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Abstract— Exploration and mapping belongs to the funda-
mental tasks of mobile robots. In the past, many approaches
have used occupancy grid maps to represent the environment
during the map building process. Occupancy grids, however,
are based on the assumption that each cell is either occupied
or free. In this paper we introduce coverage maps as an
alternative way of representing the environment of a robot.
Coverage maps store for each cell of a given grid a posterior
about the amount the corresponding cell is covered by an
obstacle. We also present a model that allows us to update
coverage maps upon input obtained from proximity sensors.
We furthermore describe how to use coverage maps for
a decision theoretic approach to exploration. Finally we
present experimental results illustrating that coverage maps
can be used to efficiently learn highly accurate models even
if noisy sensors such as ultrasounds are used.

I. INTRODUCTION

Generating maps is one of the fundamental tasks of
mobile robots [5, 8, 9, 16]. Many successful robotic
systems use maps of the environment to perform their
tasks. The questions of how to represent environments and
how to acquire models using this representation therefore
is an active research area. Throughout this paper we focus
on the problem of how to represent the environment of a
mobile robot, of how to update the map whenever new
sensory input arrives, and of how to guide the vehicle to
efficiently build accurate maps. In particular we introduce
coverage maps as a new probabilistic way to represent
the belief of the robot about the state of the environment.
In contrast to occupancy grids [13], in which each cell
is considered as either occupied or free, coverage maps
represent in each cell of a given discretization a posterior
about the amount this cell is covered by an object. As
an example consider the situation depicted in the left
images of Figure 1 in which a cell is partly covered
by an obstacle. With the standard occupancy algorithm
the probability that this cell is occupied will converge
to 1 if the sensors of the robot repeatedly detect the
obstacle. The top left picture of this figure shows the
resulting occupancy probabilities (black represents high
likelihood that the cell is occupied). Since the object does
only cover 20% of this cell, a coverage value of.2 (as
shown in the lower left image of Figure 1) would be a
better approximation of the true situation. In addition to
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Fig. 1. Typical occupancy map obtained in situations in which cells
are only partly occupied (top left) and a coverage map containing the
corresponding coverage values (lower left). The coverage posterior for
the cell containing the obstacle depicted in the right image.

the representation aspect, we also present a sensor model
that allows the robot to appropriately update a coverage
map upon sensory input and describe how coverage maps
can be used to realize a decision-theoretic approach to
exploration of unknown environments.

Exploration is the task of guiding a vehicle during
mapping such that it covers the environment with its sen-
sors. In addition to the mapping task, efficient exploration
strategies are also relevant for surface inspection, mine
sweeping, or surveillance [3, 11]. In the past, several
strategies for exploration have been developed. A popular
technique for exploration is to extract frontiers between
known and unknown areas [2, 6, 18] and to visit the
nearest unexplored place. Recently Koenig et al. [10] have
shown that such a strategy, which guides the vehicle to
the closest unexplored point, keeps the traveled distance
reasonably small. Most approaches applying such a tech-
nique solely distinguish between scanned and un-scanned
areas and do not take into account the actual information
gathered at each view-point. To overcome this limitation,
Gonzales et al. [7] determine the amount of unseen area
that might be visible to the robot from possible view-
points. To incorporate the uncertainty of the robot about
the state of the environment Moorehead et al. [12] as
well as Bourgault et al. [1] use occupancy grids [13] and
compute the entropy of each cell in the grid to determine
the utility of scanning from a certain location. Whaite and
Ferrie [17] present an approach that also uses the entropy
to measure the uncertainty in the geometric structure of
objects that are scanned with a laser range sensor. In
contrast to the work described here they use a parametric
representation of the objects to be scanned. Additionally,



several researchers focus on the problem of simultaneous
localization and mapping during exploration [1, 4, 5], an
aspect that we do not address in this paper.

This paper is organized as follows. In the next section
we introduce coverage maps. In Section III we present a
sensor model that allows us to update a given coverage
map upon sensory input. In Section IV we describe a
decision-theoretic approach to exploration based on cover-
age maps. Finally, we present experiments illustrating the
various properties of our approach. We present accurate
maps learned by a real robot and discuss the advantages
of our technique over existing approaches.

II. COVERAGE MAPS

As already mentioned above, occupancy grids rest on
the assumption that the environment has binary structure,
i.e. that each grid cell is either occupied or free. This
assumption, however, is not always justified. For example,
if the environment contains a wall that is not parallel
to the x- or y-axis of the grid there must be grid cells
which are only partly covered. In occupancy grids the
probability that such cells are occupied will inevitably
converge to one (see Figure 1). Coverage maps overcome
this limitation by storing for each cell a posterior about
its coverage. Coverage values range from 0 to 1. Whereas
a coverage of 1 means that the cell is fully occupied, an
empty cell has a coverage of 0. Since the robot usually
does not know the true coverage of a grid cell it maintains
a probabilistic beliefp(cl) about the coverage of the cell
cl. In principle, there are different ways of representing
p(cl). They range from parametric distributions such as
(mixtures of) Gaussians or non-parametric variants such
as histograms. Throughout this paper we assume that each
p(cl) is given by a histogram over possible coverage
values. More precisely, we store a histogram for each
grid cell, where each bin contains the probability that the
corresponding grid cell has the particular coverage.

In the beginning of the exploration task all cells are
typically initialized using a equal distribution in order to
represent the maximum uncertainty about the actual state
of the cell. The right image of Figure 1 shows a typical
coverage posterior we frequently obtain for partly covered
cells. Such a scenario is depicted in the lower left image
of this figure. In contrast to occupancy grids (top left
image) the resulting map represents the situation more
precisely. In the next Section we describe how we can
update coverage maps based on sensory input.

III. UPDATING COVERAGE MAPS UPON
SENSORY INPUT

To update a coverage map based whenever sensor data
arrives, we apply a Bayesian update scheme similar to that
of occupancy grids. Throughout this paper we assume that
our sensor provides distance information. Thus, we need a

formalism to convert the distance information to coverage
values. What we need to know is the coverage mapc that
has the highest likelihood under all distance measurements
d0, . . . , dT . If we use Bayes rule and assume that consec-
utive measurements are independent given that we know
the mapc, we obtain:

p(c | d0, . . . , dT )
Bayes
=

p(d0, . . . , dT | c) · p(c)
p(d0, . . . , dT )

(1)

= β · p(c) · p(d0, . . . , dT | c) (2)

= β · p(c) ·
T∏

t=0

p(dt | c). (3)

Next we need to know how to determine the likelihood
p(dt | c) of measuringdt given the mapc. Again we apply
Bayes rule and obtain:

p(c | d0, . . . , dT )
Bayes
= β · p(c) ·

T∏
t=0

p(c | dt) · p(dt)
p(c)

(4)

= β · ξT+1

p(c)T
·

T∏
t=0

p(c | dt) (5)

= β′ ·
T∏

t=0

p(c | dt). (6)

Equation (5) is obtained from Equation (4) by assuming
that p(c) is constant and thatξ = p(dt) is constant for
every t. The variablesβ and β′ represent normalization
constants ensuring that the left-hand side sums up to one
over all c. We assume that the individual cells of a cov-
erage map are independent. This assumption is frequently
used in the context of occupancy maps. We would like to
refer to a recent work by Thrun [15] on how to better deal
with the dependency between cells. We finally obtain:

p(c | d0, . . . , dT ) = β′ ·
T∏

t=0

L∏
l=0

p(cl | dt) (7)

= β′ ·
L∏

l=0

T∏
t=0

p(cl | dt). (8)

Thus, to update a map given a measurementdt we simply
have to multiply the current belief about the coverage of
each cellcl by the belief about the coverage of this cell
resulting fromdt. Additionally the maximum likelihood
coverage map is obtained by choosing the mode of the
coverage histogram for each cellcl. It remains to describe
how we actually computep(cl | dt), i.e. how we determine
the distribution about the potential coverage values of a
cell cl with distancedl to the sensor given a measurement
dt. In our current system, we use a mixture of a Gaussian
N (µ, σ) and a uniform distributionγ to compute the
probability p(cl = x | dt) that the coverage ofcl is x:

p(cl = x | dt) = γ(dl, dt) +
N (µ(dl − dt), σ(dl, dt), x). (9)
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Fig. 2. This picture shows our sensor modelP (cl = x | d) for Albert’s
ultrasound sensors (here for a measured distanced = 100cm).

The value of the uniform distribution is computed using
the functionγ(dl, dt) which increases monotonously in
dl and d. It reflects a typical behavior of proximity sen-
sors like sonars, because the accuracy of a measurement
decreases with the distance to the obstacle. The mean
µ(dl − d) of the Gaussian is computed in the following
way:

µ(dl − d) =

 0, (dl − d) < − r
2

r
2 + dl − d, |dl − d| < r

2
1, (dl − d) > r

2

(10)

with a grid resolution ofr. Note that we distinguish three
situations, depending on whether the measurement ends in
cl or not. Suppose that the measurement does not end incl

and the distancedl is shorter thand. In this case we have
dl−d < − r

2 . In such a situation, the mean of the Gaussian
is zero, since it is more likely that a cell covered by a
range measurement that does not end in it is completely
empty. The second line of Equation (10) represents the
situation in whichd ends withincl. In this case the mean
is inverse proportional to the amount the cell is covered
by d. Finally, cells lying up to20cm behind a cell, in
which the measurement ends, are most likely completely
occupied so that the mean is1. The value of the standard
deviationσ(dl, d) of the Gaussian is also a function that
is monotonously increasing indl andd except when|dl−
d| < r

2 . In this rangeσ(dl, d) has a constant value that
exceeds all values outside of this interval.

To obtain the optimal parameters for the various func-
tions in our sensor model (see Equation (9)) we apply the
maximum likelihood principle. We used data sets recorded
with our B21r robot Albert, depicted in Figure 4, in
our department building. We then compared the resulting
maps with a ground-truth map obtained by applying a
highly accurate scan-alignment procedure [9] on the laser
range information and by manually extracting geometric
objects from this data. Given these geometric primitives
we can easily compute the exact coverage of each cell
of a given discretization by straightforward geometric
operations. We evaluate a particular set of parameters

Fig. 3. Coverage map learned from ultrasound data (left image) and
ground truth map (right image).

by computing the likelihood of the ground truth map
given the corresponding coverage map and apply local
search techniques to determine a parameter setting that
maximizes the likelihood of the ground truth map.

The image of Figure 2 depicts a fraction of the resulting
sensor modelP (cl = x | d) for a distance ofd =
100cm for the ultrasound sensors of our robot. As the plot
illustrates, for a measured distance of1m, cells close to
the robot are with high likelihood unoccupied. However,
cells close the measured distance are covered with a
high likelihood. The maximum likelihood coverage map
obtained with this model is shown in the left image of
Figure 3. The size of the environment is17× 2.6m2 and
the resolution of the here presented map is5cm. The
image also shows the trajectory of the robot during the
exploration task. The right image of this figure shows the
ground truth map. As can be seen from the figure, the
similarity between the learned map and the ground truth
is quite high.

IV. EXPLORATION WITH COVERAGE MAPS

One of the key problems during exploration is to
choose appropriate vantage points. In general there are
two different aspects that are relevant. On the one hand,
the uncertainty of the robot in the map should be as
small as possible and on the other hand, the number of
measurements to be incorporated as well as the distance
traveled should be minimized.

Coverage maps are well-suited to support a decision-
theoretic approach to exploration. To determine the un-
certainty in the state of a particular cell we consider the
entropy of the posterior for that cell. Entropy is a general
measure for the uncertainty of a belief. The entropyH of
a histogramh consisting ofn bins hi, (i = 1, . . . , n) is
defined as:

H(h) = −
n∑

i=1

p(hi) · log p(hi). (11)

H is maximal in case of a uniform distribution. The min-
imal value zero is be obtained if the system is absolutely
certain about the state of the corresponding cell. Thus,
if we want to minimize the uncertainty in the current
map, all we need to do is to reduce the entropy of the



Fig. 4. The right image depicts the B21r robot Albert used to carry out the experiments. Albert is equipped with a SICK PLS laser range sensor
and 24 ultrasound sensors. Both images in the middle show photographs taken within the corridor of our office environment. The right image depicts a
coverage map learned by Albert using its ultrasound sensors in this environment.

histograms in the coverage map. Furthermore, we can
specify, when the exploration task has been completed.
Suppose the environment is of limited size. Then the goal
of the exploration process for a coverage mapc has been
achieved ifH(h(cl)) < ε for all cells cl ∈ c that can
be reached by the robot. Additionally, the system has to
detect a situation in which the robot is unable to reduce
the entropy of a cell belowε to ensure the termination
of the exploration task. In our system this is achieved
by monitoring the change of entropy. If this change is
below .001 for five consecutive measurements, the cell is
regarded as explored enough.

To take into account the accuracy of the information
provided by the sensor we compute the expected informa-
tion gain which is the expected change of entropy given
that the robot obtains a measurement at a certain location
in the map. For a given cellcl and measurementd, the
information gain is defined as:

I(h(cl) | d) = H(h(cl))−H(h′
d(cl)). (12)

Here h′
d(cl) is the histogram of cellcl after integrating

measurementd according to our sensor model. The infor-
mation gain of a measurement is then computed as the
sum of the information gains for all cells covered by that
measurement. Since we do not know which measurement
we will receive if the robot scans the environment at a
certain positionl, we have to integrate over all possible
measurements to compute the expected information gain
for that view-point:

E[I(l)] =
∑

d

p(d | c) ·
∑

ci∈C(l,d)

I(h(ci) | d). (13)

Here C(l, d) is the set of cells covered by a measured
distance ofd from location l. To efficiently compute the
likelihood of an observationp(d | c) we apply a ray-
tracing technique similar to Moravec and Elfes [13] using
the current maximum likelihood coverage map.

In extensive experiments we figured out that an ap-
proach that purely relies on the information gained at
particular vantage points usually minimizes the number
of measurements needed to learn a map, it has the major
disadvantage that it does not take into account the overall

path length of the resulting trajectory. On the other hand,
the popular strategy, which guides the robot to the closest
unexplored point, minimizes the length of the trajectory
traveled by the robot but increases the number of necessary
measurements. The strategy used by our robot therefore
computes a tradeoff between the utility of vantage points
L and the costsdc(l, x) of reaching them:

lnext = argmax
l∈L

[
α · E[I(l)]

maxl′∈L E[I(l′)]

−(1−α) · dc(l, x)
maxl′∈L dc(l′, x)

]
. (14)

This way it combines the advantages of both. It reduces
the distance to be traveled by the robot and the number
of measurements necessary to achieve the desired level of
certainty. Please note that by adapting the weightα the
user can easily influence the behavior of a robot and op-
timize the robot’s performance for a special task. A value
close to zero results in a greedy behavior. A value close
to 1, in contrast leads to a strategy that only considers
the information gain. A more detailed discussion about
different the exploration strategies including experimental
comparisons can be found in [14].

V. EXPERIMENTAL RESULTS

Our techniques described above have been implemented
and evaluated using data gathered with a real robot and in
simulation runs. In our experiments the use of coverage
maps has shown an advantage over standard occupancy
grids for the decision about which locations need further
consideration. When the robot has to actively control
its motions in order to acquire all relevant information
necessary to generate an accurate map, the uncertainty
representation is of utmost importance. The experiments
described in this section are designed to illustrate that
coverage maps in combination with our sensor model
can be used to learn high-quality maps. They furthermore
illustrate that they facilitate a decision-theoretic control of
the robot during exploration for generating highly accurate
maps with noisy sensors.



Fig. 5. The top image depicts a coverage map build from recorded
sonar data at the University of Washington. The lower image shows2%
of all sonar scans used to build the map above and illustrates the high
noise in the measurement data.

A. Mapping with Noisy Sensors

The first experiment is designed to illustrate that we
obtain highly accurate coverage maps using our sensor
model. In this real world experiment we used sonar data
gathered with our mobile robot Albert in our office en-
vironment. Albert traveled along the corridor and entered
three rooms of our lab. The two middle images of Figure 4
show pictures of this environment. As can be seen, there
are lots of glass panes which are hard to map with
ultrasounds because of their smooth surface. The resulting
coverage map is shown in the right image of Figure 4. We
would like to emphasize that even smaller details such as
the narrow pillars at the walls are visible in the resulting
map.

Another example for a coverage map build from real
sonar data is depicted in the top image of Figure 5.
The sonar data (see lower image of the same figure) has
been recorded while the robot was controlled manually
using a joystick. Since the robot was not performing an
exploration task it did not enter any of the doorways in
this environment.

B. Advantage over Scan Counting

The next experiment is designed to illustrate that an
approach which considers the uncertainty in the belief
about the coverage of a cell to select view-points yields
more accurate maps than techniques relying on scan
counting approaches. Scan counting techniques store for
each cell the number of times it has been intercepted by
a measurement. Several exploration techniques [2, 6, 18]
assume that a place is explored if it has been scanned
once. This is problematic especially when the underlying
sensors are noisy. Figure 6 shows a typical occupancy grid
map of our laboratory environment obtained from real
sonar data and using this approach. Although this map
reveals the structure of the environment it lacks several
details that are contained in the corresponding coverage
map (see Figure 3). Since the exploration process stops
as soon as all reachable locations were intercepted by a

Fig. 6. This image depicts an occupancy grid map obtained with scan
counting (n = 1).

technique path length |{ci | H(h(ci)) > ε}|
coverage maps 89.1m 0%
counting (n = 1) 26.6m 21%
counting (n = 50) 90.6m 1.5%

TABLE I

THIS TABLE SHOWS THE PATH LENGTH AND NUMBER OF CELLS WITH

HIGH ENTROPY FOR DIFFERENT EXPLORATION STRATEGIES.

measurement, many cells of the resulting occupancy map
have a high uncertainty. Especially if noisy sensors are
used the robot has to scan cells multiple times. This leads
to an extension of scan counting in which one assumes that
each cell has to be coveredn times and not only once.
A candidate value forn could be the maximum number
of measurements necessary for obtaining a coverage map
that fulfills the entropy threshold criterion.

To analyze the quality of occupancy maps obtained for
different values ofn we performed several experiments.
In these experiments we additionally discounted longer
beams in order to account for the fact that range sensors
provide fewer information for distant places. The results
for n = 1 andn = 50 (in practical experiments we found
thatn = 50 yields coverage maps that typically fulfill the
entropy criterion for ultrasound sensors) are summarized
in Table I. The right column of this table contains the
percentage of cells inc for which the entropy exceeds
the given threshold. As can be seen from the figure, more
than 20% of the cells do not fulfill the entropy criterion
if n = 1. In the case ofn = 50 still 1.5% of the cells
are above this threshold. In contrast to this, our approach
considers the uncertainty in the coverage of the individual
cells so that the resulting maps are more accurate. As this
experiment demonstrates, even extended scan counting
does not guarantee that in the end every cell is explored
well enough. Typically, some cells will be measured too
often, others not often enough.

To analyze the relationship between the overall distance
traveled and the percentage of sufficiently explored cells,
we performed a series of50 simulation experiments. In
these experiments we forced the robot to reach a scan
count of n where n varied between1 and 130. We
counted the number of cellsm that were explored well
enough given the entropy criterion for coverage maps and
plotted the length of the overall path againstm. The
resulting graph is shown in Figure 7. The cross on the
right side indicates the path length obtained when using
our exploration strategy for coverage maps with a low
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Fig. 7. This image shows the resulting path length for scan counting
obtained using a simulator. The cross shows the average path length
when using coverage maps.

value ofα (see Equation (14)). If one requires that 85% or
more of the cellsci should satisfyH(h(ci)) < ε = 0.65,
a decision-theoretic exploration strategy yields shorter
trajectories than extended scan counting.

VI. CONCLUSIONS

In this paper we introduced coverage maps as a new
representation scheme for grid-based maps built with
mobile robots from sensor data. Coverage maps store
in each cell a posterior about the coverage of that cell.
This way they offer the opportunity to reason about the
uncertainty of the robot about each particular point in the
environment. We also developed a sensor model designed
to update coverage maps upon sensory input. Finally, we
presented a decision-theoretic approach to guide a vehicle
during exploration.

The technique has been implemented and evaluated in
extensive simulation runs and in real world experiments.
The experiments illustrate that by using coverage maps
it is possible to build accurate maps. Additionally they
demonstrate that coverage maps can be used to control a
robot in order to obtain maps not exceeding a given level
of uncertainty which is auxiliary especially if the robot
possesses noisy sensors such as ultrasounds.
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