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Reinforcement Learning

Mainly based on 
“Reinforcement Learning –
An Introduction” by Richard 
Sutton and Andrew Barto

Slides are mainly based on 
the course material provided 
by the same authors

http://www.cs.ualberta.ca/~sutton/book/the-book.html
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Learning from Experience Plays a Role in …

Psychology

Artificial Intelligence

Control Theory and
Operations Research

Artificial Neural Networks

Reinforcement
Learning (RL)

Neuroscience
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What is Reinforcement Learning?

Learning from interaction
Goal-oriented learning
Learning about, from, and while interacting with an 
external environment
Learning what to do—how to map situations to 
actions—so as to maximize a numerical reward signal
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Supervised Learning

Supervised Learning 
SystemInputs Outputs

Training Info  =  desired (target) outputs

Error  =  (target output  – actual output)
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Reinforcement Learning

RL
SystemInputs Outputs (“actions”)

Training Info  =  evaluations (“rewards” / “penalties”)

Objective:  get as much reward as possible
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Key Features of RL

Learner is not told which actions to take
Trial-and-Error search
Possibility of delayed reward (sacrifice short-term 
gains for greater long-term gains)
The need to explore and exploit
Considers the whole problem of a goal-directed 
agent interacting with an uncertain environment
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Complete Agent

Temporally situated
Continual learning and planning
Object is to affect the environment
Environment is stochastic and uncertain

Environment

actionstate

reward
Agent
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Elements of RL

Policy: what to do
Reward: what is good
Value: what is good because it predicts reward
Model: what follows what

Policy

Reward

Value
Model of

environment
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An Extended Example: Tic-Tac-Toe
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Assume an imperfect opponent: 
he/she sometimes makes mistakes
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An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

2. Now play lots of games. To 
pick our moves, look ahead 
one step:

State         V(s) – estimated probability of winning
.5          ?
.5          ?. . .

. . .

. . .
. . .

1        win

0        loss

. . .
. . .

0       draw

x

xxx
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x
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o

current state

various possible
next states*

Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.
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RL Learning Rule for Tic-Tac-Toe

“ Exploratory”  move

movegreedy  our after  statethe–    s

movegreedy  our before  statethe–     s

′

[ ])s(V)s(V)s(V)s(V

: a–  )s(V toward )s(V each increment We

−′α+←
′ backup

parametersize -step the

. e.g., fraction, positive  smalla 1=α
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How can we improve this T.T.T. player?

Take advantage of symmetries
representation/generalization
How might this backfire?

Do we need “random” moves? Why?
Do we always need a full 10%?

Can we learn from “random” moves?
Can we learn offline?

Pre-training from self play?
Using learned models of opponent?

. . .
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e.g. Generalization

Table                              Generalizing Function Approximator

State            VState            V

s
s
s
.
.
.

s

1

2

3

N

Train
here
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How is Tic-Tac-Toe Too Easy?

Finite, small number of states
One-step look-ahead is always possible
State completely observable
…
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Some Notable RL Applications

TD-Gammon: Tesauro
world’s best backgammon program

Elevator Control: Crites & Barto
high performance down-peak elevator controller

Dynamic Channel Assignment: Singh & Bertsekas, Nie & 
Haykin

high performance assignment of radio channels to 
mobile telephone calls

…
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TD-Gammon

Start with a random network

Play very many games against self

Learn a value function from this simulated experience

This produces arguably the best player in the world

Action selection
by 2–3 ply search

Value

TD error
Vt+1−Vt

Tesauro, 1992–1995

Effective branching factor 400
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Elevator Dispatching

10 floors, 4 elevator cars

STATES: button states;   positions, 
directions, and motion states of 
cars; passengers in cars & in 
halls

ACTIONS:  stop at, or go by, next 
floor

REWARDS: roughly, –1  per time 
step for each person waiting

Conservatively about 10     states
22

Crites and Barto, 1996
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Performance Comparison
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Evaluative Feedback

Evaluating actions vs. instructing by giving correct actions

Pure evaluative feedback depends totally on the action taken. 
Pure instructive feedback depends not at all on the action taken. 

Supervised learning is instructive; optimization is evaluative

Associative vs. Nonassociative:

Associative: inputs mapped to outputs; learn the best 
output for each input

Nonassociative: “learn” (find) one best output

n-armed bandit (at least how we treat it) is:

Nonassociative

Evaluative feedback
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The n-Armed Bandit Problem

Choose repeatedly from one of n actions; each 
choice is called a play
After each play    , you get a reward   , where

)a(Qa|rE t
*

tt =
ta tr

These are unknown action values
Distribution of      depends only on  rt at

Objective is to maximize the reward in the long term, 
e.g., over 1000 plays

To solve the n-armed bandit problem, 
you must explore a variety of actions 

and then exploit the best of them.
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The Exploration/Exploitation Dilemma

Suppose you form estimates

The greedy action at t is

You can’t exploit all the time; you can’t explore all the 
time
You can never stop exploring; but you should always 
reduce exploring

Qt(a) ≈ Q* (a) action value estimates

at
* = argmax

a
Qt(a)

at = at
* � exploitation

at ≠ at
* � exploration
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Action-Value Methods

Methods that adapt action-value estimates and 
nothing else, e.g.:  suppose by the t-th play, action 
had been chosen      times, producing rewards                   
then 

a

k
t k

rrr
)a(Q a

+++
=

�21

ka ,r,,r,r
ak�21

“sample average” 

)a(Q)a(Qlim *
t

ka

=
∞→

a
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εεεε-Greedy Action Selection

Greedy action selection:

ε-Greedy:

)a(Qmaxargaa t
a

*
tt ==

at
*   with probability 1− ε

random action with probability ε{at =

... the simplest way to try to balance exploration and 
exploitation
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10-Armed Testbed

n = 10 possible actions
Each           is chosen randomly from a normal 
distribution: 
each      is also normal: 
1000 plays
repeat the whole thing 2000 times and average the results
Evaluative versus instructive feedback

)),a(Q(N t
* 1

),(N 10
rt

)a(Q*
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εεεε-Greedy Methods on the 10-Armed Testbed
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Softmax Action Selection

Softmax action selection methods grade action probs. 
by estimated values.
The most common softmax uses a Gibbs, or 
Boltzmann, distribution:

Choose action a on play t with probability

where τ is the “computational temperature”

,
e

e
 

n

b

)b(Q

)a(Q

t

t

� =1

τ

τ
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Evaluation Versus Instruction

Suppose there are K possible actions and you select 
action number k.
Evaluative feedback would give you a single score f, 
say 7.2. 
Instructive information, on the other hand, would say 
that action k’ , which is eventually different from 
action k, have actually been correct. 

Obviously, instructive feedback is much more 
informative, (even if it is noisy).
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Binary Bandit Tasks

at = 1    or    at = 2

rt =  success    or    rt =  failure

Suppose you have just two actions:

and just two rewards: 

Then you might infer a target or desired action: 

at                          if  success

the other action    if  failure{dt =

and then always play the action that was most often 
the target 

Call this the supervised algorithm. 
It works fine on deterministic tasks but is 
suboptimal if the rewards are stochastic. 
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Contingency Space

The space of all possible binary bandit tasks:
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Linear Learning Automata

Let π t(a) = Pr at = a{ } be the only adapted parameter

L R –I  (Linear,  reward - inaction)

        On success :  π t +1(at ) = π t (at ) + α (1 − π t (at )) 0 < α < 1

                 (the other action probs. are adjusted to still sum to 1)

        On failure :   no change

L R -P (Linear,  reward - penalty)

        On success :  π t +1(at ) = π t (at) + α (1 − π t(at )) 0 < α < 1

                 (the other action probs. are adjusted to still sum to 1)

        On failure :   π t +1(at ) = π t(at) + α (0 − π t(at )) 0 < α < 1

For two actions, a stochastic, incremental version of the supervised 
algorithm
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Performance on Binary Bandit Tasks A and B
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Incremental Implementation

��

Qk =
r1 + r2 +�rk

k

Recall the sample average estimation method:

Can we do this incrementally (without storing all the 
rewards)? 
We could keep a running sum and count, or, equivalently:

[ ]kkkk Qr
k

QQ −
+

+= ++ 11 1

1

The average of the first k rewards is
(dropping the dependence on     ):

This is a common form for update rules:

NewEstimate = OldEstimate + StepSize[Target – OldEstimate]

a
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Computation
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Tracking a Non-stationary Problem

Choosing       to be a sample average is 
appropriate in a stationary problem, i.e., when 
none of the            change over time,

But not in a non-stationary problem.

kQ

Q* (a)

Better in the non-stationary case is:

Qk+1 = Qk +α rk+1 − Qk[ ]
for constant α,  0 < α ≤ 1

               = (1− α)kQ0 + α (1−α
i =1

k

� )k −i ri

exponential, recency-weighted average
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Computation
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Optimistic Initial Values

All methods so far depend on          , i.e., they are 
biased.
Suppose instead we initialize the action values 
optimistically, i.e., on the 10-armed testbed, use

for all a. 

)a(Q0

 )a(Q 50 =

Optimistic initialization can force exploration behavior!



Reinforcement Learning 37

The Agent-Environment Interface

1
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r    :reward resulting gets     

)s(Aa  :t  stepat action produces     

Ss    :t  stepat  stateobserves Agent     

,,,t  : stepstime discrete at interact tenvironmen and Agent �

t

. . . st a
rt +1 st +1
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ss  whenaa thaty probabilit )a,s(               

iesprobabilit action to  statesfrom mapping a               

:,t step

ttt

t

===π

πat  Policy

The Agent Learns a Policy

Reinforcement learning methods specify how the 
agent changes its policy as a result of experience.
Roughly, the agent’s goal is to get as much reward 
as it can over the long run.
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Getting the Degree of Abstraction Right

Time steps need not refer to fixed intervals of real time.
Actions can be low level (e.g., voltages to motors), or 
high level (e.g., accept a job offer), “mental” (e.g., shift in 
focus of attention), etc.
States can low-level “sensations”, or they can be 
abstract, symbolic, based on memory, or subjective (e.g., 
the state of being “surprised” or “lost”).
An RL agent is not like a whole animal or robot, which 
consist of many RL agents as well as other components.
The environment is not necessarily unknown to the 
agent, only incompletely controllable.
Reward computation is in the agent’s environment 
because the agent cannot change it arbitrarily. 
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Goals and Rewards

Is a scalar reward signal an adequate notion of a 
goal?—maybe not, but it is surprisingly flexible.
A goal should specify what we want to achieve, not 
how we want to achieve it.
A goal must be outside the agent’s direct control—
thus outside the agent.
The agent must be able to measure success:

explicitly;
frequently during its lifespan.
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Returns

Episodic tasks: interaction breaks naturally into 
episodes, e.g., plays of a game, trips through a 
maze. 

��
Rt = rt +1 + rt +2 +�+ rT ,

where T is a final time step at which a terminal state is 
reached, ending an episode.

Suppose the sequence of rewards after step t is:
rt+1, rt+2, rt+3, …

What do we want to maximize? 

In general, we want to maximize the expeted return
E{Rt}, for each step t.
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Returns for Continuing Tasks

Continuing tasks: interaction does not have 
natural episodes.  

Discounted return:

��

            Rt = rt +1 +γ rt+ 2 + γ 2rt +3 +�= γ krt + k+1,
k =0

∞

�

where γ , 0 ≤ γ ≤ 1, is the discount rate.

shortsighted  0← γ → 1  farsighted



Reinforcement Learning 43

An Example

Avoid failure: the pole falling 
beyond a critical angle or the cart 
hitting end of track.

reward  = +1 for each step before failure

�   return =  number of steps before failure

As an episodic task where episode ends upon failure:

As  a continuing task with discounted return:
reward  = −1 upon failure;  0 otherwise

�   return =  −γ k , for k steps before failure

In either case, return is maximized by 
avoiding failure for as long as possible.



Reinforcement Learning 44

In episodic tasks, we number the time steps of each 
episode starting from zero.
We usually do not have distinguish between episodes, so 
we write       instead of         for the state at step t of 
episode j.

Think of each episode as ending in an absorbing state that 
always produces reward of zero:

We can cover all cases by writing

where γ can be 1 only if a zero reward absorbing state is 
always reached.

A Unified Notation

st j,ts

�
∞

=
++=

0
1

k
kt

k
t ,rR γ
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The Markov Property

By “the state” at step t, we mean whatever information is 
available to the agent at step t about its environment.
The state can include immediate “sensations,” highly 
processed sensations, and structures built up over time 
from sequences of sensations. 
Ideally, a state should summarize past sensations so as to 
retain all “essential” information, i.e., it should have the 
Markov Property:

for all s’ , r, and histories st, at, st-1, at-1, …, r1, s0, a0.

{ }
{ }tttt

ttttttt

a,srr,ssPr                                                             

a,s,r,,a,s,r,a,srr,ssPr

=′=

==′=

++

−−++

11

0011111 �
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Markov Decision Processes

If a reinforcement learning task has the Markov 
Property, it is basically a Markov Decision Process
(MDP).
If state and action sets are finite, it is a finite MDP. 
To define a finite MDP, you need to give:

state and action sets
one-step “dynamics” defined by transition 
probabilities:

reward probabilities:

Ps ′ s 
a = Pr st +1 = ′ s st = s,at = a{ }   for all s, ′ s ∈S, a ∈A(s).

Rs ′ s 
a = E rt +1 st = s,at = a,st +1 = ′ s { }   for all s, ′ s ∈S, a∈A(s).
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Recycling Robot

An Example Finite MDP

At each step, robot has to decide whether it should (1) 
actively search for a can, (2) wait for someone to bring it 
a can, or (3) go to home base and recharge. 
Searching is better but runs down the battery; if runs out 
of power while searching, has to be rescued (which is 
bad).
Decisions made on basis of current energy level: high, 
low.

Reward = number of cans collected
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Recycling Robot MDP

search

high low
1,  0

 1–β ,   –3

search

recharge

wait

wait

search1–α ,  R

β ,  R  search

α, R search

1,  R wait

1,  R wait

{ }
{ }

{ }rechargewaitsearchlow

waitsearchhigh

lowhigh

,,)(A

,)(A

,S

=
=

=

waitsearch

wait

search

RR                     

 waiting whilecans of no. expected R

 searching whilecans of no. expected R

>
=
=
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Transition Table
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Value Functions

State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ }= Eπ γ krt +k +1 st = s
k =0

∞

�
	 

 
� 

� 
 
� 

Action - value function for policy π :

Qπ (s,a) = Eπ Rt st = s, at = a{ }= Eπ γ krt + k+1 st = s,at = a
k= 0

∞

�
	 

 
� 

� 
 
� 

The value of a state is the expected return starting 
from that state. It depends on the agent’s policy:

The value of taking an action in a state under 
policy ππππ is the expected return starting from that 
state, taking that action, and thereafter following π :
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Bellman Equation for a Policy ππππ

��

Rt = rt +1 + γ rt +2 +γ 2rt + 3 +γ 3rt + 4�

= rt +1 + γ rt +2 + γ rt +3 + γ 2rt + 4�( )
= rt +1 + γ Rt +1

The basic idea: 

So: { }
( ){ }sssVrE

ssRE)s(V

ttt

tt

=γ+=

==

++π

π
π

11

Or, without the expectation operator: 

Vπ (s) = π (s,a) Ps ′ s 
a Rs ′ s 

a + γ Vπ( ′ s )[ ]
′ s 
�

a
�
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Derivation
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Derivation
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More on the Bellman Equation

Vπ (s) = π (s,a) Ps ′ s 
a Rs ′ s 

a + γ Vπ( ′ s )[ ]
′ s 
�

a
�

This is a set of equations (in fact, linear), one for each 
state. The value function for π is its unique solution.

Backup diagrams:

s,as

a

s'

r

a'

s'
r

(b)(a)

for Vπ for Qπ
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Grid World

Actions: north, south, east, west; deterministic.

If would take agent off the grid: no move but 
reward = –1

Other actions produce reward = 0, except actions that 
move agent out of special states A and B as shown.

State-value function 
for equiprobable
random policy;
γ = 0.9
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Golf

State is ball location
Reward of -1 for each stroke until the ball is in the hole
Value of a state?
Actions: 

putt (use putter)
driver (use driver)

putt succeeds anywhere on the green
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π ≥ ′ π     if and only if  Vπ (s) ≥ V ′ π (s)  for all s ∈S

Optimal Value Functions

For finite MDPs, policies can be partially ordered: 

There is always at least one (and possibly many)  policies 
that is better than or equal to all the others. This is an 
optimal policy. We denote them all π *.
Optimal policies share the same optimal state-value 
function:

Optimal policies also share the same optimal action-
value function:

This is the expected return for taking action a in state
s and thereafter following an optimal policy.

V∗ (s) = max
π

Vπ (s)   for all  s ∈S

Q∗(s,a) = max
π

Qπ (s,a)  for all  s ∈S and a ∈A(s)
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Optimal Value Function for Golf

We can hit the ball farther with driver than with 
putter, but with less accuracy
Q*(s,driver) gives the value of using driver first, 
then using whichever actions are best
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Bellman Optimality Equation for V*

s,as

a

s'

r

a'

s'
r

(b)(a)

max

max

V∗ (s) = max
a∈A(s)

Qπ ∗

(s,a)

= max
a∈A(s)

E rt +1 + γ V∗(st +1) st = s,at = a{ }
= max

a∈A(s)
Ps ′ s 

a

′ s 
� Rs ′ s 

a + γ V∗( ′ s )[ ]

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram: 

is the unique solution of this system of nonlinear equations.∗V
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Bellman Optimality Equation for Q*

s,as

a

s'

r

a'

s'
r

(b)(a)

max

max

{ }
[ ]�

′

∗

′′′

+
∗

′+
∗
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==′+=

s
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a
ss

a
ss

ttt
a

t

asQRP

aassasQrEasQ

),(max

,),(max),( 11

γ

γ

The relevant backup diagram: 

is the unique solution of this system of nonlinear equations.
*Q
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Why Optimal State-Value Functions are Useful

V∗

V∗

Any policy that is greedy with respect to is an optimal policy.

Therefore, given     , one-step-ahead search produces 
the long-term optimal actions.

E.g., back to the grid world:
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What About Optimal Action-Value Functions?

Given     , the agent does not even have to do a one-
step-ahead search:  

Q*

π ∗(s) = argmax
a∈A(s)

Q∗(s,a)
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Solving the Bellman Optimality Equation

Finding an optimal policy by solving the Bellman Optimality Equation 
requires the following:

accurate knowledge of environment dynamics;

we have enough space and time to do the computation;

the Markov Property.

How much space and time do we need?

polynomial in number of states (via dynamic programming 
methods; see later),

BUT, number of states is often huge (e.g., backgammon has 
about 1020 states).

We usually have to settle for approximations.

Many RL methods can be understood as approximately solving the 
Bellman Optimality Equation.
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A Summary

Agent-environment 
interaction

States
Actions
Rewards

Policy: stochastic rule for 
selecting actions
Return: the function of future 
rewards the agent tries to 
maximize
Episodic and continuing 
tasks
Markov Property

Markov Decision Process
Transition probabilities
Expected rewards

Value functions
State-value function for a policy
Action-value function for a 
policy
Optimal state-value function
Optimal action-value function

Optimal value functions
Optimal policies
Bellman Equations
The need for approximation
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Dynamic Programming

Objectives of the next slides: 

Overview of a collection of classical solution 
methods for MDPs known as dynamic 
programming (DP)

Show how DP can be used to compute value 
functions, and hence, optimal policies

Discuss efficiency and utility of DP
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Policy Evaluation

{ }
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�

�
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a
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a
ss )s(VRP)a,s()s(V

Policy Evaluation: for a given policy π, compute the 
state-value function Vπ

Recall:     State value function for policy π:

Bellman equation for V*:

A system of |S| simultaneous linear equations
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Iterative Methods

��
V0 → V1 →�→ Vk → Vk+1 →�→ Vπ

Vk+1(s) ← π (s,a) Ps ′ s 
a Rs ′ s 

a + γ Vk ( ′ s )[ ]
′ s 
�

a
�

a “sweep”

A sweep consists of applying a backup operation to 
each state.

A full policy evaluation backup:
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Iterative Policy Evaluation
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A Small Gridworld

actions

r  =  −1
on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

An undiscounted episodic task
Nonterminal states: 1, 2, . . ., 14; 
One terminal state (shown twice as shaded squares)
Actions that would take agent off the grid leave state 
unchanged
Reward is –1 until the terminal state is reached
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Iterative Policy Evaluation
for the Small Gridworld

 0.0  0.0  0.0

 0.0  0.0  0.0  0.0

 0.0  0.0  0.0  0.0

 0.0  0.0  0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk  for the
Random Policy

Greedy Policy
w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = ∞

k = 3

optimal 
policy

random 
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

π =  random (uniform) action choices

[ ]� �
′

′′ ′+←
a s

a
ss

a
ss sVRPassV )(),()( γπ
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Policy Improvement

Suppose we have computed V* for a deterministic policy π.

For a given state s, would it be better to do an action               ?

The value of doing a in state s is:

a ≠ π(s)

{ }
[ ])s(VRP

aa,ss)s(VrE)a,s(Q 
a
ss

s

a
ss

tttt

′γ+=

==γ+=
π

′
′

′

+
π

+π
π

�
11

Qπ (s, a) > V π (s)

It is better to switch to action a for state s if and only if 
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The Policy Improvement Theorem
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Proof sketch
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Policy Improvement Cont.

′ π (s) = argmax
a

Qπ (s,a)

= argmax
a

P
s ′ s 
a

′ s 
� R

s ′ s 
a + γ Vπ ( ′ s )[ ]

Do this for all states to get a new policy ′ π  that is 

greedy with respect to Vπ :

Then V ′ π ≥ Vπ
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Policy Improvement Cont.

What if V ′ π = Vπ  ?

i.e.,   for all s ∈S,   V ′ π (s) = max
a

P
s ′ s 
a

′ s 
� R

s ′ s 
a +γ Vπ ( ′ s )[ ]  ?

But this is the Bellman Optimality Equation.

So V ′ π = V∗ and both π and ′ π  are optimal policies.
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Policy Iteration

��
π0 → Vπ 0 → π1 → Vπ1 →�π * → V * → π *

policy evaluation policy improvement
“greedification”
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Policy Iteration
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Value Iteration

Drawback to policy iteration is that each iteration 
involves a policy evaluation, which itself may 
require multiple sweeps.
Convergence of V occurs only in the limit so that 
we in principle have to wait until convergence.
As we have seen, the optimal policy is often 
obtained long before V has converged.
Fortunately, the policy evaluation step can be 
truncated in several ways without losing the 
convergence guarantees of policy iteration.
Value iteration is to stop policy evaluation after 
just one sweep. 
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Value Iteration

Vk+1(s) ← π (s,a) Ps ′ s 
a Rs ′ s 

a + γ Vk ( ′ s )[ ]
′ s 
�

a
�

Recall the full policy evaluation backup:

Vk+1(s) ← max
a

Ps ′ s 
a Rs ′ s 

a + γ Vk ( ′ s )[ ]
′ s 
�

Here is the full value iteration backup:

Combination of policy improvement and 
truncated policy evaluation.
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Value Iteration Cont.
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Asynchronous DP

All the DP methods described so far require exhaustive 
sweeps of the entire state set.
Asynchronous DP does not use sweeps. Instead it 
works like this:

Repeat until convergence criterion is met: Pick a 
state at random and apply the appropriate backup

Still needs lots of computation, but does not get locked 
into hopelessly long sweeps
Can you select states to backup intelligently? YES: an 
agent’s experience can act as a guide.
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Generalized Policy Iteration

π V

evaluation

improvement

V →Vπ

π→greedy(V)

*Vπ*

starting
V   π

V = V π

π = gree d y ( V )

V*

π*

Generalized Policy Iteration (GPI):  
any interaction of policy evaluation and policy improvement, 
independent of their granularity.

A geometric metaphor for
convergence of GPI: 
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Efficiency of DP

To find an optimal policy is polynomial in the number 
of states…
BUT, the number of states is often astronomical, e.g., 
often growing exponentially with the number of state 
variables (what Bellman called “the curse of 
dimensionality”).
In practice, classical DP can be applied to problems 
with a few millions of states.
Asynchronous DP can be applied to larger problems, 
and appropriate for parallel computation.
It is surprisingly easy to come up with MDPs for 
which DP methods are not practical.   
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Summary

Policy evaluation: backups without a max
Policy improvement: form a greedy policy, if only 
locally
Policy iteration: alternate the above two processes
Value iteration: backups with a max
Full backups (to be contrasted later with sample 
backups)
Generalized Policy Iteration (GPI)
Asynchronous DP: a way to avoid exhaustive sweeps
Bootstrapping: updating estimates based on other 
estimates
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Monte Carlo Methods

Monte Carlo methods learn from complete sample 
returns

Only defined for episodic tasks
Monte Carlo methods learn directly from experience

On-line: No model necessary and still attains 
optimality
Simulated: No need for a full model
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Monte Carlo Policy Evaluation

Goal: learn Vπ(s)

Given: some number of episodes under π which 
contain s
Idea: Average returns observed after visits to s

Every-Visit MC: average returns for every time s is visited 
in an episode

First-visit MC: average returns only for first time s is 
visited in an episode

Both converge asymptotically

1 2 3 4 5



Reinforcement Learning 89

First-visit Monte Carlo policy evaluation
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Blackjack example

Object: Have your card sum be greater than the 
dealers without exceeding 21.
States (200 of them): 

current sum (12-21)
dealer’s showing card (ace-10)
do I have a useable ace?

Reward: +1 for winning, 0 for a draw, -1 for losing
Actions: stick (stop receiving cards), hit (receive 
another card)
Policy: Stick if my sum is 20 or 21, else hit
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Blackjack value functions

+1

−1

A
Dealer showing

10 12
P

la
ye

r 
su

m
21

After 500,000 episodesAfter 10,000 episodes

Usable
ace

No
usable

ace
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Backup diagram for Monte Carlo

Entire episode included
Only one choice at each 
state (unlike DP)

MC does not bootstrap

Time required to estimate 
one state does not depend 
on the total number of 
states

terminal state
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Monte Carlo Estimation of Action Values (Q)

Monte Carlo is most useful when a model is not 
available

We want to learn Q*

Qπ(s,a) - average return starting from state s and 
action a following π
Also converges asymptotically if every state-action 
pair is visited
Exploring starts: Every state-action pair has a non-
zero probability of being the starting pair
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Monte Carlo Control

MC policy iteration: Policy evaluation using MC 
methods followed by policy improvement
Policy improvement step: greedify with respect to 
value (or action-value) function

π Q

evaluation

improvement

Q →Qπ

π→greedy(Q)
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Monte Carlo Exploring Starts

Fixed point is optimal 
policy π∗

Proof is open question
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Usable
ace

No
usable

ace

20

10A 2 3 4 5 6 7 8 9
Dealer showing

P
la

ye
r 

su
m

HIT

STICK 19

21

11
12
13
14
15
16
17
18

π*

10A 2 3 4 5 6 7 8 9

HIT

STICK 20
19

21

11
12
13
14
15
16
17
18

V*

21

10 12

A

Dealer showing

P
la

ye
r 

su
m

10

A

12

21

+1

−1

Blackjack Example Continued

Exploring starts
Initial policy as described before
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On-policy Monte Carlo Control

)(
1

sA

εε +−

greedy

)(sA

ε

non-max

On-policy: learn about policy currently executing
How do we get rid of exploring starts?

Need soft policies: π(s,a) > 0 for all s and a
e.g. ε-soft policy:

Similar to GPI: move policy towards greedy policy 
(i.e. ε-soft)
Converges to best ε-soft policy
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On-policy MC Control
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Off-policy Monte Carlo control

Behavior policy generates behavior in environment
Estimation policy is policy being learned about
Weight returns from behavior policy by their relative 
probability of occurring under the behavior and 
estimation policy



Reinforcement Learning 104

Off-policy MC control
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Summary about Monte Carlo Techniques

MC has several advantages over DP:
Can learn directly from interaction with 
environment
No need for full models
No need to learn about ALL states
Less harm by Markovian violations 
MC methods provide an alternate policy 
evaluation process

One issue to watch for: maintaining sufficient 
exploration

exploring starts, soft policies
No bootstrapping (as opposed to DP)
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Temporal Difference Learning

Introduce Temporal Difference (TD) learning
Focus first on policy evaluation, or prediction, 
methods
Then extend to control methods

Objectives of the following slides: 
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TD Prediction

[ ])()()( tttt sVRsVsV −+← α

Policy Evaluation (the prediction problem): 
for a given policy π, compute the state-value function πV

Recall:

[ ])()()()( 11 ttttt sVsVrsVsV −++← ++ γα

target: the actual return after time t

target: an estimate of the return

Simple every-visit Monte Carlo method:

The simplest TD method, TD(0):
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Simple Monte Carlo

T T T TT

T T T T T

V(st ) ← V(st) + α Rt − V (st )[ ]
where Rt  is the actual return following state st .

st

T T

T T

TT T

T TT
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Simplest TD Method

T T T TT

T T T T T

st+1

rt+1

st

V(st ) ← V(st) + α rt +1 + γ V (st+1 ) − V(st )[ ]

TTTTT

T T T T T
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cf. Dynamic Programming

V(st ) ← Eπ rt +1 + γ V(st ){ }

T

T T T

st

rt+1

st+1

T

TT

T

TT

T

T

T
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TD Bootstraps and Samples

Bootstrapping: update involves an 
estimate

MC does not bootstrap

DP bootstraps
TD bootstraps

Sampling: update does not involve an 
expected value

MC samples
DP does not sample

TD samples
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A Comparison of DP, MC, and TD

++TD

+-MC

-+DP

samplesbootstraps
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Example: Driving Home

State Elapsed Time 
(minutes) 

Predicted 
Time to Go 

Predicted 
Total Time 

leaving office 0 30 30 

reach car, raining 5 35 40 

exit highway 20 15 35 

behind truck 30 10 40 

home street 40 3 43 

arrive home 43 0 43 

 
Value of each state: expected time to go
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Driving Home

road

30

35

40

45

Predicted
total

travel
time

leaving
office

exiting
highway

2ndary home arrive

Situation

actual outcome

reach
car street home

actual
outcome

Situation

30

35

40

45

Predicted
total

travel
time

road
leaving
office

exiting
highway

2ndary home arrivereach
car street home

Changes recommended by 
Monte Carlo methods (α=1)

Changes recommended
by TD methods (α=1)
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Advantages of TD Learning

TD methods do not require a model of the 
environment, only experience
TD, but not MC, methods can be fully incremental

You can learn before knowing the final outcome
Less memory
Less peak computation

You can learn without the final outcome
From incomplete sequences

Both MC and TD converge (under certain 
assumptions), but which is faster?
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Random Walk Example

A B C D E
100000

start

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated
value

true 
values

Values learned by TD(0) after
various numbers of episodes
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TD and MC on the Random Walk

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100

Walks / Episodes

TD

MC

α=.05

α=.01

α=.1

α=.15

α=.02

α=.04

α=.03

RMS error,
averaged
over states

Data averaged over
100 sequences of episodes
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Optimality of TD(0)

Batch Updating: train completely on a finite amount of 
data, e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD(0), but only update 
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating,
TD(0) converges for sufficiently small α.

Constant-α MC also converges under these conditions, but to
a difference answer!
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Random Walk under Batch Updating

. 0

.05

. 1

.15

. 2

.25

0 25 50 75 100

TD

MC

BATCH TRAINING

Walks / Episodes

RMS error,
averaged
over states

After each new episode, all previous episodes were treated as a batch, 
and algorithm was trained until convergence. All repeated 100 times.
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You are the Predictor

Suppose you observe the following 8 episodes:

A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

V(A)?

V(B)?
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You are the Predictor

A B

r = 1

100%

75%

25%

r = 0

r = 0
V(A)?
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You are the Predictor

The prediction that best matches the training data is 
V(A)=0

This minimizes the mean-square-error on the 
training set
This is what a batch Monte Carlo method gets

If we consider the sequentiality of the problem, then we 
would set V(A)=.75

This is correct for the maximum likelihood estimate 
of a Markov model generating the data 
i.e, if we do a best fit Markov model, and assume it is 
exactly correct, and then compute what it predicts
This is called the certainty-equivalence estimate
This is what TD(0) gets
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Learning an Action-Value Function

st+2,at+2st+1,at+1

rt+2rt+1st st+1st ,at
st+2

Estimate Qπ  for the current behavior policy π.

After every transition from a nonterminal state st ,  do this:

Q st , at( )← Q st , at( )+ α rt +1 +γ Q st +1,at +1( )− Q st ,at( )[ ]
If st +1 is terminal,  then Q(st +1, at +1) = 0.
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Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate: 
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Q-Learning: Off-Policy TD Control

( ) ( ) ( ) ( )[ ]ttt
a

ttttt asQasQrasQasQ ,,max,,

:learning-Q step-One

11 −++← ++ γα
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Summary

TD prediction
Introduced one-step tabular model-free TD methods
Extend prediction to control by employing some form of 
GPI

On-policy control: Sarsa
Off-policy control: Q-learning (and also R-learning)

These methods bootstrap and sample, combining 
aspects of DP and MC methods
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Eligibility Traces
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N-step TD Prediction

Idea: Look farther into the future when you do TD 
backup (1, 2, 3, …, n steps)
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Monte Carlo:

TD:
Use V to estimate remaining return

n-step TD:
2 step return:

n-step return:

Backup (online or offline):

Mathematics of N-step TD Prediction

T
tT

tttt rrrrR 1
3

2
21

−−
+++ ++++= γγγ �

)( 11
)1(

++ += tttt sVrR γ

)( 2
2

21
)2(

+++ ++= ttttt sVrrR γγ

)(1
3

2
21

)(
ntt

n
nt

n
ttt

n
t sVrrrrR ++

−
+++ +++++= γγγγ �

∆ Vt ( st ) = α Rt
( n ) − Vt ( st )[ ]
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Random Walk Examples

How does 2-step TD work here?
How about 3-step TD?
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A Larger Example

Task: 19 state 
random walk

Do you think there 
is an optimal n 
(for everything)?
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Averaging N-step Returns

n-step methods were introduced to help 
with TD(λ) understanding
Idea: backup an average of several 
returns

e.g. backup half of 2-step and half of 
4-step

Called a complex backup
Draw each component
Label with the weights for that 
component

)4()2(

2

1

2

1
tt

avg
t RRR +=

One backup
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Forward View of TD(λλλλ)

TD(λ) is a method for 
averaging all n-step backups 

weight by λn-1 (time since 
visitation)

λ-return: 

Backup using λ-return:

Rt
λ = (1− λ ) λn −1

n=1

∞

� Rt
(n)

∆Vt(st ) = α Rt
λ − Vt(st )[ ]
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Relation to TD(0) and MC

λ-return can be rewritten as:

If λ = 1, you get MC:

If λ = 0, you get TD(0)

Rt
λ = (1− λ ) λn−1

n=1

T− t −1

� Rt
(n) + λT−t −1Rt

Rt
λ = (1−1) 1n−1

n=1

T−t −1

� Rt
(n ) + 1T− t −1Rt = Rt

Rt
λ = (1− 0) 0n−1

n=1

T−t −1

� Rt
(n ) + 0T− t −1Rt = Rt

(1)

Until termination After termination
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Forward View of TD(λλλλ) II

Look forward from each state to determine update 
from future states and rewards:
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λλλλ-return on the Random Walk

Same 19 state random walk as before

Why do you think intermediate values of λ are best?
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On-line Tabular TD(λλλλ)

Initialize V(s) arbitrarily and e(s) = 0, for all s ∈S

Repeat (for each episode) :

     Initialize s

     Repeat (for each step of episode):

          a← action given by π for s

          Take action a, observe reward, r , and next state ′ s 

          δ ← r +γV( ′ s ) − V(s)

          e(s) ← e(s) +1

          For all s:

                V(s) ← V(s) +αδe(s)

                e(s) ← γλe(s)

          s← ′ s 

     Until s is terminal
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Sarsa(λλλλ) Algorithm

 terminalis       Until

;          

),(),(                

),(),(),(                

: allFor           
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Summary

Provides efficient, incremental way to combine MC 
and TD

Includes advantages of MC (can deal with lack of 
Markov property)
Includes advantages of TD (using TD error, 
bootstrapping)

Can significantly speed-up learning
Does have a cost in computation



Reinforcement Learning 160

Conclusions

Provides efficient, incremental way to combine MC 
and TD

Includes advantages of MC (can deal with lack of 
Markov property)
Includes advantages of TD (using TD error, 
bootstrapping)

Can significantly speed-up learning
Does have a cost in computation
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Three Common Ideas

Estimation of value functions

Backing up values along real or simulated 
trajectories

Generalized Policy Iteration: maintain an 
approximate optimal value function and 
approximate optimal policy, use each to 
improve the other
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Backup Dimensions

Dynamic 
programming

Temporal-
difference
learning

Monte Carlo

Exhaustive
search

bootstrapping, λ

full
backups

sample
backups

shallow
backups

deep
backups


