episode as ending in an absorbing state that
always produces reward of zero:

We can cover all cases by writing

where γ can be 1 only if a zero reward absorbing state is
always reached.

A Unified Notation

st j,ts

�
∞

=
++=

0
1

k
kt

k
t ,rR γ

Reinforcement Learning 45

The Markov Property

By “the state” at step t, we mean whatever information is
available to the agent at step t about its environment.
The state can include immediate “sensations,” highly
processed sensations, and structures built up over time
from sequences of sensations.
Ideally, a state should summarize past sensations so as to
retain all “essential” information, i.e., it should have the
Markov Property:

for all s’ , r, and histories st, at, st-1, at-1, …, r1, s0, a0.

{ }
{ }tttt

ttttttt

a,srr,ssPr

a,s,r,,a,s,r,a,srr,ssPr

=′=

==′=

++

−−++

11

0011111 �

Reinforcement Learning 46

Markov Decision Processes

If a reinforcement learning task has the Markov
Property, it is basically a Markov Decision Process
(MDP).
If state and action sets are finite, it is a finite MDP.
To define a finite MDP, you need to give:

state and action sets
one-step “dynamics” defined by transition
probabilities:

reward probabilities:

Ps ′ s
a = Pr st +1 = ′ s st = s,at = a{ } for all s, ′ s ∈S, a ∈A(s).

Rs ′ s
a = E rt +1 st = s,at = a,st +1 = ′ s { } for all s, ′ s ∈S, a∈A(s).

Reinforcement Learning 47

Recycling Robot

An Example Finite MDP

At each step, robot has to decide whether it should (1)
actively search for a can, (2) wait for someone to bring it
a can, or (3) go to home base and recharge.
Searching is better but runs down the battery; if runs out
of power while searching, has to be rescued (which is
bad).
Decisions made on basis of current energy level: high,
low.

Reward = number of cans collected

Reinforcement Learning 48

Recycling Robot MDP

search

high low
1, 0

 1–
β , –3

search

recharge

wait

wait

search1–
α , R

β , R search

α, R search

1, R wait

1, R wait

{ }
{ }

{ }rechargewaitsearchlow

waitsearchhigh

lowhigh

,,)(A

,)(A

,S

=
=

=

waitsearch

wait

search

RR

 waiting whilecans of no. expected R

 searching whilecans of no. expected R

>
=
=

Reinforcement Learning 49

Transition Table

Reinforcement Learning 50

Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ }= Eπ γ krt +k +1 st = s
k =0

∞

�
	

�

�

�

Action - value function for policy π :

Qπ (s,a) = Eπ Rt st = s, at = a{ }= Eπ γ krt + k+1 st = s,at = a
k= 0

∞

�
	

�

�

�

The value of a state is the expected return starting
from that state. It depends on the agent’s policy:

The value of taking an action in a state under
policy ππππ is the expected return starting from that
state, taking that action, and thereafter following π :

Reinforcement Learning 51

Bellman Equation for a Policy ππππ

��

Rt = rt +1 + γ rt +2 +γ 2rt + 3 +γ 3rt + 4�

= rt +1 + γ rt +2 + γ rt +3 + γ 2rt + 4�()
= rt +1 + γ Rt +1

The basic idea:

So: { }
(){ }sssVrE

ssRE)s(V

ttt

tt

=γ+=

==

++π

π
π

11

Or, without the expectation operator:

Vπ (s) = π (s,a) Ps ′ s
a Rs ′ s

a + γ Vπ(′ s)[]
′ s
�

a
�

Reinforcement Learning 52

Derivation

Reinforcement Learning 53

Derivation

Reinforcement Learning 54

More on the Bellman Equation

Vπ (s) = π (s,a) Ps ′ s
a Rs ′ s

a + γ Vπ(′ s)[]
′ s
�

a
�

This is a set of equations (in fact, linear), one for each
state. The value function for π is its unique solution.

Backup diagrams:

s,as

a

s'

r

a'

s'
r

(b)(a)

for Vπ for Qπ

Reinforcement Learning 55

Grid World

Actions: north, south, east, west; deterministic.

If would take agent off the grid: no move but
reward = –1

Other actions produce reward = 0, except actions that
move agent out of special states A and B as shown.

State-value function
for equiprobable
random policy;
γ = 0.9

Reinforcement Learning 56

Golf

State is ball location
Reward of -1 for each stroke until the ball is in the hole
Value of a state?
Actions:

putt (use putter)
driver (use driver)

putt succeeds anywhere on the green

Reinforcement Learning 57

π ≥ ′ π if and only if Vπ (s) ≥ V ′ π (s) for all s ∈S

Optimal Value Functions

For finite MDPs, policies can be partially ordered:

There is always at least one (and possibly many) policies
that is better than or equal to all the others. This is an
optimal policy. We denote them all π *.
Optimal policies share the same optimal state-value
function:

Optimal policies also share the same optimal action-
value function:

This is the expected return for taking action a in state
s and thereafter following an optimal policy.

V∗ (s) = max
π

Vπ (s) for all s ∈S

Q∗(s,a) = max
π

Qπ (s,a) for all s ∈S and a ∈A(s)

Reinforcement Learning 58

Optimal Value Function for Golf

We can hit the ball farther with driver than with
putter, but with less accuracy
Q*(s,driver) gives the value of using driver first,
then using whichever actions are best

Reinforcement Learning 59

Bellman Optimality Equation for V*

s,as

a

s'

r

a'

s'
r

(b)(a)

max

max

V∗ (s) = max
a∈A(s)

Qπ ∗

(s,a)

= max
a∈A(s)

E rt +1 + γ V∗(st +1) st = s,at = a{ }
= max

a∈A(s)
Ps ′ s

a

′ s
� Rs ′ s

a + γ V∗(′ s)[]

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram:

is the unique solution of this system of nonlinear equations.∗V

Reinforcement Learning 60

Bellman Optimality Equation for Q*

s,as

a

s'

r

a'

s'
r

(b)(a)

max

max

{ }
[]�

′

∗

′′′

+
∗

′+
∗

′′+=

==′+=

s
a

a
ss

a
ss

ttt
a

t

asQRP

aassasQrEasQ

),(max

,),(max),(11

γ

γ

The relevant backup diagram:

is the unique solution of this system of nonlinear equations.
*Q

Reinforcement Learning 61

Why Optimal State-Value Functions are Useful

V∗

V∗

Any policy that is greedy with respect to is an optimal policy.

Therefore, given , one-step-ahead search produces
the long-term optimal actions.

E.g., back to the grid world:

Reinforcement Learning 62

What About Optimal Action-Value Functions?

Given , the agent does not even have to do a one-
step-ahead search:

Q*

π ∗(s) = argmax
a∈A(s)

Q∗(s,a)

Reinforcement Learning 63

Solving the Bellman Optimality Equation

Finding an optimal policy by solving the Bellman Optimality Equation
requires the following:

accurate knowledge of environment dynamics;

we have enough space and time to do the computation;

the Markov Property.

How much space and time do we need?

polynomial in number of states (via dynamic programming
methods; see later),

BUT, number of states is often huge (e.g., backgammon has
about 1020 states).

We usually have to settle for approximations.

Many RL methods can be understood as approximately solving the
Bellman Optimality Equation.

Reinforcement Learning 64

A Summary

Agent-environment
interaction

States
Actions
Rewards

Policy: stochastic rule for
selecting actions
Return: the function of future
rewards the agent tries to
maximize
Episodic and continuing
tasks
Markov Property

Markov Decision Process
Transition probabilities
Expected rewards

Value functions
State-value function for a policy
Action-value function for a
policy
Optimal state-value function
Optimal action-value function

Optimal value functions
Optimal policies
Bellman Equations
The need for approximation

Reinforcement Learning 65

Dynamic Programming

Objectives of the next slides:

Overview of a collection of classical solution
methods for MDPs known as dynamic
programming (DP)

Show how DP can be used to compute value
functions, and hence, optimal policies

Discuss efficiency and utility of DP

Reinforcement Learning 66

Policy Evaluation

{ }
�

�

�

	 =γ=== �

∞

=
++ππ

π

0
1

k
tkt

k
tt ssrEssRE)s(V

[]� �
′

π
′′

π ′γ+π=
a s

a
ss

a
ss)s(VRP)a,s()s(V

Policy Evaluation: for a given policy π, compute the
state-value function Vπ

Recall: State value function for policy π:

Bellman equation for V*:

A system of |S| simultaneous linear equations

Reinforcement Learning 67

Iterative Methods

��
V0 → V1 →�→ Vk → Vk+1 →�→ Vπ

Vk+1(s) ← π (s,a) Ps ′ s
a Rs ′ s

a + γ Vk (′ s)[]
′ s
�

a
�

a “sweep”

A sweep consists of applying a backup operation to
each state.

A full policy evaluation backup:

Reinforcement Learning 68

Iterative Policy Evaluation

Reinforcement Learning 69

A Small Gridworld

actions

r = −1
on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

An undiscounted episodic task
Nonterminal states: 1, 2, . . ., 14;
One terminal state (shown twice as shaded squares)
Actions that would take agent off the grid leave state
unchanged
Reward is –1 until the terminal state is reached

Reinforcement Learning 70

Iterative Policy Evaluation
for the Small Gridworld

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the
Random Policy

Greedy Policy
w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = ∞

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

π = random (uniform) action choices

[]� �
′

′′ ′+←
a s

a
ss

a
ss sVRPassV)(),()(γπ

Reinforcement Learning 71

Policy Improvement

Suppose we have computed V* for a deterministic policy π.

For a given state s, would it be better to do an action ?

The value of doing a in state s is:

a ≠ π(s)

{ }
[])s(VRP

aa,ss)s(VrE)a,s(Q
a
ss

s

a
ss

tttt

′γ+=

==γ+=
π

′
′

′

+
π

+π
π

�
11

Qπ (s, a) > V π (s)

It is better to switch to action a for state s if and only if

Reinforcement Learning 72

The Policy Improvement Theorem

Reinforcement Learning 73

Proof sketch

Reinforcement Learning 74

Policy Improvement Cont.

′ π (s) = argmax
a

Qπ (s,a)

= argmax
a

P
s ′ s
a

′ s
� R

s ′ s
a + γ Vπ (′ s)[]

Do this for all states to get a new policy ′ π that is

greedy with respect to Vπ :

Then V ′ π ≥ Vπ

Reinforcement Learning 75

Policy Improvement Cont.

What if V ′ π = Vπ ?

i.e., for all s ∈S, V ′ π (s) = max
a

P
s ′ s
a

′ s
� R

s ′ s
a +γ Vπ (′ s)[] ?

But this is the Bellman Optimality Equation.

So V ′ π = V∗ and both π and ′ π are optimal policies.

Reinforcement Learning 76

Policy Iteration

��
π0 → Vπ 0 → π1 → Vπ1 →�π * → V * → π *

policy evaluation policy improvement
“greedification”

Reinforcement Learning 77

Policy Iteration

Reinforcement Learning 79

Value Iteration

Drawback to policy iteration is that each iteration
involves a policy evaluation, which itself may
require multiple sweeps.
Convergence of V occurs only in the limit so that
we in principle have to wait until convergence.
As we have seen, the optimal policy is often
obtained long before V has converged.
Fortunately, the policy evaluation step can be
truncated in several ways without losing the
convergence guarantees of policy iteration.
Value iteration is to stop policy evaluation after
just one sweep.

Reinforcement Learning 80

Value Iteration

Vk+1(s) ← π (s,a) Ps ′ s
a Rs ′ s

a + γ Vk (′ s)[]
′ s
�

a
�

Recall the full policy evaluation backup:

Vk+1(s) ← max
a

Ps ′ s
a Rs ′ s

a + γ Vk (′ s)[]
′ s
�

Here is the full value iteration backup:

Combination of policy improvement and
truncated policy evaluation.

Reinforcement Learning 81

Value Iteration Cont.

Reinforcement Learning 83

Asynchronous DP

All the DP methods described so far require exhaustive
sweeps of the entire state set.
Asynchronous DP does not use sweeps. Instead it
works like this:

Repeat until convergence criterion is met: Pick a
state at random and apply the appropriate backup

Still needs lots of computation, but does not get locked
into hopelessly long sweeps
Can you select states to backup intelligently? YES: an
agent’s experience can act as a guide.

Reinforcement Learning 84

Generalized Policy Iteration

π V

evaluation

improvement

V →
Vπ

π→
greedy(V)

Vπ

starting
V π

V = V π

π = gree d y (V)

V*

π*

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

A geometric metaphor for
convergence of GPI:

Reinforcement Learning 85

Efficiency of DP

To find an optimal policy is polynomial in the number
of states…
BUT, the number of states is often astronomical, e.g.,
often growing exponentially with the number of state
variables (what Bellman called “the curse of
dimensionality”).
In practice, classical DP can be applied to problems
with a few millions of states.
Asynchronous DP can be applied to larger problems,
and appropriate for parallel computation.
It is surprisingly easy to come up with MDPs for
which DP methods are not practical.

Reinforcement Learning 86

Summary

Policy evaluation: backups without a max
Policy improvement: form a greedy policy, if only
locally
Policy iteration: alternate the above two processes
Value iteration: backups with a max
Full backups (to be contrasted later with sample
backups)
Generalized Policy Iteration (GPI)
Asynchronous DP: a way to avoid exhaustive sweeps
Bootstrapping: updating estimates based on other
estimates

Reinforcement Learning 87

Monte Carlo Methods

Monte Carlo methods learn from complete sample
returns

Only defined for episodic tasks
Monte Carlo methods learn directly from experience

On-line: No model necessary and still attains
optimality
Simulated: No need for a full model

Reinforcement Learning 88

Monte Carlo Policy Evaluation

Goal: learn Vπ(s)

Given: some number of episodes under π which
contain s
Idea: Average returns observed after visits to s

Every-Visit MC: average returns for every time s is visited
in an episode

First-visit MC: average returns only for first time s is
visited in an episode

Both converge asymptotically

1 2 3 4 5

Reinforcement Learning 89

First-visit Monte Carlo policy evaluation

Reinforcement Learning 90

Blackjack example

Object: Have your card sum be greater than the
dealers without exceeding 21.
States (200 of them):

current sum (12-21)
dealer’s showing card (ace-10)
do I have a useable ace?

Reward: +1 for winning, 0 for a draw, -1 for losing
Actions: stick (stop receiving cards), hit (receive
another card)
Policy: Stick if my sum is 20 or 21, else hit

Reinforcement Learning 91

Blackjack value functions

+1

−1

A
Dealer showing

10 12
P

la
ye

r
su

m
21

After 500,000 episodesAfter 10,000 episodes

Usable
ace

No
usable

ace

Reinforcement Learning 92

Backup diagram for Monte Carlo

Entire episode included
Only one choice at each
state (unlike DP)

MC does not bootstrap

Time required to estimate
one state does not depend
on the total number of
states

terminal state

Reinforcement Learning 95

Monte Carlo Estimation of Action Values (Q)

Monte Carlo is most useful when a model is not
available

We want to learn Q*

Qπ(s,a) - average return starting from state s and
action a following π
Also converges asymptotically if every state-action
pair is visited
Exploring starts: Every state-action pair has a non-
zero probability of being the starting pair

Reinforcement Learning 96

Monte Carlo Control

MC policy iteration: Policy evaluation using MC
methods followed by policy improvement
Policy improvement step: greedify with respect to
value (or action-value) function

π Q

evaluation

improvement

Q →
Qπ

π→
greedy(Q)

Reinforcement Learning 98

Monte Carlo Exploring Starts

Fixed point is optimal
policy π∗

Proof is open question

Reinforcement Learning 99

Usable
ace

No
usable

ace

20

10A 2 3 4 5 6 7 8 9
Dealer showing

P
la

ye
r

su
m

HIT

STICK 19

21

11
12
13
14
15
16
17
18

π*

10A 2 3 4 5 6 7 8 9

HIT

STICK 20
19

21

11
12
13
14
15
16
17
18

V*

21

10 12

A

Dealer showing

P
la

ye
r

su
m

10

A

12

21

+1

−1

Blackjack Example Continued

Exploring starts
Initial policy as described before

Reinforcement Learning 100

On-policy Monte Carlo Control

)(
1

sA

εε +−

greedy

)(sA

ε

non-max

On-policy: learn about policy currently executing
How do we get rid of exploring starts?

Need soft policies: π(s,a) > 0 for all s and a
e.g. ε-soft policy:

Similar to GPI: move policy towards greedy policy
(i.e. ε-soft)
Converges to best ε-soft policy

Reinforcement Learning 101

On-policy MC Control

Reinforcement Learning 102

Off-policy Monte Carlo control

Behavior policy generates behavior in environment
Estimation policy is policy being learned about
Weight returns from behavior policy by their relative
probability of occurring under the behavior and
estimation policy

Reinforcement Learning 104

Off-policy MC control

Reinforcement Learning 107

Summary about Monte Carlo Techniques

MC has several advantages over DP:
Can learn directly from interaction with
environment
No need for full models
No need to learn about ALL states
Less harm by Markovian violations
MC methods provide an alternate policy
evaluation process

One issue to watch for: maintaining sufficient
exploration

exploring starts, soft policies
No bootstrapping (as opposed to DP)

Reinforcement Learning 108

Temporal Difference Learning

Introduce Temporal Difference (TD) learning
Focus first on policy evaluation, or prediction,
methods
Then extend to control methods

Objectives of the following slides:

Reinforcement Learning 109

TD Prediction

[])()()(tttt sVRsVsV −+← α

Policy Evaluation (the prediction problem):
for a given policy π, compute the state-value function πV

Recall:

[])()()()(11 ttttt sVsVrsVsV −++← ++ γα

target: the actual return after time t

target: an estimate of the return

Simple every-visit Monte Carlo method:

The simplest TD method, TD(0):

Reinforcement Learning 110

Simple Monte Carlo

T T T TT

T T T T T

V(st) ← V(st) + α Rt − V (st)[]
where Rt is the actual return following state st .

st

T T

T T

TT T

T TT

Reinforcement Learning 111

Simplest TD Method

T T T TT

T T T T T

st+1

rt+1

st

V(st) ← V(st) + α rt +1 + γ V (st+1) − V(st)[]

TTTTT

T T T T T

Reinforcement Learning 112

cf. Dynamic Programming

V(st) ← Eπ rt +1 + γ V(st){ }

T

T T T

st

rt+1

st+1

T

TT

T

TT

T

T

T

Reinforcement Learning 113

TD Bootstraps and Samples

Bootstrapping: update involves an
estimate

MC does not bootstrap

DP bootstraps
TD bootstraps

Sampling: update does not involve an
expected value

MC samples
DP does not sample

TD samples

Reinforcement Learning 114

A Comparison of DP, MC, and TD

++TD

+-MC

-+DP

samplesbootstraps

Reinforcement Learning 115

Example: Driving Home

State Elapsed Time
(minutes)

Predicted
Time to Go

Predicted
Total Time

leaving office 0 30 30

reach car, raining 5 35 40

exit highway 20 15 35

behind truck 30 10 40

home street 40 3 43

arrive home 43 0 43

Value of each state: expected time to go

Reinforcement Learning 116

Driving Home

road

30

35

40

45

Predicted
total

travel
time

leaving
office

exiting
highway

2ndary home arrive

Situation

actual outcome

reach
car street home

actual
outcome

Situation

30

35

40

45

Predicted
total

travel
time

road
leaving
office

exiting
highway

2ndary home arrivereach
car street home

Changes recommended by
Monte Carlo methods (α=1)

Changes recommended
by TD methods (α=1)

Reinforcement Learning 117

Advantages of TD Learning

TD methods do not require a model of the
environment, only experience
TD, but not MC, methods can be fully incremental

You can learn before knowing the final outcome
Less memory
Less peak computation

You can learn without the final outcome
From incomplete sequences

Both MC and TD converge (under certain
assumptions), but which is faster?

Reinforcement Learning 118

Random Walk Example

A B C D E
100000

start

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated
value

true
values

Values learned by TD(0) after
various numbers of episodes

Reinforcement Learning 119

TD and MC on the Random Walk

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

α=.05

α=.01

α=.1

α=.15

α=.02

α=.04

α=.03

RMS error,
averaged
over states

Data averaged over
100 sequences of episodes

Reinforcement Learning 120

Optimality of TD(0)

Batch Updating: train completely on a finite amount of
data, e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD(0), but only update
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating,
TD(0) converges for sufficiently small α.

Constant-α MC also converges under these conditions, but to
a difference answer!

Reinforcement Learning 121

Random Walk under Batch Updating

. 0

.05

. 1

.15

. 2

.25

0 25 50 75 100

TD

MC

BATCH TRAINING

Walks / Episodes

RMS error,
averaged
over states

After each new episode, all previous episodes were treated as a batch,
and algorithm was trained until convergence. All repeated 100 times.

Reinforcement Learning 122

You are the Predictor

Suppose you observe the following 8 episodes:

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

V(A)?

V(B)?

Reinforcement Learning 123

You are the Predictor

A B

r = 1

100%

75%

25%

r = 0

r = 0
V(A)?

Reinforcement Learning 124

You are the Predictor

The prediction that best matches the training data is
V(A)=0

This minimizes the mean-square-error on the
training set
This is what a batch Monte Carlo method gets

If we consider the sequentiality of the problem, then we
would set V(A)=.75

This is correct for the maximum likelihood estimate
of a Markov model generating the data
i.e, if we do a best fit Markov model, and assume it is
exactly correct, and then compute what it predicts
This is called the certainty-equivalence estimate
This is what TD(0) gets

Reinforcement Learning 125

Learning an Action-Value Function

st+2,at+2st+1,at+1

rt+2rt+1st st+1st ,at
st+2

Estimate Qπ for the current behavior policy π.

After every transition from a nonterminal state st , do this:

Q st , at()← Q st , at()+ α rt +1 +γ Q st +1,at +1()− Q st ,at()[]
If st +1 is terminal, then Q(st +1, at +1) = 0.

Reinforcement Learning 126

Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate:

Reinforcement Learning 129

Q-Learning: Off-Policy TD Control

() () () ()[]ttt
a

ttttt asQasQrasQasQ ,,max,,

:learning-Q step-One

11 −++← ++ γα

Reinforcement Learning 138

Summary

TD prediction
Introduced one-step tabular model-free TD methods
Extend prediction to control by employing some form of
GPI

On-policy control: Sarsa
Off-policy control: Q-learning (and also R-learning)

These methods bootstrap and sample, combining
aspects of DP and MC methods

Reinforcement Learning 139

Eligibility Traces

Reinforcement Learning 140

N-step TD Prediction

Idea: Look farther into the future when you do TD
backup (1, 2, 3, …, n steps)

Reinforcement Learning 141

Monte Carlo:

TD:
Use V to estimate remaining return

n-step TD:
2 step return:

n-step return:

Backup (online or offline):

Mathematics of N-step TD Prediction

T
tT

tttt rrrrR 1
3

2
21

−−
+++ ++++= γγγ �

)(11
)1(

++ += tttt sVrR γ

)(2
2

21
)2(

+++ ++= ttttt sVrrR γγ

)(1
3

2
21

)(
ntt

n
nt

n
ttt

n
t sVrrrrR ++

−
+++ +++++= γγγγ �

∆ Vt (st) = α Rt
(n) − Vt (st)[]

Reinforcement Learning 143

Random Walk Examples

How does 2-step TD work here?
How about 3-step TD?

Reinforcement Learning 144

A Larger Example

Task: 19 state
random walk

Do you think there
is an optimal n
(for everything)?

Reinforcement Learning 145

Averaging N-step Returns

n-step methods were introduced to help
with TD(λ) understanding
Idea: backup an average of several
returns

e.g. backup half of 2-step and half of
4-step

Called a complex backup
Draw each component
Label with the weights for that
component

)4()2(

2

1

2

1
tt

avg
t RRR +=

One backup

Reinforcement Learning 146

Forward View of TD(λλλλ)

TD(λ) is a method for
averaging all n-step backups

weight by λn-1 (time since
visitation)

λ-return:

Backup using λ-return:

Rt
λ = (1− λ) λn −1

n=1

∞

� Rt
(n)

∆Vt(st) = α Rt
λ − Vt(st)[]

Reinforcement Learning 148

Relation to TD(0) and MC

λ-return can be rewritten as:

If λ = 1, you get MC:

If λ = 0, you get TD(0)

Rt
λ = (1− λ) λn−1

n=1

T− t −1

� Rt
(n) + λT−t −1Rt

Rt
λ = (1−1) 1n−1

n=1

T−t −1

� Rt
(n) + 1T− t −1Rt = Rt

Rt
λ = (1− 0) 0n−1

n=1

T−t −1

� Rt
(n) + 0T− t −1Rt = Rt

(1)

Until termination After termination

Reinforcement Learning 149

Forward View of TD(λλλλ) II

Look forward from each state to determine update
from future states and rewards:

Reinforcement Learning 150

λλλλ-return on the Random Walk

Same 19 state random walk as before

Why do you think intermediate values of λ are best?

Reinforcement Learning 152

On-line Tabular TD(λλλλ)

Initialize V(s) arbitrarily and e(s) = 0, for all s ∈S

Repeat (for each episode) :

 Initialize s

 Repeat (for each step of episode):

 a← action given by π for s

 Take action a, observe reward, r , and next state ′ s

 δ ← r +γV(′ s) − V(s)

 e(s) ← e(s) +1

 For all s:

 V(s) ← V(s) +αδe(s)

 e(s) ← γλe(s)

 s← ′ s

 Until s is terminal

Reinforcement Learning 158

Sarsa(λλλλ) Algorithm

 terminalis Until

;

),(),(

),(),(),(

: allFor

1

),(),(

greedy)- (e.g. from derivedpolicy using from Choose

, observe ,action Take

:episode) of stepeach (for Repeat

, Initialize

:episode)each (for Repeat

, allfor ,0, andy arbitraril , Initialize

s

aass

asease

aseasQasQ

s,a

e(s,a)e(s,a)

asQasQr

?Qsa

sra

as

asa)e(sa)Q(s

′←′←
←

+←

+←
−′′+←

′′
′

=

γλ
αδ

γδ

Reinforcement Learning 159

Summary

Provides efficient, incremental way to combine MC
and TD

Includes advantages of MC (can deal with lack of
Markov property)
Includes advantages of TD (using TD error,
bootstrapping)

Can significantly speed-up learning
Does have a cost in computation

Reinforcement Learning 160

Conclusions

Provides efficient, incremental way to combine MC
and TD

Includes advantages of MC (can deal with lack of
Markov property)
Includes advantages of TD (using TD error,
bootstrapping)

Can significantly speed-up learning
Does have a cost in computation

Reinforcement Learning 161

Three Common Ideas

Estimation of value functions

Backing up values along real or simulated
trajectories

Generalized Policy Iteration: maintain an
approximate optimal value function and
approximate optimal policy, use each to
improve the other

Reinforcement Learning 162

Backup Dimensions

Dynamic
programming

Temporal-
difference
learning

Monte Carlo

Exhaustive
search

bootstrapping, λ

full
backups

sample
backups

shallow
backups

deep
backups

