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Abstract

We propose a method for learning models of people’s mo-
tion behaviors in an indoor environment. As people move
through their environments, they do not move randomly. In-
stead, they often engage in typical motion patterns, related to
specific locations that they might be interested in approach-
ing and specific trajectories that they might follow in doing
so. Knowledge about such patterns may enable a mobile robot
to develop improved people following and obstacle avoidance
skills. This paper proposes an algorithm that learns collections
of typical trajectories that characterize a person’s motion pat-
terns. Data, recorded by mobile robots equipped with laser
range finders, is clustered into different types of motion us-
ing the popular expectation maximization algorithm, while si-
multaneously learning multiple motion patterns. Experimental
results, obtained using data collected in a domestic residence
and in an office building, illustrate that highly predictive mod-
els of human motion patterns can be learned.

1 Introduction

Whenever mobile robots are designed to operate in populated
environments, they need to be able to perceive the people in
their environment and to adapt their behavior according to the
activities of the people. The knowledge of typical behaviors
can be used in several ways to improve the behavior of the
system. For example, it allows a robot to adapt its velocity to
the speed of people in the environment and it enables a robot
to choose trajectories that minimize the risk of collisions with
people. In this paper we consider a specific problem in the
context of a nursing robot project [13]. The goal of this project
is the development of intelligent service robots than can assist
people in their daily living activities. One aspect in this context
is to learn typical behaviors of the persons in order to know,
where the person currently is or where it is currently going to.

Recently, a variety of service robots were developed that are
designed to operate in populated environments. These robots,
for example, are deployed in hospitals [7], museums [3], office
buildings [1], and department stores [4], where they perform
various services, e.g., deliver, educate, entertain [15] or assist
people [14, 9]. Additionally, a variety of techniques has been
developed that allows a robot to estimate the positions of peo-
ple in its vicinity or to adapt its behavior accordingly. For ex-

ample, the techniques described in [16] are designed to track
multiple persons in the vicinity of a robot. The approach pre-
sented in [17] uses a given probabilistic model of typical mo-
tion behaviors in order to predict future poses of the persons.
[6] present an approach to improve the behavior of a robot
by following the activities of a teacher. The system described
in [8] uses a camera to estimate where persons typically walk
and adapts the trajectory of the robot appropriately. [18] ap-
ply a Hidden-Markov-Model to predict the motions of moving
obstacles in the environment of a robot. [10] present a system
that is able to keep track of a moving target even in the case
of possible occlusions by other obstacles in the environment.
All the techniques described above assume the existence of a
model of the motion behaviors. Our approach, in contrast, is
able to learn such models and to use the learned models for the
prediction of the peoples movements. The technique described
in [2] uses an Abstract Hidden-Markov-Model to learn and to
predict motions of a person. This approach assumes that all
trajectories are already clustered into the corresponding mo-
tion behaviors during the learning phase. Our method extends
this approach as it determines both, the clustering and the cor-
responding motion behaviors.

In this paper we present an approach that allows a mobile robot
to learn probabilistic motion patterns of persons. We use the
popular EM-algorithm to simultaneously cluster trajectories
belonging to one motion behavior and to learn the character-
istic motions of this behavior. We apply our technique to data
recorded with mobile robots that are equipped with laser-range
finders. Furthermore, we demonstrate how the learned models
can be used to predict the trajectory of a person in the natural
environment.

This paper is organized as follows. In the next section, we
present the probabilistic representation of the motion patterns
and describe how to learn them using the expectation maxi-
mization algorithm. In Section 3 we describe our application
based on data recorded with mobile robots that are equipped
with laser-range finders. Section 4 presents experimental re-
sults regarding the learning process as well as regarding the
prediction accuracy of the learned models.

2 Learning Motion Patterns

Our approach to discovering typical motion patterns of peo-
ple is strictly statistical, using the popular EM-algorithm to
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find different types of activities that involve physical motion
throughout the natural environment. The input to our routine
is a collection of trajectoriesd = {d1, . . . , dN} (called: the
data). The output is a number of different types of motion pat-
ternsθ = {θ1, . . . , θM} a person might exhibit in their natural
environment. Each trajectorydi consists of a sequence

di = {x1
i , x

2
i , . . . , x

T
i } (1)

of positionsxti covered by the person. In our current system,
these positions are computed based on a grid-based discretiza-
tion of the environment: Eachxti represents the position of the
cell covered by the person aftert steps. Accordingly,x1

i is
the first cell covered by the person andxTi is the final destina-
tion. Throughout this paper we assume that all trajectoriesdi
have the same length. In our current system we chooseT as
the maximum length of all trajectories. Trajectories of length
T ′ < T are extended to lengthT by adding the final location
of that trajectory for exactlyT − T ′ times.

2.1 Motion Patterns
We begin with the description of our model of motion pat-
terns, which is subsequently estimated from data using EM.
Within this paper we assume that a person engages inM dif-
ferent types of motion patterns. A motion pattern, denotedθm
with 1 ≤ m ≤ M , is represented by probability distributions
p(x | θtm) specifying the probability that the person is at lo-
cationx after t steps given that he or she is engaged in this
motion pattern. Accordingly, we calculate the likelihood of a
trajectorydi under them-th motion modelθm as

p(di | θm) =
T∏
t=1

p(xti | θtm). (2)

2.2 Expectation Maximization
In essence, our approach seeks to identify a modelθ that max-
imizes the likelihood of the data. To define the likelihood of
the data under the modelθ, it will be useful to introduce a set
of correspondence variables, denotedcim. Herei is the index
of a trajectorydi, andm is the index of a motion modelθm.
Each correspondencecim is a binary variable, that is, it is ei-
ther 0 or 1. It is 1 if and only if thei-th trajectory corresponds
to them-th motion pattern. If we think of the motion model as
a specific motion activity a person might engage in,cim is 1 if
person was engaged in motion activitym in trajectoryi.

In the sequel, we will denote the set of all correspondence vari-
ables for thei-th data item byci, that is,ci = {ci1, . . . , ciM}.
For any data itemi, the fact that exactly one correspondence
is 1 translates into the following:

M∑
m=1

cim = 1. (3)

Throughout this paper we assume that each motion pattern is
represented byT Gaussian distributions with a fixed standard

deviationσ. Accordingly, the application of EM leads to an
extension of the k-Means Algorithm (see e.g. [12]) to trajec-
tories. Given the individual Gaussians for a modelθ we can
compute the joint likelihood of a single trajectorydi and its
correspondence vectorci as follows:

p(di, ci | θ) =
T∏
t=1

M∏
m=1

1√
2πσ

e−
1

2σ2 cim‖x
t
i−µ

t
m‖

2

. (4)

Thereby, we exploit the fact that only one of the correspon-
dence variablescim in the inner product is 1, and all others are
0. Accordingly, the total likelihood over all values ofi is given
by the product of the individual joint probabilities:

p(d, c | θ)

=
N∏
i=1

(
T∏
t=1

M∏
m=1

1√
2πσ

e−
1

2σ2 cim‖x
t
i−µ

t
m‖

2

)
. (5)

Since the logarithm is a monotonic function we can maximize
the log likelihood instead of the likelihood. The logarithm of
(5) is given by:

ln p(d, c | θ) =
N∑
i=1

(
T ·M · ln 1√

2πσ

− 1
2σ2
·
T∑
t=1

M∑
m=1

cim‖xti − µtm‖2
)
. (6)

Finally, we notice that we are not really interested in the log
likelihood of the correspondence variablesc, since those are
not observable in the first place. The common approach is
to integrate over them, that is, to optimize the expected log
likelihoodEc[ln p(d, c | θ) | θ, d] instead which, according to
(6), is

Ec[ln p(d, c | θ) | θ, d]

= Ec

[
N∑
i=1

(
T ·M · ln 1√

2πσ

− 1
2σ2
·
T∑
t=1

M∑
m=1

cim‖xti − µtm‖2
)
| θ, d

]
. (7)

Since the expectation is a linear operator we can move it inside
the expression, so that we finally get:

Ec[ln p(d, c | θ) | θ, d]

=
N∑
i=1

(
T ·M · ln 1√

2πσ

− 1
2σ2
·
T∑
t=1

M∑
m=1

E[cim | θ, d]‖xti − µtm‖2
)
, (8)

whereE[cim | θ, d] depends on the modelθ and the datad.

Unfortunately, optimizing (8) is not an easy endeavor. EM
is an algorithm that iteratively maximizes expected log like-
lihood functions by optimizing a sequence of lower bounds.
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In particular, it generates a sequence of models, denoted
θ[1], θ[2], . . . of increasing log likelihood.

Mathematically, the standard method is to turn (8) in a so-
calledQ-function which depends on two models,θ andθ′:

Q(θ′ | θ) = Ec[ln p(d, c | θ′) | θ, d]. (9)

In accordance with (8), thisQ-function is factored as follows:

Q(θ′ | θ)

=
N∑
i=1

(
T ·M · ln 1√

2πσ

− 1
2σ2
·
T∑
t=1

M∑
m=1

E[cim | θ, d]‖xti − µ′tm‖2
)
. (10)

The sequence of models is then given by calculating

θ[j+1] = argmax
θ′

Q(θ′ | θ[j]) (11)

starting with some initial modelθ[0]. Whenever theQ-function
is continuous as in our case, the EM algorithm converges at
least to a local maximum.

In particular, the optimization involves two steps: calculating
the expectationsE[cim | θ[j], d] given the current modelθ[j],
and finding the new modelθ[j+1] that has the maximum ex-
pected likelihood under these expectations. The first of these
two steps is typically referred to as the E-step (short for: ex-
pectation step), and the latter as the M-step (short for: maxi-
mization step).

To calculate the expectationsE[cim | θ[j], d] we apply Bayes
rule, obeying independence assumptions between different
data trajectories:

E[cim | θ[j], d] = p(cim | θ[j], d)
= p(cim | θ[j], di)
= ηp(di | cim, θ[j])p(cim | θ[j])
= η′p(di | θ[j]

m ), (12)

where the normalization constantsη andη′ ensure that the ex-
pectations sum up to 1 over allm. If we combine (2) and
(12) exploiting the fact that the distributions are represented
by Gaussians we obtain:

E[cim | θ[j], di] = η′
T∏
t=1

e−
1

2σ2 ‖x
t
i−µ

t[j]
m ‖

2

. (13)

Finally, the M-step calculates a new modelθ[j+1] by maxi-
mizing the expected likelihood. Technically, this is done by
computing for every motion patternm and for each time step
t a new meanµt[j+1]

m of the Gaussian distribution. Thereby
we consider the expectationsE[cim | θ[j], d] computed in the
E-step:

µt[j+1]
m =

∑N
i=1E[cim | θ[j], d]xti∑N
i=1E[cim | θ[j], d]

(14)

2.3 Monitoring Convergence and Local Maxima
The EM-algorithm is well-known to be sensitive to local max-
ima in the search [5, 11]. In the context of identifying motion
patterns, a typical local maximum involves situations in which
different types of trajectories are, with high probability, asso-
ciated with the same model componentθm. In such cases, the
motion patterns may never develop into a clear model of peo-
ple’s motion, and specific trajectories may never be explained
well with any of the model components.

Luckily, such cases can be identified during the optimiza-
tion. Our approach continuously monitors two types of oc-
currences:

1. Low data likelihood: If a trajectorydi has low likelihood
under the modelθ, this is an indication that no appropri-
ate motion pattern has yet been identified that represents
this trajectory.

2. Low motion pattern utility: Our second criterion involves
testing the utility of a motion patterns. The aim of this cri-
terion is to discover multiple model component that ba-
sically represent the same people motion. To detect such
cases, the total data log likelihood is calculated with and
without a specific model componentθm. Technically, this
involves executing the E step twice, once with and once
without θm. If the difference in the overall data likeli-
hood is smaller than a pre-specified threshold, the effect
of removingθm from the model is negligible. This indi-
cates a case where a similar motion pattern exists and the
one at hand is a duplicate.

Whenever the EM appears to have converged, our approach
extracts those two statistics and considers “resetting” individ-
ual model components In particular, if a low data likelihood
trajectory is found, a new model component is introduced that
is initialized using this very trajectory. Conversely, if a model
component with low utility is found, it is eliminated from the
model.

In our experiments, we found this selective restarting and
elimination strategy extremely effective in escaping local max-
ima. As indicated in the experimental results section below,
all our experiments converged to a model that clustered tra-
jectories into categories 100% identical to those prescribed by
us manually. Without this mechanism, the EM frequently got
stuck in local maxima and generated models that were signifi-
cantly less predictive of human behavior.

3 Laser-based Implementation

The EM-based learning procedure has been implemented for
data acquired with laser-range finders. To acquire the data we
used three Pioneer I robots (see left image of Figure 1) which
we installed in the environments. The robots were aligned
so that they covered almost the whole environment. Typical
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Figure 2: Typical data sets obtained with three robots tracking a person in a home environment.

Figure 1: Pioneer I robot used to record the data (left) and Person
moving in the environment (right).

Figure 3: Trajectory of a person extracted from the laser data.

range data obtained during the data acquisition phase are de-
picted in Figure 2.

To determine the trajectories that are the input to our algorithm
we first extract the position of the person in the range scans.
We locate changes in consecutive laser-range scans and use lo-
cal minima in the distance histograms of the range scans. In
a second step we identify resting places and perform a seg-
mentation of the data into different slices in which the person
moves. Furthermore, we smooth the data to filter out mea-
surement noise. Finally, we compute the trajectories, i.e. the
sequence of cells covered by the person during that motion. A
typical result of this process is shown in Figure 3.

4 Experimental Results

To evaluate the capabilities of our approach, we performed ex-
tensive experiments in a domestic residence as well as in an
office environment. Maps of these environments are depicted
in Figures 3 and 7. The first set of experiments described here
demonstrates the ability of our approach to learn different mo-
tion patterns from a set of trajectories. The goal of the second
set of experiments is to analyze the classification performance
of learned models.

4.1 Application of EM
In the first experiment, we applied our approach to learn a mo-
tion model for 42 trajectories recorded in a home environment.
Figure 4 shows for one experiment the expectations that were
computed in reach round of the EM given 14 possible motion
behaviors. In this particular experiment, we have exactly three
trajectories for each motion pattern. Each column in the pic-
tures contains the expectationsE[ci1 | θ, d], . . . , E[ciM | θ, d]
for every trajectorydi. To enhance the readability, we grouped
the examples belonging to the same motion pattern so that they
appear as blocks of three trajectories in Figure 4.

Since a uniform distribution ofE[cim | θ, d] represents a lo-
cal maximum in the log-likelihood space, the EM-algorithm
immediately gets stuck if we start with a uniform distribution.
We therefore initialize the expectation with a unimodal distri-
bution for each trajectory, i.e., for eachdi the expectations
E[ci1 | θ, d], . . . , E[ciM | θ, d] form a distribution with a
unique peak. The location of the mode, however, is chosen
randomly.

The topmost image of Figure 4 depicts the initial expecta-
tion generated according to the scheme described above. In
step 3 the EM has converged to a local maximum in the log-
likelihood space. As can be seen from the figure, three trajec-
tories are assigned to two different model components with the
same likelihood. Moreover, there are two categories of trajec-
tories that are assigned to the same motion pattern. In step 4
our algorithm therefore removes one of the duplicate models
and introduces a new one to which it assigns the trajectory
12 which has the lowest likelihood given the current modelθ.
After the next iteration, the system has converged to a state
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Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Figure 4: ExpectationsE[cmn] computed in the different iterations
of the EM-algorithm.

in which all trajectories are correctly assigned to the different
motion patterns.

To illustrate that our algorithm has correctly clustered the tra-
jectories Figure 5 shows trajectories of two different classes of
motion behaviors after the convergence of the EM.

4.2 Predicting Trajectories
To evaluate the capability of our learned models to predict hu-
man motions we performed a series of experiments. In each
experiment we randomly chose starting fractions of test trajec-
tories and counted the cases in which our model correctly pre-

Figure 5: Trajectories of two different classes of motion behaviors.
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Figure 6: Likelihood of the correct motion behavior after observing
fractions of trajectories.

dicts the correct motion behavior. Figure 6 shows in percent
the number of correctly predicted motion behaviors depending
on the length of the observed trajectory. As can be seen from
the figure, the classification results are quite good and our ap-
proach yields models allowing a mobile robot to reliably iden-
tify the correct motion pattern. If the robot observes 30% of a
trajectory in the home environment, then the motion behavior
with the highest probability corresponds to the correct motion
behavior in over 80% of all cases. The performance in the of-
fice environment is not as good as in the home environment,
which is because many behaviors have larger parts in common
in this environment.

Figure 6 illustrates for one trajectory of the person in the of-
fice environment the evolution of the set of possible motion
behaviors. Shown in grey are the means of four different mo-
tion patterns. The black line corresponds to the trajectory of
the person which was observed for the first time at the position
labeled S. In the beginning there are four possible motion be-
haviors (W, B, D, M) to which the trajectory might belong.
When location 1 is reached the motion behavior W can be
eliminated from the set of hypotheses because the correspond-
ing likelihood gets too low. Thus, even if the system is not
able to uniquely determine the intended goal location, it can
already predict that the person will follow the corridor during
the next steps. When the person reaches location 2 the sys-
tem can also exclude the motion behavior B. Finally, when the
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Figure 7: Motion patterns and trajectory of a person.

person reaches position 3, C becomes unlikely and D becomes
the most probable motion behavior. This illustrates, that the
results of the prediction are useful even in situations in which
there are ambiguities about the actual intention of the person.

5 Conclusions

In this paper we presented a method for learning motion be-
haviors of persons in indoor environments. To cluster similar
behaviors into single motion patterns, we apply the popular
expectation maximization algorithm. The output of our algo-
rithm is a collection of motion patterns. We furthermore de-
scribed how to use the resulting models to predict the motions
of persons in the vicinity of the robot.

Our approach has been implemented and applied to range
data recorded with mobile robots equipped with laser sensors.
Special techniques allow the EM-algorithm to overcome local
maxima in the likelihood-space which frequently occur in this
application. In practical experiments we demonstrated that our
method is able to learn typical motion behaviors of a person in
a domestic residence as well as in an office building. Based
on the resulting motion patterns our system can reliably pre-
dict the motions of persons based on observations made by the
robot.
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