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Abstract: The problem of building maps of the environment isone of the fundamental
problems in mobile robotics. So far, the majority of research has focused on the problem
of how to learn two-dimensional maps such as occupancy grids. Robots, however, operate
in a three-dimensional world. Accordingly, robots that usetree-dimensional maps can be
expected to be more reliable and robust than those relying on2d maps. In this paper we
describe a robotic system that is able to learn volumetric maps of the environment. The
robot is equipped with a laser range scanner attached to a manipulator with four degrees
of freedom. This allows the robot to scan into arbitrary directions and accurately explore
its environment. We also describe the techniques used for 3dcollision avoidance and path
planning.
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1. INTRODUCTION

Whereas mobile robots act in the three-dimensional
world, most of the research regarding spatial repre-
sentations of the environment of mobile robots has
focused on two-dimensional maps. The restriction to
two-dimensional representations, however, is error-
prone and has serious limitations. For example, the
planning of paths can be incomplete if the three-
dimensional world is mapped into two dimensions or
even incorrect if not all obstacles are contained in
the two-dimensional description. Additionally, two-
dimensional representations do not support typical
tasks like searching for objects. For example, without
knowledge about the three-dimensional structure of
a shelf, a robot cannot plan appropriate viewpoints
to find an object in the shelf. Thus, two-dimensional
maps are not sufficient in situations in which robots
are deployed in real-world scenarios. On the other
hand, 3d models of buildings (exterior and interior)
and man-made objects are envisioned to be useful in
a wide area of applications, which goes far beyond
robotics, like architecture, emergency planning, visu-

alization etc. In all of these application domains, there
is a need for methods that can automatically construct
3d models.

The problem of constructing real-world 3d models
has received considerable attention over the past few
years. (Bajcsyet al., 2000), (Hakimet al., 1997),
and (Rouset al., 2000) reconstruct three-dimensional
structures from camera images. Recently, several au-
thors used 3d range scanners for the acquisition
of volumetric models. For example, (Stamos and
Leordeanu, 2003) construct 3d models by combin-
ing multiple views obtained with a 3d range scanner.
(Sequeiraet al., 1999) present a system that automat-
ically reconstructs textured 3d indoor environments
with a laser range finder. (Thrunet al., 2000) uses
two 2d range scanners. The first is oriented horizon-
tally whereas the second points towards the ceiling.
By registering the horizontal scans the system gen-
erates accurate three-dimensional models. (Früh and
Zakhor, 2001) generate photo-realistic 3d reconstruc-
tions from urban scenes by combining aerial images
with textured 3d data acquired with a range scanner



Fig. 1. Robotic platform (left) and simulated robot
including the configuration space of the manip-
ulator (right).

and a camera mounted on a vehicle. Again, the align-
ment of scans is achieved by an accurate 2d registra-
tion. (Thrunet al., 2003) used several range scanners
to learn models of underground mines. Whereas the
range scanners are fixed on these systems, recently
several authors, e.g., (Hähnelet al., 2003), (Nüchter
et al., 2003), used pan-tilt devices to allow addi-
tional scanning directions. In all the systems described
above, the major focus lies on the acquisition of the
volumetric data, their automatic registration as well as
on their integration into a potentially simplified model.
Some approaches also considered the problem of plan-
ning the next vantage point. In particular, (Pito, 1996)
or (Roberts and Marshall, 1998) addressed this is-
sue and applied it to the acquisition of objects on a
turntable. None of the mentioned systems, however,
includes techniques for 3d collision avoidance and
path planning. Furthermore, the devices used to orient
the scanners had at most two degrees of freedom. Ac-
cordingly, the systems described above provided only
a small number of possible viewpoints.

In this paper we present a robotic system for flexi-
ble volumetric mapping of indoor environments (see
Figure 1). The robot consists of an iRobot B21r plat-
form equipped with a manipulator with four degrees
of freedom that carries a SICK laser range finder. In
contrast to using a pan-tilt-unit, this setup allows the
robot to flexibly orient the scanner to different view
points for generating 3d range scans. To allow the safe
and reliable operation of the robot we developed a
navigation system that can efficiently detect and avoid
collisions in the three-dimensional data acquired by
the robot and to explore given regions of interest. We
describe the major components of the navigation sys-
tem and present results regarding collision avoidance,
path planning and exploration.

This paper is organized as follows: After describ-
ing the robotic platform in the following section we
present an approach for efficient 3d collision detec-
tion and avoidance in Section 3. Then Section 4 is
concerned with the path planning component of our
navigation system. Finally, we present an algorithm
for effective exploration of volumetric scenes in Sec-
tion 5.

Fig. 2. Indoor environment scanned by the system.

2. THE ROBOT SYSTEM FOR VOLUMETRIC
MAPPING

Our robot system for 3d mapping consists of a four
DOF manipulator mounted on a B21R robot (see left
image of Figure 1). The manipulator carries a SICK
laser range finder (and a Sony FireWire camera which
will be used for acquiring textured models in later
phases of the project). The four joints are rotational
and will be denotedj0 throughj3 (from bottom to top)
throughout this paper. Whereas the jointsj0 and j2
rotate about the verticalZ-axis from−180◦ to 180◦,
j1 and j3 rotate about the horizontalX-axes from
−90◦ to 90◦. Thus, the configuration spaceC of the
manipulator is given as:

C =

{

j ∈ R
4

∣

∣

∣

∣

−180 ≤ j0, j2 ≤ 180,

−90 ≤ j1, j3 ≤ 90

}

Due to the length of the connections between the
joints, the individual configurations inC geometrically
correspond to points on small half spheresSs whose
centers lie on the surface of a bigger half sphereSb

(see right image of Figure 1).

By moving the manipulator along paths inC and
by subsequently mapping of the range measurements
fromC to R

3 we obtain 3d range scans such as the one
depicted in Figure 2.

3. 3D COLLISION AVOIDANCE

3.1 3D Collision Detection

Whenever a robot has to navigate in its environment, it
must be able to generate paths that are collision-free.
This, however, requires the capability to quickly check
whether the robotic platform in its current configura-
tion intersects with the obstacles given in the map. In
our scenario, in which we use a mobile robot to auto-
matically acquire three-dimensional maps from laser-
range data, the models used for collision detection
contain hundreds of thousands of polygons or even
more. Therefore, it is of utmost importance to have
an efficient approach for computing possible intersec-
tions of the robot’s shape with objects in the map.

The key operation that has to be carried out to
avoid collisions of the robot with obstacles is the test



whether there is an intersection of the robot’s shape
with polygons stored in the map. A fast and robust
method has recently been proposed by (Gottschalk,
2000). In this approach the collision check is per-
formed usingOriented Bounded Boxesand by orga-
nizing these in a tree-structure (OBB-tree). The tree is
built from top to bottom for a given set of 3d polygons.
Each inner node of the tree consists of a 3d oriented
bounding box for a subset of the polygons. The bound-
ing boxes are oriented along the principal directions of
the polygon vertices. This way we obtain a tight fit of
the bounding boxes to the polygons.

The main idea is that the overlap test for two oriented
bounding boxes can be performed efficiently by pro-
jecting both boxes onto a line and checking the result-
ing line segments for overlap. As (Gottschalk, 2000)
shows, only15 different line directions need to be
tested, namely the6 principal directions of both boxes
and the9 mutual cross products of these.

For the collision check between the robot and a set of
obstacle polygons, we build an OBB-tree both for the
robot and for the obstacles. We begin by testing the
root node boxes for overlap and then proceed in both
trees until we reach a level where the boxes do not
overlap or until we end up in a leaf node. In the latter
case we need to test the 3d polygons for intersection.

3.2 3D Collision Avoidance

The 3d collision detection system is designed to ef-
ficiently check whether or not the robot has collided
with an obstacle represented in the three-dimensional
map of the environment. In practice, however, we want
to avoid that the robot collides and stop all its actions
before it comes into contact with an object. Accord-
ingly, the robot must be able to predict a collision with
an object in order to stop early enough or to choose
alternative actions that prevent it from colliding with
an object.

One way to achieve this is to run a forward simulation
at every step in time: Given the current speed vectors
of the robot we calculate all possible collisions for the
next time-step(s). This, however, can be time consum-
ing, especially if potential motion changes must be
taken into account.

The OBB-tree approach fortunately provides us with
a convenient way of avoiding collisions. First we
apply an approach that is also known as obstacle
growing. In our system this is achieved by enlarging
the bounding boxes in the tree by a constant factor.
Additionally we can avoid collisions by pruning the
OBB tree at a certain level. For example, if we skip
the polygon intersection test at the leaf nodes and just
rely on the test on the level above, we become more
conservative with respect to collision checks, since
the overlap of the upper-level bounding boxes is a
sufficient condition for an intersection at a lower level.

The left image of Figure 3.2 shows a situation in which
our robot is close to an obstacle. Although none of
the polygons representing the robot intersects with an
object in the scene, the collision avoidance strategy
based on obstacle growing and OBB tree pruning
already reports a potential collision. The right image
of Figure 3.2 shows in red/dark grey the enlarged OBB
intersecting with polygons of the map. Here, the laser
attached to the manipulator gets too close to the wall.

3.3 Implementation Details and Efficiency

The collision avoidance system based on the OBB-
tree approach has been implemented and tested in
simulation using real-world data. The typical example
is shown in Figure 3. This particular scene consists
of over750, 000 scan points and about750, 000 trian-
gles. The triangles were obtained by connecting neigh-
boring points in the point set. The resulting OBB-tree
for this scene had a depth of41, and it took about
12 minutes to build the tree on a2.8 GHz Pentium4
machine. For this scene we are able to perform10 col-
lision tests per second. For a typical motion speed of
the manipulator of5 degrees per second this amounts
to two tests per degree of motion, which is sufficiently
fast for typical manipulation tasks and corresponding
slow movements of the platform.

4. PATH PLANNING

To scan its environment the robot must be able to ef-
ficiently plan collision-free paths. Whenever the plat-
form moves, we currently reset the manipulator to the
upright position so that the robot’s movements can be
planned in its three-dimensional configuration space.
In our current system we assume that the platform
stops whenever the robot scans its environment by
moving the scanner with its manipulator. The fact that
the configuration space of the manipulator has four
dimensions makes the application of standard path
planning strategies such asA∗ infeasible for plan-
ning trajectories. Assuming a grid representation of
the 4d configuration space, each grid cell would have
34 − 1 = 80 neighbors, resulting in a branching factor
of 80 in each planning step. Even for short plans with
about10 plan steps this would result in an untreatable
number of nodes in the search tree.

To reduce the size of the search space we exploit the
particular geometry of the manipulator. Considering
that small variations in the lower jointsj0 andj1 result
in larger volumes claimed by the manipulator than
small variations in the upper jointsj2 andj3, we use
a projectionC⊥ of C onto the first two dimensions.1

All obstacles are then mapped from 3d Cartesian space
into C⊥. This mapping results in a partition ofC⊥ into

1 This can be interpreted as ap-level tree(Latombe, 1991), a data
structure to efficiently store the configuration space (here, p = 2).



Fig. 3. Collision avoidance using a conservative extensionof OBB trees as well as obstacle growing: Situation in
which the laser attached to the manipulator gets very close to an obstacle (left) and detection of a potential
collison of the range scanner (right image).

Fig. 4. Projection of nearby obstacles ontoC⊥; axes
represent the position ofj0 andj1 in degrees.

three different regions: Areas where there is no colli-
sion, independent of the configuration ofj2 andj3, are
considered as free and therefore can safely be attained.
Areas where a collision is unavoidable for any set-
ting of j2 andj3 can obviously never be attained and
therefore are considered as occupied. In the remaining
areas a collision depends on the position ofj2 and
j3. Such areas inC⊥ are considered as “dangerous.”
Figure 4 shows for a simulated scene the projection
of the obstacles in the vicinity of the robot intoC⊥.
The white region corresponds to safe configurations,
the black areas are the occupied configurations, and
the dangerous regions are depicted in grey.

The path planning now works as follows: Whenever
the start and goal configurations both are safe and are
in the same connected component, we apply 2dA∗

planning. In any other case 2dA∗ is not a complete
planning strategy. Therefore, we apply another tech-
nique described in (Latombe, 1991) calledslicing: We
consider the configuration spacēC⊥ wherej3 is held
fixed at position0 and j2 is arbitrary. This way the
volume claimed by the manipulator is smaller and,
thus, the free space is larger than inC⊥. That means
that there is a higher chance that 2dA∗ planning inC̄⊥

finds a free path. However, we need to check if there
is a free path from the start position(s0, s1, s2, s3) to
the position(s0, s1, s2, 0) – and analogously for the
goal position. Furthermore, this technique is still not
complete. Thus, if this strategy also fails, we have
to plan in the whole 4d space. We do this using a
probabilistic roadmap approach (PRM) as described
in (Kavrakiet al., 1996).

The above planning algorithm has been implemented
and tested extensively. A statistical analysis has shown
that the PRM-technique needs to be applied only
in 6% of all cases. Figure 5 depicts an exam-
ple path generated by our planner. The starting po-
sition is (−65, 80,−40, 20) and the goal position
(170,−80, 40,−20), both measured in degrees for all
four joints. The projection of the resulting path into
C⊥ is shown in Figure 4.

5. EXPLORATION

One of the tasks of our robot is the autonomous ex-
ploration of its environment. In the case of our robotic
system, we can split up the exploration problem into
two distinct subtasks, namely thelocal exploration,
where only the manipulator is moved and the robot
has a fixed position, and theglobalexploration, where
good vantage points for the whole system are de-
manded as e.g. in (Klein and Sequeira, 2000). The
distinction here makes sense, because in the local
exploration there is no need for localisation and reg-
istration algorithms, due to the high accuracy of the
manipulator joints.

In this paper we will focus on the local exploration.
This means that the environment which is explored, is
restricted to a 3d areaB in the vicinity of the manip-
ulator, because far away regions can not be scanned
accurately enough and only nearby occlusions can be
resolved. In theory,B can be defined arbitrarily, but
we will consider it as an axis-aligned box in front
of the manipulator. The information that is acquired
during the exploration process is represented in a 3d
occupancy grid insideB. In the remainder,B is also
denoted thegrid box. Now, we define the local explo-
ration task as follows: For our given 3d rectangular
region B we search for a set of sensor paths along
which the acquired sensor information is maximized
while the overall path cost is minimized.

A frequently used measure for the information pro-
vided by a measurement is theinformation gainI.
The information gain of a single measurement for a
particular cellcl in B is the difference of the entropies



Fig. 5. Path of the manipulator generated by the path plannerin a simulated environment.

of that cell before and after incorporating the new
sensor informationz:

I(cl | z) = H(cl) − H(cl | z) (1)

Based on the information gain and an appropriate path
cost functionf , we can evaluate possible pathsP

by calculating the weighted difference between the
information gain andf(P ) (see also (Stachniss and
Burgard, 2003)). A typical problem in this context is
that the information gain cannot be calculated in ad-
vance as one does not know which measurement will
be received alongP . The usual solution is to compute
the expected information gainby integrating over all
possible measurements. In our case, however, this is
infeasible, since the number of possible measurements
grows exponentially with the number of time steps or
with the length ofP .

In our current system we approximate the expected
information gain by considering the most likely mea-
surement̄z for each beam. This measurement is deter-
mined by traversing the grid inB along each beam un-
til a cell with probability higher than a given constant
c̄, which is set to .5 in our current system, is reached.
The expected information gain of a particular path is
then computed as:

I(P ) =
N−1
∑

n=0

M−1
∑

m=0

∑

c∈R(z̄m,n)

I(c | z̄m,n), (2)

whereN is the number of discrete points alongP at
which a range scan is obtained,M is the number of
beams of each scan, andR(z̄m,n) is the set of all cells
intercepted by the beam with lengthz̄m,n.

5.1 The utility of a path

For a good path evaluation we need a path cost func-
tion f that penalizes dangerous paths. In our imple-
mentation we definef as the inverse distance to the
next object. We approximate this value by creating a
set ofk sample points{s0, . . . , sk} inside the volume
of the manipulator and determining the sample with
minimum distance to the setB of bounding boxes rep-
resenting the environment. In the simplest case, where
there is no obstacle other than the ones insideB̂, B
only consists ofB̂. We will consider this case, but we

note that the definition off can easily be extended
to the general case if we take into account that the
environment is given as an OBB-tree. Thus, we have:

f(P ) = argmini=1,...,k{d(si, B̂)−1}. (3)

The distanced(si, B̂) from a samplesi to the boxB̂
is efficiently calculated using the generalized voronoi
diagram (GVD) ofB̂ (Lin, 1993): After creating the
GVD, we only need to check into which voronoi re-
gionsi falls. Then,d(si, B̂) is given as the distance to
the box feature (face, edge or vertex) that corresponds
to the found voronoi region.

Using equations (2) and (3), we define the best explo-
ration pathP ∗ as the one that maximizes the utility:

P ∗ = argmaxP∈P{I(P ) − λf(P )} (4)

whereλ is a fixed weighing factor andP is the set of
all possible paths.

5.2 The exploration algorithm

The major problem in evaluating equation (4) is that
P cannot be determined efficiently. In our current sys-
tem, we consider only a small subsetS of P , which
contains all paths that are reachable by the manipu-
lator and at the same time include good view points.
To determine a set of good view points, we consider
the bounding boxB̂ of all scan points insideB after
the first scan.B̂ defines the region of interest for the
further exploration process. In order to get a good
coverage of the object(s) insidêB, we look for paths
so that the laser sweeps across the edges{e1, . . . , e12}
of B̂. The start and end points of such paths can be
determined by finding joint positions at which one
of theei is inside the laser plane. Geometrically, this
corresponds to points at which a plane passing through
a givenei is tangent to a given small sphereSb. Thus,
the setS of good view paths is constructed as follows:

First, we create a set of points on the surface ofSb

so that no point is nearer tôB than the maximum
distance of the laser to the rotation axis of jointj3.
This way we ensure that the laser does not collide with
B̂. For each of these points we determine all points on
the corresponding upper sphereSs that lie on a plane
tangent toSs and passing through anei as described.



Fig. 6. upper-left: experimental setup; lower line: grid
box after the first scan (left) and at the end(right),
red cells are unknown, blue cells have high oc-
cupancy probability; upper-right: triangulation of
the final 3d model.

We obtain a set ofvantage pointsvj together with the
corresponding observation edgesei(j). Those vantage
points, for which the observation edges are parallel,
are then connected tosub-paths. These sub-paths cor-
respond to different sweeping motions of the scanner
along the faces of̂B.

Given this setS of sub-paths we proceed as follows:
Out of a set ofh sub-paths that are nearest to the
current arm position we select the one with maximum
utility. The valueh will be denoted as theexploration
horizon. If the obtained utility is lower than a given
minimum utilityumin, the sub-path is omitted and the
nexth sub-paths are considered. If a sub-path is found,
it is executed and the newly gathered information is
incorporated into the occupancy grid. The algorithm
terminates if there is no sub-path left.

5.3 Implementation

We have tested this exploration strategy with a real
3d object – a piano stool (see fig. 6). We chose an
exploration horizon of10 paths. Initially, there were
424 sub-paths, out of which only16 were executed
(the maximum would have been42). The results are
shown in fig. 6. For the triangulation, we created an
α-shape (Bernardini and Bajaj, 1997) from all scan
points that fell into occupied regions in the final grid.

6. CONCLUSIONS

In this paper we presented a robotic system for acquir-
ing three-dimensional maps of indoor environments.

The robot is a B21r platform equipped with a ma-
nipulator that carries a SICK laser range scanner. To
control this robot we developed a software system that
includes techniques for 3d collision avoidance, path
planning and exploration. The techniques have been
implemented and evaluated using real-world data and
in simulation.

There are several directions for future research. First,
the generation of the OBB-tree is computationally de-
manding so that techniques to efficiently update such
a tree based on sensory input are demanded. Further-
more, the path planning and exploration system should
also include movements of the platform itself and not
only movements of the robotic arm. This will addition-
ally increase the complexity of the search and further
techniques for increasing the efficiency will have to be
developed.
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