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Abstract— Exploration and mapping belongs to the funda-
mental tasks of mobile robots. In the past, many approaches
have used occupancy grid maps to represent the environment
during the map building process. Occupancy grids, however,
are based on the assumption that each cell is either occupied
or free. In this paper we introduce coverage maps as an
alternative way of representing the environment of a robot.
Coverage maps store for each cell of a given grid a posterior
about the amount the corresponding cell is covered by an
obstacle. We also present a model that allows us to update
coverage maps upon input obtained from proximity sensors.
We furthermore describe how to use coverage maps for
a decision theoretic approach to exploration. Finally we
present experimental results illustrating that coverage maps
can be used to efficiently learn highly accurate models even
if noisy sensors such as ultrasounds are used.

. INTRODUCTION

Generating maps is one of the fundamental tasks of
mobile robots [5, 8, 9, 16]. Many successful robotic
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Fig. 1. Typical occupancy map obtained in situations in which cells

are only partly occupied (top left) and a coverage map containing the
corresponding coverage values (lower left). The coverage posterior for
the cell containing the obstacle depicted in the right image.
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the representation aspect, we also present a sensor model
that allows the robot to appropriately update a coverage
map upon sensory input and describe how coverage maps
can be used to realize a decision-theoretic approach to
exploration of unknown environments.

Exploration is the task of guiding a vehicle during
mapping such that it covers the environment with its sen-

systems use maps of the environment to perform their sors. In addition to the mapping task, efficient exploration
tasks. The questions of how to represent environments and strategies are also relevant for surface inspection, mine
how to acquire models using this representation therefore sweeping, or surveillance [3, 11]. In the past, several
is an active research area. Throughout this paper we focus strategies for exploration have been developed. A popular
on the problem of how to represent the environment of a technique for exploration is to extract frontiers between
mobile robot, of how to update the map whenever new known and unknown areas [2, 6, 18] and to visit the
sensory input arrives, and of how to guide the vehicle to nearest unexplored place. Recently Koenig et al. [10] have
efficiently build accurate maps. In particular we introduce shown that such a strategy, which guides the vehicle to
coverage maps as a hew probabilistic way to represent the closest unexplored point, keeps the traveled distance
the belief of the robot about the state of the environment. reasonably small. Most approaches applying such a tech-
In contrast to occupancy grids [13], in which each cell nique solely distinguish between scanned and un-scanned
is considered as either occupied or free, coverage maps areas and do not take into account the actual information

represent in each cell of a given discretization a posterior
about the amount this cell is covered by an object. As
an example consider the situation depicted in the left
images of Figure 1 in which a cell is partly covered
by an obstacle. With the standard occupancy algorithm
the probability that this cell is occupied will converge
to 1 if the sensors of the robot repeatedly detect the
obstacle. The top left picture of this figure shows the
resulting occupancy probabilities (black represents high
likelihood that the cell is occupied). Since the object does
only cover20% of this cell, a coverage value of (as
shown in the lower left image of Figure 1) would be a
better approximation of the true situation. In addition to

gathered at each view-point. To overcome this limitation,
Gonzales et al. [7] determine the amount of unseen area
that might be visible to the robot from possible view-
points. To incorporate the uncertainty of the robot about
the state of the environment Moorehead et al. [12] as
well as Bourgault et al. [1] use occupancy grids [13] and
compute the entropy of each cell in the grid to determine
the utility of scanning from a certain location. Whaite and
Ferrie [17] present an approach that also uses the entropy
to measure the uncertainty in the geometric structure of
objects that are scanned with a laser range sensor. In
contrast to the work described here they use a parametric
representation of the objects to be scanned. Additionally,



several researchers focus on the problem of simultaneous formalism to convert the distance information to coverage
localization and mapping during exploration [1, 4, 5], an values. What we need to know is the coverage mépat
aspect that we do not address in this paper. has the highest likelihood under all distance measurements

This paper is organized as follows. In the next section dy,...,dr. If we use Bayes rule and assume that consec-
we introduce coverage maps. In Section Il we present a utive measurements are independent given that we know
sensor model that allows us to update a given coverage the mape, we obtain:

map upon sensory input. In Section IV we describe a
decision-theoretic approach to exploration based on cover-
age maps. Finally, we present experiments illustrating the
various properties of our approach. We present accurate

maps learned by a real robot and discuss the advantages

of our technique over existing approaches.

II. COVERAGE MAPS

As already mentioned above, occupancy grids rest on
the assumption that the environment has binary structure,
i.e. that each grid cell is either occupied or free. This
assumption, however, is not always justified. For example,
if the environment contains a wall that is not parallel
to the z- or y-axis of the grid there must be grid cells
which are only partly covered. In occupancy grids the
probability that such cells are occupied will inevitably

converge to one (see Figure 1). Coverage maps overcome

this limitation by storing for each cell a posterior about

Bayes p(do, NN 7dT | C) ~p(C)
o p(d07 . ,dT) (1)
B-ple) - p(do,....dr | c) (2)

T

g-plo)-[[pldil ). (3)
t=0

Next we need to know how to determine the likelihood

p(d; | ¢) of measuringl, given the mag. Again we apply
Bayes rule and obtain;
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its coverage. Coverage values range from 0 to 1. Whereas Equation (5) is obtained from Equation (4) by assuming

a coverage of 1 means that the cell is fully occupied, an
empty cell has a coverage of 0. Since the robot usually
does not know the true coverage of a grid cell it maintains
a probabilistic beliefp(c;) about the coverage of the cell

¢;. In principle, there are different ways of representing
p(c;). They range from parametric distributions such as
(mixtures of) Gaussians or non-parametric variants such

that p(c) is constant and thag = p(d;) is constant for
every t. The variables3 and 3’ represent normalization
constants ensuring that the left-hand side sums up to one
over all c. We assume that the individual cells of a cov-
erage map are independent. This assumption is frequently
used in the context of occupancy maps. We would like to
refer to a recent work by Thrun [15] on how to better deal

as histograms. Throughout this paper we assume that eachith the dependency between cells. We finally obtain:

p(¢;) is given by a histogram over possible coverage
values. More precisely, we store a histogram for each
grid cell, where each bin contains the probability that the
corresponding grid cell has the particular coverage.

In the beginning of the exploration task all cells are
typically initialized using a equal distribution in order to
represent the maximum uncertainty about the actual state
of the cell. The right image of Figure 1 shows a typical
coverage posterior we frequently obtain for partly covered
cells. Such a scenario is depicted in the lower left image
of this figure. In contrast to occupancy grids (top left
image) the resulting map represents the situation more
precisely. In the next Section we describe how we can
update coverage maps based on sensory input.

[1l. UPDATING COVERAGE MAPS UPON
SENSORY INPUT

p(c| do,-..,dr)

T L
g -111Ipteld) @)

t=01=0

L T
S -T1 1]l ) ®

1=0t=0
Thus, to update a map given a measurenagnte simply
have to multiply the current belief about the coverage of
each celle; by the belief about the coverage of this cell
resulting fromd;. Additionally the maximum likelihood
coverage map is obtained by choosing the mode of the
coverage histogram for each cejl It remains to describe
how we actually computg(c; | d;), i.e. how we determine
the distribution about the potential coverage values of a
cell ¢; with distanced’ to the sensor given a measurement
d;. In our current system, we use a mixture of a Gaussian
N(u,0) and a uniform distributiory to compute the

To update a coverage map based whenever sensor dat%robabilityp(cl = 2 | d;) that the coverage of; is z:

arrives, we apply a Bayesian update scheme similar to that
of occupancy grids. Throughout this paper we assume that
our sensor provides distance information. Thus, we need a

- ’Y(dla dt) +
N(M(dl - dt)’ U(dla dt)a'r)' (9)

pla = | d)
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Fig. 2. This picture shows our sensor modl; = = | d) for Albert’s
ultrasound sensors (here for a measured distaneel 00cm).

The value of the uniform distribution is computed using
the function~(d', d;) which increases monotonously in
d" andd. It reflects a typical behavior of proximity sen-
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Fig. 3. Coverage map learned from ultrasound data (left image) and
ground truth map (right image).

by computing the likelihood of the ground truth map
given the corresponding coverage map and apply local
search techniques to determine a parameter setting that
maximizes the likelihood of the ground truth map.

The image of Figure 2 depicts a fraction of the resulting
sensor modelP(¢; = = | d) for a distance ofd =

sors like sonars, because the accuracy of a measurement-00cm for the ultrasound sensors of our robot. As the plot
decreases with the distance to the obstacle. The mean/llustrates, for a measured distance lof, cells close to

u(d' — d) of the Gaussian is computed in the following
way:

0, (d—d)<-1%
pld —d) = ¢ t+d —d, |d—d <% (10)
1, (d'—d)>1%

with a grid resolution of-. Note that we distinguish three

situations, depending on whether the measurement ends in

¢; or not. Suppose that the measurement does not end in
and the distancé' is shorter thani. In this case we have
d'—d < —3. In such a situation, the mean of the Gaussian
is zero, since it is more likely that a cell covered by a
range measurement that does not end in it is completely
empty. The second line of Equation (10) represents the
situation in whichd ends withing;. In this case the mean

is inverse proportional to the amount the cell is covered
by d. Finally, cells lying up to20cm behind a cell, in
which the measurement ends, are most likely completely
occupied so that the meanis The value of the standard
deviationo(d', d) of the Gaussian is also a function that
is monotonously increasing iff andd except wherjd' —

d| < %. In this rangeo(d', d) has a constant value that
exceeds all values outside of this interval.

To obtain the optimal parameters for the various func-
tions in our sensor model (see Equation (9)) we apply the
maximum likelihood principle. We used data sets recorded
with our B21r robot Albert, depicted in Figure 4, in
our department building. We then compared the resulting
maps with a ground-truth map obtained by applying a
highly accurate scan-alignment procedure [9] on the laser
range information and by manually extracting geometric
objects from this data. Given these geometric primitives
we can easily compute the exact coverage of each cell
of a given discretization by straightforward geometric
operations. We evaluate a particular set of parameters

the robot are with high likelihood unoccupied. However,
cells close the measured distance are covered with a
high likelihood. The maximum likelihood coverage map
obtained with this model is shown in the left image of
Figure 3. The size of the environmentiig x 2.6m? and

the resolution of the here presented map5isn. The
image also shows the trajectory of the robot during the
exploration task. The right image of this figure shows the
ground truth map. As can be seen from the figure, the
similarity between the learned map and the ground truth
is quite high.

IV. EXPLORATION WITH COVERAGE MAPS

One of the key problems during exploration is to
choose appropriate vantage points. In general there are
two different aspects that are relevant. On the one hand,
the uncertainty of the robot in the map should be as
small as possible and on the other hand, the number of
measurements to be incorporated as well as the distance
traveled should be minimized.

Coverage maps are well-suited to support a decision-
theoretic approach to exploration. To determine the un-
certainty in the state of a particular cell we consider the
entropy of the posterior for that cell. Entropy is a general
measure for the uncertainty of a belief. The entrépyf

a histogramh consisting ofn bins h;, (i = 1,...,n) is
defined as:
H(h) = =Y p(hi)-logp(hi). (12)
=1

H is maximal in case of a uniform distribution. The min-
imal value zero is be obtained if the system is absolutely
certain about the state of the corresponding cell. Thus,
if we want to minimize the uncertainty in the current
map, all we need to do is to reduce the entropy of the



Fig. 4. The right image depicts the B21r robot Albert used to carry out the experiments. Albert is equipped with a SICK PLS laser range sensor
and 24 ultrasound sensors. Both images in the middle show photographs taken within the corridor of our office environment. The right image depicts a
coverage map learned by Albert using its ultrasound sensors in this environment.

histograms in the coverage map. Furthermore, we can

path length of the resulting trajectory. On the other hand,

specify, when the exploration task has been completed. the popular strategy, which guides the robot to the closest

Suppose the environment is of limited size. Then the goal
of the exploration process for a coverage nedpas been
achieved if H(h(¢;)) < € for all cells ¢; € ¢ that can
be reached by the robot. Additionally, the system has to
detect a situation in which the robot is unable to reduce
the entropy of a cell below to ensure the termination
of the exploration task. In our system this is achieved
by monitoring the change of entropy. If this change is
below .001 for five consecutive measurements, the cell is
regarded as explored enough.

To take into account the accuracy of the information

unexplored point, minimizes the length of the trajectory

traveled by the robot but increases the number of necessary

measurements. The strategy used by our robot therefore
computes a tradeoff between the utility of vantage points
L and the costgl.(l, z) of reaching them:

E[1(1)]
maxyer, E[I(I')]
)
maxycr, de.(I', x)

lnegt = argmax | -
leL

~(1- . (14)

provided by the sensor we compute the expected informa- This way it combines the advantages of both. It reduces
tion gain which is the expected change of entropy given the distance to be traveled by the robot and the number
that the robot obtains a measurement at a certain location of measurements necessary to achieve the desired level of

in the map. For a given cell; and measuremernt, the
information gain is defined as:

I(h(cr) | d) = H(h(er)) = H(hg(cr)).

Here 1/,(¢;) is the histogram of celt; after integrating
measuremend according to our sensor model. The infor-
mation gain of a measurement is then computed as the
sum of the information gains for all cells covered by that

(12)

measurement. Since we do not know which measurement

we will receive if the robot scans the environment at a
certain position/, we have to integrate over all possible
measurements to compute the expected information gain
for that view-point:

EI) = Y pld]e)- Y I(h(e)]|d).
d

c; €C(l,d)

(13)

Here C(l,d) is the set of cells covered by a measured
distance ofd from location!/. To efficiently compute the
likelihood of an observatiom(d | ¢) we apply a ray-
tracing technique similar to Moravec and Elfes [13] using
the current maximum likelihood coverage map.

In extensive experiments we figured out that an ap-
proach that purely relies on the information gained at
particular vantage points usually minimizes the number

certainty. Please note that by adapting the weighhe
user can easily influence the behavior of a robot and op-
timize the robot’s performance for a special task. A value
close to zero results in a greedy behavior. A value close
to 1, in contrast leads to a strategy that only considers
the information gain. A more detailed discussion about
different the exploration strategies including experimental
comparisons can be found in [14].

V. EXPERIMENTAL RESULTS

Our techniques described above have been implemented
and evaluated using data gathered with a real robot and in
simulation runs. In our experiments the use of coverage
maps has shown an advantage over standard occupancy
grids for the decision about which locations need further
consideration. When the robot has to actively control
its motions in order to acquire all relevant information
necessary to generate an accurate map, the uncertainty
representation is of utmost importance. The experiments
described in this section are designed to illustrate that
coverage maps in combination with our sensor model
can be used to learn high-quality maps. They furthermore
illustrate that they facilitate a decision-theoretic control of

of measurements needed to learn a map, it has the majorthe robot during exploration for generating highly accurate

disadvantage that it does not take into account the overall

maps with noisy sensors.



Fig. 6. This image depicts an occupancy grid map obtained with scan
counting @ = 1).

[ technique [ path length] [{c; [ H(h(c:)) > €}[ ]
coverage maps 89.1m 0%
counting @ = 1) 26.6m 21%
counting ¢ = 50) 90.6m 1.5%
Fig. 5. The top image depicts a coverage map build from recorded TABLE |

sonar data at the University of Washington. The lower image st¥ws
of all sonar scans used to build the map above and illustrates the high
noise in the measurement data. HIGH ENTROPY FOR DIFFERENT EXPLORATION STRATEGIES

THIS TABLE SHOWS THE PATH LENGTH AND NUMBER OF CELLS WITH

A. Mapping with Noisy Sensors measurement, many cells of the resulting occupancy map
have a high uncertainty. Especially if noisy sensors are
used the robot has to scan cells multiple times. This leads
to an extension of scan counting in which one assumes that
each cell has to be coveredtimes and not only once.
A candidate value fon could be the maximum number

The first experiment is designed to illustrate that we
obtain highly accurate coverage maps using our sensor
model. In this real world experiment we used sonar data
gathered with our mobile robot Albert in our office en-
vironment. Albert traveled along the corridor and entered -
three rooms of our lab. The two middle images of Figure 4 of meagurements necessary for ob.talr?mg a coverage map
show pictures of this environment. As can be seen, there that fulfills the entropy_ threshold criterion. )
are lots of glass panes which are hard to map with _To analyze the quality of occupancy maps obte_uned for
ultrasounds because of their smooth surface. The resulting different values ofn we performed several experiments.
coverage map is shown in the right image of Figure 4. We In thesg experiments we additionally discounted longer
would like to emphasize that even smaller details such as P&ams in order to account for the fact that range sensors
the narrow pillars at the walls are visible in the resulting Provide fewer information for distant places. The results
map. for n = 1 andn = 50 (in practical experiments we found

Another example for a coverage map build from real thatn =50 yields coverage maps that typically fulfill the
sonar data is depicted in the top image of Figure 5. €ntropy criterion for ultrasound sensors) are summarized
The sonar data (see lower image of the same figure) has in Table I. The right column of this table contains the
been recorded while the robot was controlled manually Percentage of cells ir for which the entropy exceeds
using a joystick. Since the robot was not performing an the given threshold. As can be seen from the f|gu_re,_more
exploration task it did not enter any of the doorways in than 20% of the cells do not fulfill the entropy criterion

this environment. if n = 1. In the case ofr = 50 still 1.5% of the cells
_ are above this threshold. In contrast to this, our approach
B. Advantage over Scan Counting considers the uncertainty in the coverage of the individual

The next experiment is designed to illustrate that an cells so that the resulting maps are more accurate. As this
approach which considers the uncertainty in the belief experiment demonstrates, even extended scan counting
about the coverage of a cell to select view-points yields does not guarantee that in the end every cell is explored
more accurate maps than techniques relying on scan Well enough. Typically, some cells will be measured too
counting approaches. Scan counting techniques store for often, others not often enough.
each cell the number of times it has been intercepted by  To analyze the relationship between the overall distance
a measurement. Several exploration techniques [2, 6, 18] traveled and the percentage of sufficiently explored cells,
assume that a place is explored if it has been scanned we performed a series &f0 simulation experiments. In
once. This is problematic especially when the underlying these experiments we forced the robot to reach a scan
sensors are noisy. Figure 6 shows a typical occupancy grid count of n where n varied betweenl and 130. We
map of our laboratory environment obtained from real counted the number of cells, that were explored well
sonar data and using this approach. Although this map enough given the entropy criterion for coverage maps and
reveals the structure of the environment it lacks several plotted the length of the overall path againgt The
details that are contained in the corresponding coverage resulting graph is shown in Figure 7. The cross on the
map (see Figure 3). Since the exploration process stops right side indicates the path length obtained when using
as soon as all reachable locations were intercepted by a our exploration strategy for coverage maps with a low
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when using coverage maps.

value ofa (see Equation (14)). If one requires that 85% or

more of the cells:; should satisfyH (h(c;)) < e = 0.65,

a decision-theoretic exploration strategy yields shorter

trajectories than extended scan counting.
VI. CONCLUSIONS

In this paper we introduced coverage maps as a new
representation scheme for grid-based maps built with
mobile robots from sensor data. Coverage maps store
in each cell a posterior about the coverage of that cell.
This way they offer the opportunity to reason about the
uncertainty of the robot about each particular point in the

This image shows the resulting path length for scan counting
obtained using a simulator. The cross shows the average path length
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[4]

[5]

[6]

[7]

[8]

[9]

environment. We also developed a sensor model designed [10]

to update coverage maps upon sensory input. Finally, we
presented a decision-theoretic approach to guide a vehicle

during exploration.

The technique has been implemented and evaluated in
extensive simulation runs and in real world experiments.
The experiments illustrate that by using coverage maps
it is possible to build accurate maps. Additionally they
demonstrate that coverage maps can be used to control a
robot in order to obtain maps not exceeding a given level
of uncertainty which is auxiliary especially if the robot

possesses hoisy sensors such as ultrasounds.
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